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Abstract. We show some problems coming from real algebra and semi-algebraic ge-
ometry to be NP-complete or coNP-complete for the Blum, Shub and Smale model of
computation. We also introduce a class of languages R lying between P and NP that
uses probabilistic machines, and several problems from the same area are classified as
“probably non-complete” by showing their membership to R.

Very recently L. Blum, M. Shub and S. Smale ([2]) introduced a new model of computation, the real
Turing machine (the BSS model in the sequel), that modelizes the kind of computations done in
numerical analysis or computational geometry, where operations are in principle performed over real
numbers. To this new model, a notion of time-complexity is attached that is shown to correspond
to what is usually called algebraic complexity, i.e. an estimation of the number of arithmetic
operations we must do to solve a problem.

In [2], analogous of the classes P and NP are introduced and the problem of deciding whether
a degree 4 polynomial in several variables has a real root is shown to be NP-complete (under
polynomial time reductions). The problem of deciding whether a semi—algebraic set given by
polynomials of degree 2 is non—empty is also shown to be NP-complete. A first consequence of
these results is that any algorithm solving the above quoted problems in polynomial time would
give us, for any other problem in NP, an algorithm that solves it in polynomial time, that is, we
should have P=NP for the BSS model. On the standard model, this is a generally believed fact,
even though no proof is known that P#NP. The main evidence supporting this guess is the number
of NP-complete problems found till now for which no polynomial time algorithm is known. Maybe
for that reason Blum, Shub, and Smale ask for other NP-complete problems. In this paper we give
some examples of such problems. Let us recall that a semi-algebraic subset 5 of IR" is the set of
points z € IR™ satisfying a system of the form

r
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where the f;; are polynomials. The system is said to be satisfiable when the semi-algebraic set
that it defines is non—empty. We shall denote by £(d) the set of all systems like (+) such that all
the f;; have degree smaller or equal than d. Analogously, the space of polynomials in any number
of variables having degree smaller than d will be denoted by P(d).
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In section 6 of [2] it is shown that the problem
SAS; = {p € L(d) | ¢ is a satisfiable system }.

is NP-complete for every d > 2. Also, for a single polynomial, and for every d > 4 the following
feasibility problem

FEAS,; = {f € P(d) | f has a real zero}

is shown to be NP-complete. In section 1.1. below we show that the problems
CONVEX, = {¢ € L(d) | the semi-algebraic set defined by ¢ is convex},
kFINITE;= {p € L(d) | ¢ has at most k solutions},
POSITIVE ;= {f € P(d) | for every z € R" f(z) > 0}
REGULAR4= {f | f is a regular polynomial}.

are coNP-complete for every d > 2 in the first two cases, and for every d > 4 in the other two.

Also, let us consider the following problems,
FINITE,;= {¢ € L(d) | the semi-algebraic set defined by ¢ is finite},
BOUNDED,= {y € L(d) | the semi—algebraic set defined by ¢ is bounded},
ADH;= {p € L(d) | 0 belongs to the adherence of the semi-algebraic set defined by ¢}.

It is not difficult to show that these problems are NP-hard, while it is far from obvious the mem-
bership to NP. However, NP algorithms for them can be given if we restrict the inputs to have
integer coefficients. The arguments used take advantage of some fine bounds on certain distances;
they are exposed in section 1.2. From the logical point of view, the restriction to formulae with
integer coefficients corresponds to the decision of sentences in the basic theory of real closed fields
where no symbols of constants are provided for elements in IR.

Little is known about the problems and classes between P and NP-complete problems for this
model. One good candidate to this position seems to be, for any d € IN,

SPOS; = {f € P(d) | there is an z such that f(z) > 0}

In section 2, a new probabilistic complexity class R lying between P and NP containing SPOS, is
defined and it is shown there that the problems

NEI;= {¢ € L(d) | the semi-algebraic set defined by ¢ has non-empty interior}
17 HILBERT = {f € P(d) | for every z1,...,Zn, f(Z1,...,2,) > 0}
HYPERSURFACE = {f € P(d) | the zero set of f has codimension 1}

also belong to R. Probability plays a role here since the machines randomly generate real numbers
and the definition of acceptance involves the probability of getting an accepting output as a function
of these random numbers. In this sense, this class is a first step towards [2] 11.4. where the authors
ask “to develop a theory of probabilistic algorithms” for this computational model.



