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Summary. Prediction of the motion of the oil-water contact boundary has great importance in 
the problems of design of oilfield development by waterflooding: knowledge of the nature of 
coupled motion of oil and water, displacing oil in the reservoir allows us to optimize the 
system of oil field development. The simplest model of coupled filtering of oil and water is 
the model of "multicolored" liquids, which assumes that oil and water have the same or 
similar physical properties (density and viscosity).  

In this paper we consider a more complex "piston-like" model of oil-water displacement, 
which takes into account differences in viscosity and density of the two fluids. Oil reservoir 
assumed to be homogeneous and infinite, fixed thickness, with constant values of porosity 
and permeability coefficients. It is assumed that the reservoir is developed by a group of a 
finite number of production and injection wells recurrent in two directions (doubly-periodic 
cluster). Filtration of liquids is described by Darcy's law. It is assumed, that both fluids are 
weakly compressible and the pressure in the reservoir satisfies the quasi-stationary diffusion 
equation. 

Piston-like displacement model leads to the discontinuity of the tangential component of 
the velocity vector at the boundary of oil-water contact. Use of the theory of elliptic functions 
in conjunction with the generalized Cauchy integrals reduces the problem of finding the 
current boundaries of oil-water contact to the system of singular integral equations for the 
tangential and normal components of the velocity vector and the Cauchy problem for the 
integration of the differential equations of motion of the boundary of oil-water contact.  

An algorithm for the numerical solution of this problem is developed. The monitoring of 
oil-water boundary motion for different schemes of waterflooding (linear row, four-point, 
five-point, seven-point, nine-point, etc.) is carried out.  
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1 INTRODUCTION 
Among the methods of oil fields development the waterflooding method [1, 2] became 

widespread. The main objective of waterflooding is to maintain by flooding the reservoir pressure, 
inevitably falling in the primary field development. Simulation of the flooding process, analysis of 
its qualitative and quantitative characteristics for different schemes of flooding are the 
purpose of the present study. In this paper, the model of the piston-like oil displacement by 
water [2], which takes into account the difference in physical properties (density and 
viscosity) displaced and displacing fluids. 

The task of monitoring of the line flooding motion (the line separating the displacement of 
the water and oil) was first considered by Muskat [3] and subsequently aroused great interest 
among researchers. It was noted by Leibenson [4], where the viscosity of the displacing fluid 
was neglected. In the paper of Danilov and Kats [5], based on the potential theory, the original 
problem of monitoring of the line flooding motion has been reduced to a nonlinear integro-
differential equations. Danilov’s method was used by Fazlyev [6] for the some scheme of the 
areal flooding. 

2 MATHEMATICAL MODEL 
Consider the plane filtration flow of a viscous compressible fluid with viscosity μ and 

compressibility β in an infinite horizontal reservoir with permeability k, porosity m and 
thickness h. For the quasi-stationary state of filtration flow the pressure in the reservoir 
p(x,y,t) satisfies the diffusivity equation and the velocity components Vx(x,y,t) and Vy(x,y,t) are 
calculated by the Darcy law [1-3]  
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where χ=k/mμβ - the coefficient of diffusivity. 
Simulated reservoir is developed by a doubly periodic system of production and injection 

wells. The whole set of production and injection wells can be represented as an infinite 
number of repetitions of the wells in two directions. Such repetition can be described by a 
doubly periodic lattice, which in the complex plane z=x+iy is defined by two complex periods 
1 and 2. The whole set of lattice points in the complex plane is defined as ω=mω1+nω2 
(m,n=0,±1,±2, ...), the value of 1 2Im( )   corresponds to the area of a parallelogram lattice 
(Figure 1). 

Solution of the equation (1) in the case of doubly periodic system of production and 
injection wells (doubly periodic claster) has been obtained in [7-9]. The distribution of the 
velocity field was presented by the Weierstrass zeta function and written as follows: 
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where 
2

,

1 1 1( ) '( )
i j

zz
z z


  





   
 - Weierstrass zeta function, zk - location of the k-th well in 

the cluster, Qk - flow rate of the k-th well (Qk<0 for the injection well and Qk>0 for the 
production well), /    and 1 1 1( 2 ( / 2)) /      .  
 

