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Motivating example

A structural damage detection indicator based on PCA and HT
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Motivating example

A structural damage detection indicator based on PCA and HT

• In a classic application of the PCA strategy in the field of
structural health monitoring, the scores allow a separation,
clustering or visual grouping.

• However, in some cases, it can be clearly observed that a
clustering, visual grouping, or separation cannot be performed.

• Therefore, more powerful and reliable tools are needed (HT, for
instance!).
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Introduction

Hypothesis test
A hypothesis test is a decision criterion that allows to select
between two complementary hypothesis.

Null hypothesis and alternative hypothesis

• Before conducting the hypothesis test, define the null
hypothesis, H0, which is assumed to be true prior to conducting
the hypothesis test.

• The null hypothesis is compared to another hypothesis, called
the alternative hypothesis, and denoted H1.

Research hypothesis

• The alternative hypothesis is often called the research
hypothesis since the theory or what is believed to be true about
the parameter is specified in the alternative hypothesis.
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Motivating example

A structural damage detection indicator based on PCA and HT

• In the motivating example:
• If the null hypothesis (H0) is accepted, the current structure is
classified as healthy.

• If the null hypothesis is rejected and the alternative hypothesis
(H1) is accepted, this would indicate the existence of some damage
in the structure.
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Introduction / Motivating Example

Parameter space

• H0 and H1 define complementary subsets of the parameter
space Θ where the parameter θ is defined.

• The null hypothesis defines the region [θ ∈ Θ0] and the
alternative hypothesis defines the region [θ ∈ Θ1]

Θ0 ∩Θ1 = ∅
Θ0 ∪Θ1 = Θ

Simple and composite hypothesis

• When a hypothesis uniquely specifies the distribution of the
population from which the sample is taken, the hypothesis is
said to be simple. For a simple hypothesis, Θ0 = {θ0}.

• Any hypothesis that is not a simple hypothesis is called a
composite hypothesis.
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Introduction

Parameter space

Table 1: Form of hypothesis test

Null hypothesis Alternative Hypothesis Type of Alternative

(A) H1 : θ < θ0 lower one-sided
H0 : θ = θ0 (B) H1 : θ > θ0 upper one-sided

(C) H1 : θ 6= θ0 two-sided

Of the various combinations of hypothesis that could be examined,
the case where H0 is simple and H1 is composite will be the focus
of this lecture.
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Introduction

Example
If H0 : π = 0.4 in a b(π) (Bernoulli) distribution, the null
hypothesis is simple since the hypothesis H0 : π = 0.4 uniquely
specifies the distribution as b(0.4).

If H1 : π < 0.4, the hypothesis is composite since π can take any
value in the interval [0, 0.4).
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Introduction

The goal in hypothesis testing

• The goal in hypothesis testing is to decide which one of the two
hypothesis, H0 and H1, is true.

• To this end, split the sample space into two mutually exclusive
subsets R and R̄.

• R is the rejection region.
• R̄ is the acceptance region.
• The critical value is the number that splits Θ into R and R̄.
• To help decide, calculate a test statistic based on a sample.
• If the test statistic falls in the acceptance region, accept the null
hypothesis.

• If the test statistic falls in the rejection region, reject the null
hypothesis and accept the alternative hypothesis.
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Introduction

Example
The weight of a ball-bearing fluctuates between 1.5 g and 4.5 g. One
wants to test whether the distribution of the weight for the ball
bearing has a mean of either 2 g (H0 : µ = 2) or 2.5 g (H1 : µ = 2.5).

A random sample of size one is taken. If the weight of the ball
bearing is greater than 2.3 g, the null hypothesis that the mean
weight of the ball-bearing is 2 g is rejected, and the alternative
hypothesis that the mean weight of the ball-bearing is 2.5 g is
accepted.

Specify the sample space, the rejection region, the acceptance
region and the critical value.

Θ = [1.5, 4.5], R = (2.3, 4.5], R̄ = [1.5, 2.3], cv = 2.3
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Introduction

Example
The weight of a ball-bearing fluctuates between 1.5 g and 4.5 g. One
wants to test whether the distribution of the weight for the ball
bearing has a mean of either 2 g (H0 : µ = 2) or 2.5 g (H1 : µ = 2.5).