1. Around NP-completeness.
1.1. Some NP-complete problems.

Let us recall that a semi-algebraic subset § of IR" is the set of points z € IR" satisfying a system
of the form

ri

_\7 A fis(2) 0i; 0 (*)

j=1

where the f;; are polynomials and the o;; are sign conditions taken from {=,>,>}.

We shall denote by £(d) the set of all systems like () such that all the f;; have degree smaller
than or equal to d. Also, for every ¢ € L(d) we shall denote by S(y) the semi-algebraic set of the
points z € IR" satisfying ¢ and, if S(¢) is non-empty, we shall say that ¢ is satisfiable. In the
same way, the space of polynomials in any number of variables having degree smaller than d will
be denoted by P(d).

One of the main results exposed in [2] is the existence of NP-complete problems. In fact, let
us consider

FEAS, = {f € P(4) | f has a real zero}
and
SAS, = {¢ € L(2) | ¢ is a satisfiable system }.

It is shown there that both problems are NP-complete. We shall use them to show some new
problems having this property.

Let us consider the following sets

CONVEX;= {p € L(d) | S(y) is convex},
kFINITE;= {¢ € £(d) | S(¢) has less than k points},
POSITIVE;= {f € P(d) |for every z € R" f(z) > 0}

and
REGULARy= {f € P(d)| f is regular}.

To determine membership in those sets is a common problem in real algebraic geometry, always
with a clear geometrical meaning.

Proposition 1.1.
i) CONVEX, is coNP-complete for every d > 2,
ii) kFINITE; is coNP-complete for every d > 2 and for every &,
iii) POSITIVE, is coNP-complete for every d > 4, and
iv) REGULAR; is coNP-complete for every d > 4.
Proof. i) The problem is clearly in coNP because, given a system ¢, the following NP algorithm
can prove the non—convexity of S(¢)
input(p)
bhegin
guess z,y € R™ and ¢t € (0,1)
if p(z) A p(y) A ~p(z +t(y — z)) then ACCEPT
else REJECT
fi

end



On the other hand, given a system ¢, we can consider the system
@i=pA(z*=-1=0)

where z is a new variable. It is clear that ¢ is satisfiable if and only if ¢ is so, and in this case the
semi—algebraic set given by @ is not convex. Therefore, ¢ € SAS, <= ¢ ¢ CONVEX,.

ii) Since a semi-algebraic set S defined by a formula ¢ is finite with its cardinal smaller than k if
and only if

Yoy .. Vo ((k/:\: Lp(:c.-)) = ( V o =x,.)) ,

1<i<j<k+1

it is not difficult to write up an NP algorithm which accepts when S has cardinal strictly greater
than k. It implies that kFINITE, is in coNP.
On the other hand, given a system ¢ € L£(2), we can consider the new one

8 = pA(2—1=0)A...A (22 —1=0)

where m = [log(k)] + 1 and z,...,2, are new variables. It is again clear that ¢ is satisfied if
and only if ¢®) is satisfied by strictly more than k different points. So ¢ € SAS; <= ¢ ¢
kFINITE,, which shows the corresponding hardness.

iii) Since the membership to coNP is obvious, we shall only show the hardness. To do so, we
recall that the degree 4 polynomial obtained in the reduction given in [2] to show that FEAS, is
NP-complete is a sum of squares. Thus, it is strictly positive if and only if 1t has no real root.

iv) Since an n-variated polynomial f is regular if and only if

Vz (f(a:)=0=> /\ gi(z)#0>

it is clear than REGULAR, is in coNP.
On the other side, again since the degree 4 polynomial obtained in the reduction of [2] is a
sum of squares, it has no real root if and only if it is regular. m

1.2. On the complexity of some problems with integer coefficients.

In this section we show that some problems concerning geometrical properties of semi-algebraic
sets are in NP provided the defining polynomials have integer coefficients. Without this hypothesis
it is not difficult to see that they are NP-hard but no argument seems to be available to prove
the belonging to NP. From a logical point of view, this turns out to be equivalent to deciding
satisfiability for a certain class of formulee in the basic theory of real closed fields, when no symbols
of constants are introduced in the language for elements in IR, and thus, the polynomials appearing
in such formulee have integer coefficients. So, in this section all the polynomials are supposed to
have integer coefficients.