A random sample of size one is taken. If the weight of the ball
bearing is greater than 2.3 g, the null hypothesis that the mean
weight of the ball-bearing is 2 g is rejected, and the alternative
hypothesis that the mean weight of the ball-bearing is 2.5 g is
accepted.

Specify the sample space, the rejection region, the acceptance
region and the critical value.

Θ = [1.5, 4.5], R = (2.3, 4.5], R̄ = [1.5, 2.3], cv = 2.3
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Type I and Type II Errors

“The decision one reaches using a hypothesis test is always
subject to error.”

To get a better grasp on the errors one might make with a
hypothesis test, consider the following hypothetical legal situation.

In the United States’ judicial system, as well as in Spain’s, an
individual is considered innocent until proven guilty of an offense.

Table 2: Possible outcomes and their consequences for a trial by jury

True state of the defendant
Jury’s decision H0 true (innocent) H0 false (guilty)

Accept H0 (not guilty) Correct (A) Error (B)
Reject H0 (guilty) Error (C) Correct (D)
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Type I and Type II Errors

True state of the defendant
Jury’s decision H0 true (innocent) H0 false (guilty)

Accept H0 (not guilty) Correct (A) Error (B)
Reject H0 (guilty) Error (C) Correct (D)

Case A. Correct
If the defendant is innocent and the jury decides the defendant is
not guilty of the charge, the jury’s decision is correct.
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Type I and Type II Errors

True state of the defendant
Jury’s decision H0 true (innocent) H0 false (guilty)

Accept H0 (not guilty) Correct (A) Error (B)
Reject H0 (guilty) Error (C) Correct (D)

Case B. Error
By failing to reject a false null hypothesis, an error has been made.
In statistics, this error is called a type II error. In the legal scenario,
a type II error is made when a guilty person is not convicted.

β

The probability of committing a type II error is β.
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Type I and Type II Errors

True state of the defendant
Jury’s decision H0 true (innocent) H0 false (guilty)

Accept H0 (not guilty) Correct (A) Error (B)
Reject H0 (guilty) Error (C) Correct (D)

Case C. Error
By rejecting a true null hypothesis, an error has been made. In
statistics, this type of error is called a type I error. In the legal
example, a type I error would be to convict an innocent defendant.

α

The probability of committing a type I error is α.
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Type I and Type II Errors

True state of the defendant
Jury’s decision H0 true (innocent) H0 false (guilty)

Accept H0 (not guilty) Correct (A) Error (B)
Reject H0 (guilty) Error (C) Correct (D)

Case D. Correct
If the null hypothesis is false and it is rejected, the decision is
correct. In the legal arena, this translates into a jury convicting a
guilty defendant.
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Type I and Type II Errors: Level of significance

Level of significance

• The probability of committing a type I error is called the level of
significance for a hypothesis test.

• The level of significance is also known as the size of the test and
is denoted by α, where

α = P(type I error) = P(reject H0 | H0 is true)
= P(accept H1 | H0 is true)

• The probability of committing a type II error is β, where

β = P(type II error) = P(fail to reject H0 | H0 is false)
= P(accept H0 | H1 is true)
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Type I and Type II Errors: Level of significance

Level of significance

Table 3: Relationship between type I and type II errors

Null hypothesis
Decision True False

Accept H0 P(accept H0 | H0) = 1− α P(accept H0 | H1) = β

Reject H0 P(reject H0 | H0) = α P(reject H0 | H1) = 1− β

The power of the test
1− β is also known as the power of the test.
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Type I and Type II Errors: Level of significance

Example
Given a normal distribution with unknown mean µ and known
standard deviation σ = 2, one wishes to test

H0 : µ = 1 versus H1 : µ = 4

A sample of size one is taken where R = (2,+∞).

Determine α and β for this experiment.

Determine α

α = P(reject H0 | H0) = P(X1 > 2 | N(1, 2)) = P
(
X1 − 1
2

>
2− 1
2

)
= P(Z > 0.5) = 1− P(Z ≤ 0.5), Z ↪→ N(0, 1)
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Type I and Type II Errors: Level of significance

Example
Given a normal distribution with unknown mean µ and known
standard deviation σ = 2, one wishes to test

H0 : µ = 1 versus H1 : µ = 4

A sample of size one is taken where R = (2,+∞).

Determine α and β for this experiment.

Determine α

1 >>from scipy.stats import norm
2 >>1-norm.cdf(2, loc=1, scale=2)
3 0.3085375387259869

19



Type I and Type II Errors: Power of the test

Example
Given a normal distribution with unknown mean µ and known
standard deviation σ = 2, one wishes to test

H0 : µ = 1 versus H1 : µ = 4

A sample of size one is taken where R = (2,+∞).

Determine α and β for this experiment.

Determine β

β = P(accept H0 | H1) = P(X1 ≤ 2 | N(4, 2)) = P
(
X1 − 4
2

≤ 2− 4
2

)
= P(Z ≤ −1), Z ↪→ N(0, 1)
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Type I and Type II Errors: Power of the test

Example
Given a normal distribution with unknown mean µ and known
standard deviation σ = 2, one wishes to test

H0 : µ = 1 versus H1 : µ = 4

A sample of size one is taken where R = (2,+∞).

Determine α and β for this experiment.

Determine β

1 >>from scipy.stats import norm
2 >>norm.cdf(2, loc=4, scale=2)
3 0.15865525393145707
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Power Function

Power function

• Given a composite alternative hypothesis H1 : θ ∈ Θ1, the
power of the test, power(θ), is

power(θ) = P(reject H0 | H0 is false) = P(accept H1 | H1)
= 1− β(θ),

where β(θ) is the probability of a type II error at a given θ.
• The power of a test is the probability the test detects differences
when differences exist.

• Note that power(θ) is a function of the parameter θ:

power : Θ1 7→ [0, 1] ⊂ R

θ 7→ power(θ)
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Power Function

Example
Given the density function

f (x; θ) = θe−θx, x ≥ 0, θ > 0,

(a) Consider a test of hypothesis where H0 : θ = 2 versus
H1 : θ > 2. Using a random sample of size one, find the critical
value k such that the test is conducted at the α = 0.05 level.

(b) Further, determine the power function of this test.

Determine the critical value k

α = P(X1 > k | H0) =
∫ +∞

k
f (x1; 2)dx1 = e−2k = 0.05 ⇒ k = 1.4979
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Power Function

Example
Given the density function

f (x; θ) = θe−θx, x ≥ 0, θ > 0,

(a) Consider a test of hypothesis where H0 : θ = 2 versus
H1 : θ > 2. Using a random sample of size one, find the critical
value k such that the test is conducted at the α = 0.05 level.

(b) Further, determine the power function of this test.

Determine the critical value k
1 >>from scipy.stats import expon
2 >>expon.ppf(0.95, loc=0, scale=1/2)
3 1.497866136776995
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Power Function

Example
Given the density function

f (x; θ) = θe−θx, x ≥ 0, θ > 0,

(a) Consider a test of hypothesis where H0 : θ = 2 versus
H1 : θ > 2. Using a random sample of size one, find the critical
value k such that the test is conducted at the α = 0.05 level.

(b) Further, determine the power function of this test.

Determine the power function of this test

power(θ) = P(reject H0 | H1) = P(X1 > k | H1)

=

∫ +∞

k
f (x1; θ)dx1 = e−θk
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Power Function

Example
Test the null hypothesis that for a certain age group the mean
score on an achievement test (scores follow a normal distribution
with σ = 6) is equal to 40 against the alternative that it is not equal
to 40.

(a) Find the probability of type I error for n = 9 if the null
hypothesis is rejected when the sample mean is less than 36 or
greater than 44.

About the sample mean
If Xi ↪→ N(µ, σ), i = 1, 2, . . . ,n, then

X̄n =
X1 + X2 + · · ·+ Xn

n
↪→ N

(
µ,

σ√
n

)
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Power Function

Example
Test the null hypothesis that for a certain age group the mean
score on an achievement test (scores follow a normal distribution
with σ = 6) is equal to 40 against the alternative that it is not equal
to 40.