Let us consider for every d € IN the following problems
FINITE;= {p € L(d) | S(yp) is discrete},

BOUNDED,;= {yp € L(d) | S(¢) is bounded},
and

ADH = {¢ € L£(d) | 0 belongs to the aherence of S(¢)},
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where all polynomials appearing in the systems ¢ have integer coefficients.
We need the following fact:

Proposition 1.2.
a) There exists a p € ZZ* such that, for any closed and bounded semi-algebraic set § C IR" given

by a system ¢ € L£(d) and for any = € §, the set B(z, l/LD"p )N S is contained in only one semi—
algebraically connected component of §, where L and D are upper bounds for the absolute value
of the coefficients of the polynomials appearing in ¢ and the total degree of ¢.
b) There exists a ¢ € Z* such that, for any bounded semi-algebraic set § C IR* given by a system
¢ € L(d) and for any z € S, S is contained in B(.'I:,I,D'"i ), with I and D as before.

Proof. Point (a) is [5] Prop. 14. Here we shall sketch the proof of (b), which is very similar to
that one.

Let § be a bounded semi-algebraic set given by ¢ € L(d). Then the adherence S can be

o(1) . .
and whose coefficients are bounded in

absolute value by L = L? s ([6]). Since S is bounded, § is also bounded.
Let us consider the map

defined by a formula % whose total degree is D = D"

f: §x8§ — R
(z,9) — |z—y|?
The set £ of images of local extrema with respect to f is a finite semi—algebraic set ([5] Lemma
o)
13), which is included in the set of zeroes of a univariated integer polynomial F of degree D
—a01) o

whose coefficients are bounded in absolute value by I = o~ (cf. [5] Prop. 14).

Thus, if R is the maximum of the roots of F and if £ > R then for any z € S the ball B(z,¢)
contains § (since it contains its adherence 5).

Using the usual upper bound for the roots of a univariated polynomial (see [7]) we have that

we can take £ = LP"* for some q€Zt. ]

Notice that, for any ¢ € Z*, LP " can be computed in polynomial time with respect to n.

Theorem 1.3. For every d we have that
i) FINITE, is in coNP,
ii) BOUNDED, is in coNP, and
ili) ADH,4 is in NP.
Proof.
(i) Because of proposition 1.2. a), a semialgebraic set § defined by a formula ¢ € £(d) has
dimension < 0 if and only if

Va¥y(p(z) A p(y) Az =yl < 1/LP" =z =y).
So, ¢ does not belong to FINITE; if and only if

B3y (p(z) A @) A s — yI? < 1/LP™ Az # ),
which shows that FINITE, is in coNP.

(ii) Just notice that, because of proposition 1.2. b), a semi-algebraic set S defined by a formula
¢ € L(d) is unbounded if and only if

Jz3y(e(z) A p(y) Az — 9]? > LP™).
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(iii) Is an easy consequence of the following
FACT: There exists a ¢ € Z* such that, for any semi-algebraic set § C IR" defined by a
formula ¢ € £(d), 0 € S if and only if

32(0 < [l=)? < 1/IP" A g(z))

where I, and D are as in proposition 1.2.
In order to prove it, let us consider the involutive transformation T': R" — {0} — IR" — {0}
defined by

Notice that |T'(z)| = 1/|z|.

Given a polynomial f € P(d),let T*(f) = |z|**f(T(z)). Given a formula ¢ € £(d), we denote
by T*¢ the formula obtained after replacing any polynomial f in it by T*(f), and given the
semi—algebraic set § defined by ¢, we denote by T*$ the semi—algebraic set defined by T*¢.

Notice that T* ¢ € £(2d), and thus its total degree is 2D, and that if I denotes an upper bound
for the absolute values of the coefficients of the polynomials in 7™ ¢ then L is a polynomial in
d and L.