(a) Find the probability of type I error for n = 9 if the null
hypothesis is rejected when the sample mean is less than 36 or
greater than 44.

Type I error

α = P(X̄ < 36 | H0) + P(X̄ > 44 | H0)

= P
(
X̄ < 36 | N(40, 6/

√
9)
)
+ P

(
X̄ > 44 | N(40, 6/

√
9)
)

= P(Z < −2) + P(Z > 2), Z ↪→ N(0, 1)
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Power Function

Example
Test the null hypothesis that for a certain age group the mean
score on an achievement test (scores follow a normal distribution
with σ = 6) is equal to 40 against the alternative that it is not equal
to 40.

(a) Find the probability of type I error for n = 9 if the null
hypothesis is rejected when the sample mean is less than 36 or
greater than 44.

Type I error
1 >>from scipy.stats import norm
2 >>norm.cdf(-2, loc=0, scale=1)+1-norm.cdf(2, loc=0, scale=1)
3 0.045500263896358306
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Power Function

Example
Test the null hypothesis that for a certain age group the mean
score on an achievement test (scores follow a normal distribution
with σ = 6) is equal to 40 against the alternative that it is not equal
to 40.

(b) Find the probability of type I error for n = 36 if the null
hypothesis is rejected when the sample mean is less than 38 or
greater than 42.

Type I error

α = P(X̄ < 38 | H0) + P(X̄ > 42 | H0)

= P
(
X̄ < 38 | N(40, 6/

√
36)
)
+ P

(
X̄ > 42 | N(40, 6/

√
36)
)

= P(Z < −2) + P(Z > 2), Z ↪→ N(0, 1)
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Power Function

Example
Test the null hypothesis that for a certain age group the mean
score on an achievement test (scores follow a normal distribution
with σ = 6) is equal to 40 against the alternative that it is not equal
to 40.

(b) Find the probability of type I error for n = 36 if the null
hypothesis is rejected when the sample mean is less than 38 or
greater than 42.

Type I error
1 >>from scipy.stats import norm
2 >>norm.cdf(-2, loc=0, scale=1)+1-norm.cdf(2, loc=0, scale=1)
3 0.045500263896358306
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Power Function

Example
Test the null hypothesis that for a certain age group the mean
score on an achievement test (scores follow a normal distribution
with σ = 6) is equal to 40 against the alternative that it is not equal
to 40.

(c) Plot the power functions for n = 9 and n = 36 for values of µ
between 30 and 50. Note that power(µ0) = α.
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Power Function

Python code
1 %matplotlib inline
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from scipy.stats import norm
5 def power9(mu):
6 return norm.cdf((36-mu)/2, loc=0, scale=1)+(1-norm.cdf((44-

mu)/2, loc=0, scale=1))
7 def power36(mu):
8 return norm.cdf((38-mu)/1, loc=0, scale=1)+(1-norm.cdf((42-

mu)/1, loc=0, scale=1))
9 rr = np.arange(30, 50, 0.01)
10 plt.xlabel('$\mu$')
11 plt.ylabel('power($\mu$)')
12 plt.title('Graphical representation of the power function')
13 plt.plot(rr, power9(rr),label='n=9')
14 plt.plot(rr, power36(rr),label='n=36')
15 plt.legend()
16 plt.savefig('plot.eps', dpi=300, bbox_inches='tight')
17 plt.show() 32



Power Function: Homework1

Example
Given a N(µ, 1) population from which one takes a simple random
sample of size 1, test the null hypothesis H0 : µ = 1 versus the
alternative hypothesis H1 : µ = 2.

Determine the significance level and the power of the test for the
following rejection regions:

(a) (2.036,+∞)

(b) (1.100, 1.300) ∪ (2.461,+∞).

Remark
Note that tests with identical α values do not necessarily have
identical power for a fixed sample size.
1To be handed in on or before the next lecture as a single PDF file. You can work in
pairs.
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p-Value or critical level

p-value

• The critical level or p-value is defined as the probability of
observing a difference as extreme or more extreme that the
difference observed under the assumption that the null
hypothesis is true.

• The p-value is not fixed a priori, but rather is determined after
the sample is taken.

• Given a fixed significance level α, reject H0 whenever the
p-value< α.
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p-Value or critical level

p-value

Table 4: Calculation of p-values for continuous distributions

p-value

H1 : θ < θ0 P (T < tobs|H0)
H1 : θ > θ0 P (T > tobs|H0)
H1 : θ 6= θ0 2min {P (T < tobs|H0) ,P (T > tobs|H0)}
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Metrics for Evaluating Classification Models

Confusion matrix (hypothesis testing)

Null hypothesis
Decision True False

Accept H0 correct type II error
Reject H0 type I error correct

Confusion matrix (predictive analytics)

Actual class
Predicted class Positive Negative

Positive true positive (tp) false positive (fp)
Negative false negative (fn) true negative (tn)
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Metrics for Evaluating Classification Models

Confusion matrix (predictive analytics)

Actual class
Predicted class Positive Negative

Positive true positive (tp) false positive (fp)
Negative false negative (fn) true negative (tn)

Accuracy

• Accuracy is one metric for evaluating classification models.

acc = tp+ fn
tp+ fp+ fn+ tn

• Accuracy alone does not tell the full story when you are working
with a class-imbalanced data set.
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Metrics for Evaluating Classification Models

Confusion matrix (predictive analytics)

Actual class
Predicted class Positive Negative

Positive true positive (tp) false positive (fp)
Negative false negative (fn) true negative (tn)

Precision

• Precision (or positive predictive value (ppv) attempts to answer
the following question: “What proportion of positive
identifications was actually correct?”

ppv = tp
tp+ fp
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Metrics for Evaluating Classification Models

Confusion matrix (predictive analytics)

Actual class
Predicted class Positive Negative

Positive true positive (tp) false positive (fp)
Negative false negative (fn) true negative (tn)

Recall

• Recall (or sensitivity, hit rate, true positive rate (tpr)) attempts to
answer the following question: “What proportion of actual
positives was identified correctly?”

tpr = tp
tp+ fn
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Metrics for Evaluating Classification Models

Confusion matrix (predictive analytics)

Actual class
Predicted class Positive Negative

Positive true positive (tp) false positive (fp)
Negative false negative (fn) true negative (tn)

F1 score

• F1 score is defined as the harmonic mean of precision (ppv) and
recall (tpr):

F1 =
( 1

ppv +
1
tpr

2

)−1

=
2 · ppv · tpr
ppv+ tpr

=
2tp

2tp+ fn+ fp
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Metrics for Evaluating Classification Models

Confusion matrix (predictive analytics)

Actual class
Predicted class Positive Negative

Positive true positive (tp) false positive (fp)
Negative false negative (fn) true negative (tn)

Specificity

• Specificity (or selectivity, true negative rate (tnr)) attempts to
answer the following question: “What proportion of negative
identifications was actually correct?”

tnr = tn
fp+ tn
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Tests of Significance

Tests of Significance

• Step 1. Hypotheses. State the null and alternative hypotheses.
• Step 2. Test Statistic. Select and appropriate test statistic and
determine the sampling distribution of the test statistic or the
standardized test statistic under the assumption that the null
hypothesis is true.

• Step 3. Rejection Region Calculations. Use the specified α

level to compute the critical value and to determine the
rejection region for the standardized test statistic. Then
calculate the value of the statistic observed from the sample,
t(x) = tobs.

• Step 4. Statistical Conclusion. Use the rejection region of the
p-value to determine if the evidence warrants rejecting the null
hypothesis.
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Tests of Significance

Test for the population mean when sampling from a normal
distribution with unknown population variance

Example
A random sample of size n = 25 is taken from a distribution known
to be N(µ, σ). If the

∑n
i=1 xi = 100 and the

∑n
i=1 x2i = 600,

(a) Test the null hypothesis H0 : µ = 2.5 versus the alternative
hypothesis H1 : µ 6= 2.5 at the α = 0.05 significance level.