By the elementary properties of T one has that 0 € § — {0} if and only if T*S is unbounded.
Thus, by proposition 1.2. b),

S € ADH; <= 3z(|z]? > LP"" AT ¢(z))
= 32(0 < |22 < 1/IP™" A ()

whence we easily obtain the statement. uw

2. A probabilistic complexity class.

Given a real polynomial f of degree 4, we know that deciding whether there exists = such that
f(z) = 0 is an NP-complete problem. We also know that the same happens for the problem of
deciding whether there exists an z such that f(z) > 0 by theorem 1.1. iii). However, no such result
seems to be true for the existence of an = satisfying f(z) > 0. While it is clear that this problem
(SPOS, in the sequel) is in NP, nothing leads us to think that it is hard for such a class. Indeed
let us consider the following non—deterministic algorithm for SPOS,
input( f)
begin
if f =0 then REJECT
else
guess Ty,...,Tn
if f(z1,...,2,) > 0 then ACCEPT
else REJECT
fi
fi
end

One remarkable feature of this algorithm, is that if it exists an accepting guess then there exists
a set of accepting guesses with non—empty interior in IR". In other words the accepted polynomials
are accepted with probability strictly greater than zero for all continuous distributions given to
IR". This is certainly a property that is not shared for any NP algorithm accepting FEAS,.
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We shall see that such property defines a complexity class lying between P and NP.

We briefly recall from [2] that a real Turing machine comsists of an input space Iy = IR",
an output space IR* and a state space § = Z* x Z* x IR*, together with a connected directed
graph whose nodes labelled 1...N (the set of differents instructions) are of certain types and with
associated functions. The internal content of S at time ¢ is (¢, j,z,Z2,23,...) Where for t = 1 the
input is in the z, with s odd (thus we reserve the even coordinates to leave work space), and
can denote the length of the input. The five types of nodes are as follows:

1) Exactly one input node: node 1. Associated with this node is a next node §(1).

2) Exactly one output node: node N. Once it is reached the computation halts, the contents of
the real part of S being considered as the output.

3) Computation nodes. Associated with a node m of this type there is a next node 3(m) and a
map ¢, : S — 5. The g, is of the form g, (%, 7, z) = (#'(2), 5'(4), 2'(x)), with #'(5) = i+ 1 or 1,
7'(1)=j+1lor1,and 2’ is a polynomial or rational map.

4) Branch nodes. There are two nodes associated with this node: #+(m) and 5~ (m). The next
node is 8% (m) if z; > 0 and B~ (m) otherwise.

5) Move nodes. It has a unique next node §(m). If the current element of § is (4,j,;,...) it
operates replacing z; by z; in the 4t place of the vector IR* in S.

An instantaneous description of any moment of the computation can be given by providing an
element in § and the current node. The first one changes according to the function associated with
the current node and the node itself according to the function 3.

We also recall from [2] that a machine M is said to work in polynomial time when there are
constants ¢,q € ZZ* such that for every input y € IR*, M reaches its output node after at most
c(size(y))? steps. The class P is then defined as the set of all subsets of IR* that can be accepted
by a machine working in polynomial time.

Definition. We now introduce the class R as the set of decision problems Y for which there are

constants ¢,q € IN and a machine M over R with Iy, = I x I', where I = I' = R* such that

(a) the outputs of M are 1 (yes) and 0 (no).

(b) for every y,y' the computation time of M for the input (y,y’) is smaller than ¢(size(y))?.

(¢c) y € Y iff the set {y' € I' | #u(y,y’) = 1} has non-zero measure under the assumption that
each ¢’ is a random variable with normal standard distribution.

(d) for every node of type 4 we have that, if there exists (y,y’) such that some queried value at
this node during the computation for the input (y,y’) involves 3, then for every y € I the
set {y’ € I' | that queried value is 0} has a measure of zero. Nodes of type 4 satisfying this
condition will be called proper tests.

Remarks.
i) The ' in the definition plays the role of the random choices made by the machine, as with the
Boolean probabilistic machines (see {1] ch.6). It is clear that, as for languages in NP the size of
y' can be considered to be c(size(y))?. So, we can assume that we take the measure of the choices
leading to an accepting output in a real space with that dimension.