Step 1. Hypothesis
These are given in the problem as

H0 : µ = 2.5 versus
H1 : µ 6= 2.5
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Tests of Significance

Test for the population mean when sampling from a normal
distribution with unknown population variance

Example
A random sample of size n = 25 is taken from a distribution known
to be N(µ, σ). If the

∑n
i=1 xi = 100 and the

∑n
i=1 x2i = 600,

(a) Test the null hypothesis H0 : µ = 2.5 versus the alternative
hypothesis H1 : µ 6= 2.5 at the α = 0.05 significance level.

Step 2. Test Statistic
The test statistic chosen is X̄ because E[X̄] = µ. The value for this
test statistic is x̄ =

(∑n
i=1 xi

)
/n = 4. The standardized test statistic

and its distribution under the assumption H0 is true are

T =
X̄ − µ

S/
√
n
↪→ t25−1.
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Tests of Significance

Test for the population mean when sampling from a normal
distribution with unknown population variance

Step 3. Rejection Region Calculations
Because the standardized test statistic is distributed t24, and H1 is a
two-tailed hypothesis, the rejection region is

|tobs| > t1−0.05/2;24 = t0.975;24 = 2.0639

where t0.975;24 satisfies

P(T < t0.975;24) = 0.975, T ↪→ t24

1 >> from scipy.stats import t
2 >> t.ppf(0.975,24)
3 2.0638985616280205
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Tests of Significance

Test for the population mean when sampling from a normal
distribution with unknown population variance

Step 3. Rejection Region Calculations
The value of the standardized test statistic is

tobs =
x̄ − µ0

s/
√
n

=
4− 2.5
2.89/

√
25

= 2.5981

where the value for s is calculated as

s =

√∑2
i=1 x2i − nx̄2

n− 1
= 2.8868
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Tests of Significance

Test for the population mean when sampling from a normal
distribution with unknown population variance

Step 4. Statistical Conclusion
From the rejection region, reject H0 because

|tobs| = 2.5981 > 2.0639 = t0.975;24

The p-value is 2 · P(t24 ≥ tobs) = 0.015772855749001335 < α

1 >> from scipy.stats import t
2 >> 2*(1-t.cdf(2.5980762113533156,24))
3 2.0638985616280205

From the p-value, reject H0 because the p-value is less than α.

There is evidence to suggest that the mean is not equal to 2.5.
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Tests of Significance: Homework2

Test for the population mean when sampling from a normal
distribution with unknown population variance

Example
One-sample t-test: Fertilizers. A farmer wants to test if a new brand of
fertilizer increases his wheat yields per plot. He puts the new fertilizer on
15 equal plots and records the subsequent yields for the 15 plots. If his
traditional yield is two bushels per plot, conduct a test of significance for µ
at the α = 0.05 significance level assuming the data follow a normal
distribution. The yields for the 15 yields are

2.5 3.0 3.1 4.0 1.2

5.0 4.1 3.9 3.2 3.3

2.8 4.1 2.7 2.9 3.7

The python function stats.ttest_1samp cannot be used in this
example, since the alternative hypothesis is always two-tailed.
2To be handed in on or before the next lecture as a single PDF file. You can work in
pairs.

48



Tests of Significance

Test for the difference in population means when sampling from
independent normal distributions with known variances

• The null hypothesis for testing the difference between two
means is

H0 : µX − µY = δ0,

and the standardized test statistic under the assumption that H0
is true is

Z =
X̄ − Ȳ − δ0√
σ2X
nX

+
σ2Y
nY

↪→ N(0, 1)
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Tests of Significance

Test for the difference in population means when sampling from
independent normal distributions with known variances

Example
A researcher wishes to see if it reasonable to believe that
engineering majors have higher math SAT scores than English
majors. She takes two random samples.

The first sample consists of 64 engineering majors’ SAT math scores
(X). Typically, these scores follow a normal distribution with a
known standard deviation of σX = 100 but with an unknown mean.

The second sample consists of 144 observations of English majors’
SAT scores (Y). These also follow a normal distribution with a
standard deviation of σY = 108 with an unknown mean as well.

(a) Test the null hypothesis of equality of means at the 10% significance
level (α = 0.1) knowing the difference in sample means is 20.
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Tests of Significance

Test for the difference in population means when sampling from
independent normal distributions with known variances

Step 1. Hypotheses

H0 : µX − µY = 0
H1 : µX − µY > 0

Step 2. Test Statistic

X̄ − Ȳ − δ0√
σ2X
nX

+
σ2Y
nY

↪→ N(0, 1)
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Tests of Significance

Test for the difference in population means when sampling from
independent normal distributions with known variances

Step 3. Rejection Region Calculations
Since H1 is an upper one-sided hypothesis, the rejection region is

zobs > z1−α = z0.9 = 1.2816

where z0.9 satisfies

P(Z < z0.9) = 0.9, Z ↪→ N(0, 1)

1 >> from scipy.stats import norm
2 >> norm.ppf(0.9, loc=0, scale=1)
3 1.2815515655446004
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Tests of Significance

Test for the difference in population means when sampling from
independent normal distributions with known variances

Step 3. Rejection Region Calculations
The value of the standardized test statistic is

zobs =
x̄ − ȳ − δ0√
σ2X
nX

+
σ2Y
nY

=
20− 0√

1002

64
+
1082

144

= 1.2985

Step 4. Statistical Conclusion
The p-value is P(Z ≥ zobs) = 0.0971 < 0.10 = α

1 >> from scipy.stats import norm
2 >> 1-norm.cdf(1.2985,loc=0,scale=1)
3 0.09705778816669874
The evidence suggests engineering majors have a higher average
math SAT score. 53



Tests of Significance

Test for the difference in means when sampling from independent
normal distributions with variances that are unknown but assumed
equal3

• The null hypothesis for testing the difference between two
means is H0 : µX − µY = δ0 and the standardized test statistic
under the assumption that H0 is true is

T =

[
(X̄ − Ȳ)− (µX − µY)

]√
S2p
(

1
nX +

1
nY

) ↪→ tnX+nY−2,

where

S2p =
(nX − 1)S2X + (nY − 1)S2Y

nX + nY − 2
3We consider two samples of size nX and nY taken from two normal distributions
N(µX , σ) and N(µY , σ), where σ is unknown.
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Tests of Significance

Test for the difference in means when sampling from independent
normal distributions with variances that are unknown but assumed
equal

Example
A questionnaire is devised by the Board of Governors to measure the level
of satisfaction for graduates from two competing state schools.

Past history indicates the variance in satisfaction levels for both schools is
equal.

The questionnaire is randomly administered to 11 students from State
School X {69, 75, 76, 80, 81, 82, 86, 89, 91, 92, 97} and 15 students from State
School Y {59, 62, 66, 70, 70, 75, 75, 77, 78, 79, 81, 84, 84, 86, 94}.

(a) Test to see if there are significant differences between the mean
satisfaction levels for graduates of the two competing state
schools using a significance level of 5%.
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Tests of Significance

Test for the difference in means when sampling from independent
normal distributions with variances that are unknown but assumed
equal

To compute the value of the standardized test statistic and its
corresponding p-value with Python, key in

1 >> import numpy as np
2 >> from scipy import stats
3 >> x = np.array([69,75,76,80,81,82,86,89,91,92,97])
4 >> y = np.array([59,62,66,70,70,75,75,77,78,79,81,84,84,86,94])
5 >> stats.ttest_ind(x, y, equal_var = True)
6 Ttest_indResult(statistic=2.079777794988124, pvalue

=0.04839673294633766)

From the p-value, reject H0 because the p-value is less than 0.05.

There is evidence to suggest the average satisfaction levels
between State School X and State School Y are different.
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Tests of Significance

Test for the difference in means when sampling from independent
normal distributions with variances that are unknown and
unequal4

• The null hypothesis for testing the difference between two means is
H0 : µX − µY = δ0 and the standardized test statistic under the
assumption that H0 is true is

T =

[
(X̄ − Ȳ)− (µX − µY)

]√(
S2X
nX

+
S2Y
nY

) ≈
↪→ tν ,

where

ν =


(
s2X
nX

+
s2Y
nY

)2
(s2X/nX)

2

nX−1 +
(s2Y/nY )

2

nY−1


4We consider two samples of size nX and nY taken from two normal distributions
N(µX , σX) and N(µY , σY), where both σX and σY are unknown. 57



Tests of Significance: Homework5

Test for the difference in means when sampling from independent
normal distributions with variances that are unknown and unequal

Example
A bottled water company acquires its water from two independent sources
X and Y.