Moreover, it is clear that condition (c) is equivalent to restricting the set of choices leading to
an accepting output to have non—empty interior.

ii) With this definition, the algorithm given at the beginning of this section shows that SPOS,€ R.

iii) Condition (d) in the definition does not seem, to us, to be a condition testable in polynomial
time for a given machine, even for a given input. So it is a responsibility of the programmer to
check that the program is correct in that sense (something similar happens with real RAM’s with
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indirect addressing, where the programmer must show that no addressing to non-integer addresses
is made).

iv) One feature over which we want to attract the reader’s attention is that the inclusion R C NP
is not staightforward, as in the Boolean case, due to the fact that in our continuous distribution,
probability zero does not entail emptyness.

v) We finally remark that since we can not give an a priori strictly positive lower bound for the
probability of reaching an accepting output, no probability amplification lemma is now available.

The following property is a trivial consequence of condition (d).

Lemma 2.1. For every problem L in R we can devise a machine that accepts L whose proper tests
have the form
if £ > 0 then go to gt
elif ¥ < 0 then go to 8~
else REJECT and halt
fi
Proof. Let us consider a machine M accepting L. We define a new machine M’ by replacing
all proper tests in M of the form
if £ > 0 then go to g+
else go to 8~
fi
by tests with the desired form.
Clearly, M’ accepts L because it behaves like M except for a set of choices that has a measure
of zero since it is defined by non-constant equalities. ™

Theorem 2.2. We have that P C R C NP.

Proof. The first inclusion is trivial. For the second one, let us consider a problem L in R and
a machine M accepting L that we shall suppose has proper tests in the form given by the lemma
above. We claim that the same machine accepts L considered as a non—deterministic one. In fact, if
z € L then there are (many) accepting guesses and then we have the non—deterministic acceptance
of z. On the other hand, if M accepts z as a non—deterministic machine, then we have a sequence
of guesses y1,- - .,Ym that lead to an accepting output. During these computation we pass through
a finite number of proper tests. For each one of them let y;,,...,y;, be the guesses involved in the
test. Since the equality sign leads to a rejection, the queried sign must have been > 0 or < 0, and
then there exist €;,,...,¢;, such that the same sign holds if we replace y;; by any point in the open
ball of center y;; and radius ¢;,. For every i = 1,...,m we consider ¢; defined as the minimum of
the ¢;; for all the proper tests where y; is involved. Clearly the elements in the open set

{21,...,Zm l 2 € (y. — €, Y +6,') 1= 1,...,m}
are all sequences of accepting guesses. i

A natural question concerning this class is whether it has complete problems. We do not have
an answer to it, but we recall that in the Boolean model and for the probabilistic complexity classes
contained in NP (R and ZPP) no complete problems are known.

Other natural questions are whether P=R or R=NP. The only partial answer we can now give
is the following, very easy, one.

Proposition 2.3. If some problem in R is NP-complete, then R=NP. B
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We close this section exhibiting some problems in R. Let us consider the following sets:
NEL= {¢ € £(d) | S(¢) has non-empty interior}

17t HILBERT = {f € P(d) | for every z,,...,%n, f(z1,...,2,) > 0}
and
HYPERSURFACE;= {f € P(d) | the zero set of f is a hypersurface i.e. has codimension 1}

The second problem has considerable historical importance, because the polynomials being positive
on the whole space are exactly those which can be written as a sum of squares of rational functions
in R(X1,...,Xn). This characterization was asked by Hilbert in one of his famous 23 problems
(the 17*h) and the positive answer was given by Artin and Schreier in the 20’s and motivated the
introduction of the real closed fields (for more data concerning Hilbert’s seventeenth problem, see
chapter 6 of [3]).

Lemma 2.4. For any squarefree f € IR[X1,...,X,], the following conditions are equivalent:
i) f changes sign (i.e. 3z,y € R" f(z)f(y) <0),
ii) the zero set of f has dimension n — 1.
Proof.
i) = ii) Let Uy = {z € R" | f(z) > 0} and U> = {z € R" | f(z) < 0}. Since those sets are open,
non-empty and disjoint, we have that dim(IR* — (U UUz)) > n — 1 (see [3] 4.5.2.) and
ii) follows.
i1) = i) Let p be a prime divisor of f whose zero set has dimension n — 1. Since p is prime, it
— generates the ideal of polynomials vanishing at its zero set. Now, if f=p-q, pandgq
are coprimes because f is squarefree. We can then find a point @ = ay,...,a, that is a
non-singular zero of p but not a zero of g. Therefore, there exists ¢ < n such that p(e) = 0,
ai;T(a) # 0 and g(a) # 0. This implies that f(a) =0 and 5‘%(@) # 0. Thus, the function

T — f(a'17"'>ai—1,$aai+17"-,an)

is strictly monotonic over an interval containing a;, and f must change sign. &

Proposition 2.5. We have that for every d
(i) NEI; is in R,
(i) 17*hHILBERT, is in coR, and
(iiiy HYPERSURFACE; is in R.
Proof. For (i), let ¢ be the system

V /\ fij(z) 0i; 0

i=1lj=1

The set S(¢) has non-empty interior if and only if one of the union sets has this property. But
these union sets, being intersections of sets defined by equations and inequations, have non—empty
interior if and only if no equality appears in the set and there exists a point z € IR" satisfying the
strict inequalities.
Part (ii) is trivial.
For part (iii) just note that, because of the preceding lemma, the algorithm
input(f)
begin
if f =0 then REJECT



else
compute f the squarefree part of f
randomly choose zy,...,Z,,¥1,-+-y¥n
if f(z1,...,2,)f(%1,---,9n) < 0 then ACCEPT
else REJECT
fi
fi

end

accepts f if and only if the zero set of f (which coincides with the one of f) has dimension n—1. m

3. Some open problems.

1. A first related problem is the complexity of quantifier elimination. In recent years many
algorithms have been given that decide whether a quantified sentence in the elementary language
of the real closed fields is true or not (see for instance [4], or [8]). These algorithms have all the same
time complexity, which is simply exponential in the number of variables and doubly exponential in
the number of quantifier alternations. This differs from the Boolean case in which the decision of
quantified Boolean formule can be done in single exponential time and moreover is known to be
PSPACE-complete.

The question now is: is there a complexity class for which the decision of quantified sentences
over the reals is a complete problem?

This seems to be a non-trivial question, one of its disturbing features being the fact that no
complexity classes defined by bounds on the used space appear to be useful. Indeed, consider for
instance the set {(z,y) € R? | y # e*}. This set can be accepted in constant space but is not
even Tecursive because its complement is the graph of the exponential function which cannot be
written as a countable union of semi—algebraic sets (see [2] proposition 2 for this characterization
of recursive sets).

2. In the BSS model one can define, as in the Boolean one, a polynomial hierarchy of complexity
classes (for the Boolean case, see [1] ch.8), and a syntactical characterization of those classes by
the number of alternations of quantifiers easily follows. Many of the problems we have seen in the
preceding sections can be “naturally” stated as problems in some higher levels of this hierarchy.
For instance, the fact that ¢ € NEI, is usually expressed by

3z € R 3eVy € R (p(2) Ao — yl* < € = ¢(y))
and the fact that ¢ e BOUNDED, is expressed by

IKVy € R” (Jy)2 < KV - o(y))

For the first problem, we have seen that a more simple expression can be found since the
problem is in NP (in fact, in R). For the second problem, however, no NP algorithm is known.
Syntactically, the obstruction comes from the 3K in the beginning of the formula, and this kind of
obstruction (an alternance produced by a single quantifier not adjacent to the quantifier—free part
of the formula) also appears in the other problems dealt with in section 1.2. Notice that in the
Boolean case, the cost of eliminating this single qua,ntlﬁer is linear in time and duplicates the size
of the formula. In fact, a formula like

Yy3z, -+ -3z, (Y, Z1,...,2Z5)
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is equivalent to
Az, ---32,32 -3z, (0(0,21,. ., 20) A@(L, 205005 20)) -

The above mentioned algorithms for quantifier elimination in the theory of real closed fields
do not share this property, the eliminated quantifier being always the innermost one.

The question that arises then is: is there a way of performing this kind of elimination in the
real case with polynomial cost?

3. It is easy to define a new complexity class by putting aside condition (d) in the definition of class
R, and this class has complete problems. However, what is not obvious now is that this class is
contained in NP. An open problem, for us, is whether condition (d) is superfluous in the definition
of R.

Acknowledgment. Thanks are due to José Luis Balcazar for several discussions as well as for the
careful reading of this manuscript.
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