The company suspects that the sodium content in the water from source X
is less than the sodium content for water from source Y.

An independent agency measures the sodium content in 20 samples from
source X and 10 samples from source Y.

Is there statistical evidence to suggest the average sodium content in the
water from source X is less than the average sodium content in the water
from source Y?

The measurements for the sodium values are mg/l. Use an α level of 0.05
to test the appropriate hypotheses.
5To be handed in on or before the next lecture as a single PDF file. You can work in
pairs.
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Tests of Significance

Test for the difference in means when sampling from independent
normal distributions with variances that are unknown and unequal

Example

Source X: 84 73 92 84 95 74 80 86 80 77
86 72 62 54 77 63 85 59 66 79

Source Y: 78 79 84 82 80 85 81 83 79 81

The python function stats.ttest_ind cannot be used in this
example, since in the python function the alternative hypothesis is
always two-tailed.
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Nonparametric Methods

Kolmogorov-Smirnov Goodness-of-Fit Test
The Kolmogorov-Smirnov goodness-of-fit test (K-S test) compares
your data with a known distribution and lets you know if they have
the same distribution. Although the test is nonparametric —it
doesn?t assume any particular underlying distribution— it is
commonly used as a test for normality to see if your data is
normally distributed. It is also used to check the assumption of
normality in analysis of variance.

Example
Test whether the observations 5, 6, 7, 8, and 9 are from a normal
distribution with µ = 6.5 and σ =

√
2. That is, the hypothesized

distribution is

F0(x) ↪→ N(6.5,
√
2)

60



Nonparametric Methods

Kolmogorov-Smirnov Goodness-of-Fit Test

Example
Test whether the observations 5, 6, 7, 8, and 9 are from a normal
distribution with µ = 6.5 and σ =

√
2. That is, the hypothesized

distribution is

F0(x) ↪→ N(6.5,
√
2)

1 >> from scipy import stats
2 >> import numpy as np
3 >> x = np.array([5,6,7,8,9])
4 >> mu = 6.5
5 >> sigma = np.sqrt(2)
6 >> kstest1 = stats.kstest(x, 'norm', args=(mu,sigma))
7 >> print(kstest1)
8 KstestResult(statistic=0.2555778168267576, pvalue

=0.8996364441822264)
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Nonparametric Methods

Kolmogorov-Smirnov Goodness-of-Fit Test

Example
Test whether the observations 5, 6, 7, 8, and 9 are from a normal
distribution with µ = µX and σ = σX . That is, the hypothesized
distribution is

F0(x) ↪→ N(µX, σX)

1 >> from scipy import stats
2 >> import numpy as np
3 >> x = np.array([5,6,7,8,9])
4 >> mu = x.mean()
5 >> sigma = x.std()
6 >> kstest2 = stats.kstest(x, 'norm',args=(mu,sigma))
7 >> print(kstest2)
8 KstestResult(statistic=0.16024993890652328, pvalue

=0.9995301060544028)
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Homework6

Example
Test whether the data in the examples in the previous slides are
from a normal distribution:

• Fertilizers (on page 48);
• Satisfaction levels (on page 55);
• Sodium content (on page 58).

6To be handed in on or before the next lecture as a single PDF file. You can work in
pairs.
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Laboratory Session

Check and try to understand the Python code in the slides

• Page 19
• Page 21
• Page 24
• Page 28
• Page 30
• Page 32
• Page 45
• Page 45
• Page 47
• Pages 52 and 53
• Page 56
• Page 61
• Page 63 64



Laboratory Session

Use Python to solve the following problems

• Homework in page 33
• Homework in page 48
• The example in page 55 is solved using the Python function
stats.ttest_ind. Solve the problem again without this
function, finding the critical value, the p-value and tobs

• Homework in page 58
• Homework in page 63
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