 

Figure 1: A five-point scheme of flooding (production wells are marked by black circles,  
injection – by white triangles) and doubly periodic lattice with its basic elements 

In the case of the piston-like flooding (moving boundary problem in the theory of 
filtration) the boundary conditions on the flooding line L (figure 2) for the tangential Vt and 
normal Vn components of the filtration velocity and for the pressure p are the follows (the 
index o refers to particles of oil, and the index w - to the particles of water): 
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Discontinuous on the line L, but doubly periodic function ( , ) ( , ) ( , )x yV z z V x y iV x y   in the 
complex plane z=x+iy will be sought in the form of the Cauchy-type integral [7-9] 
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where ( , )F z z  is given by equation (2).  
The left and right boundary values of this function (4) at a point z(s) on the line L can be 

written in the form of Sokhotski–Plemel formulas [10] 
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Applying the Sokhotskiy-Plemel formulas (5), the unknown function γ(s) and the complex 
velocity ( ( ))V z s  at a point z(s) of the line L can be expressed as 

( ) ( )
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( ) ( ( ) ( )) / 2.
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Taking into account the boundary conditions on the moving boundary (3), the relations (6) 
can be rewritten as  
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where α – the angle between the tangent line L and the axis X, i.e. /ie dz ds   (figure 2). 
 Denoting the viscosity ratio as ( ) ( )/w o   , the normal and tangential velocity 

components of the water as ( )( ) ( )w
tT s V s  and ( )( ) ( )w

nN s V s , the equations (7) allow us to 
obtain the following singular integral equation for the unknown functions T(s) and N(s) on the 
line L: 

1 1( ) ( ) [ ( ) ( ( ) ( )) ( ) ]
2 2 L

dzT s iN s F s z z s T d
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    .                        (8) 

The integral equation (8) must be supplemented by a differential equation that determines 
the time evolution of the line L. This equation has the form [1-3] 
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where z0 - the center of the injection well with radius rw, through which water is pumped into 
the reservoir. The initial condition (9) indicates the starting position of the point 

0( ,0) i
wz s z r e    in the beginning of flooding, the corresponding angle   is determined on 

the contour of the injection well. 
Using once more the second Sokhotskiy-Plemel formula (7) and the equation (8), the 

equation (9) can be rewritten as 
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where functions T(s) and N(s) for a given time t are obtained by solving the singular integral 
equation (8). 

3 NUMERICAL SOLUTION OF THE MOVING BOUNDARY PROBLEM 
Consider the algorithm for the numerical solution of integro-differential equations (8) and 

(10). For the numerical solution of singular integral equation (8) we divide the contour L by 
discrete set of points on the elements [zi, zi+1], (i = 0, 1, ... N-1) (Figure 2). Due to the closure 
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of line L, the first and the last points of the partition are the same, i.e., zN=z0. Each of the 
points zk corresponds to the length of the arc sk. Let us choose and fix the point zk=z(sk) on the 
contour L. Separating in equation (6) the real and imaginary parts, we obtain the following 
equations for the unknown values of Tk=T(sk) and Nk=N(sk) at the points zk=z(sk):  
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Omitting the rather cumbersome intermediate calculations, we write the approximation of 
the integral term in equation (11) as follows: 
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Figure 2: Parameterization scheme of line L and its discretization by points Zk (k =0…N-`1). 

Equations (11) show us that the real part of the singular integral equation (8) matches the 
finding of values of the unknown function Tk=T(sk)  at a given time tn on a discrete set of points 
zk=z(sk). The imaginary part of this equation is, in fact, the formula for calculating the values 
of the function Nk=N(sk) at a given time tn at the same discrete set of points. 
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The obtained values of Tk and Nk are then used to calculate the displacements of points 
zk=z(sk) in the time interval [tn, tn+1]. These displacements are determined by the numerical 
solution of the Cauchy problem (10) with the Runge-Kutta method, modified in view of the 
complex nature of the differential equation (10). In the calculations was chosen the 
dimensionless time τ, associated with the original time t as 4 2

110 / 2 .Qt mh     

4 RESULTS OF CALCULATIONS 
To solve this problem there was developed software system to track the evolution of the 

flooding front (line L) in time, as well as to quantify the effectiveness of a particular scheme 
of flooding (water breakthrough time to production well and waterflood sweep efficiency 
Kwse). In numerical calculations there was considered frontal row, four-point, five-point, 
seven-point and nine-point scheme of flooding. To determine the current position of the 
flooding front it was involved 180 tracers - points coming out at the initial time of the 
injection well. 

It is known [11] that the viscosity ratio κ has a negative impact on the ultimate recovery: 
the decrease in the parameter κ leads to the decrease in the volume of recoverable oil due to 
the growing instability of oil displacement by water. In addition, when viscosity ratio κ<1, the 
Saffman-Taylor instability [12] occurs, which is often called as “viscous fingering”. The 
viscous fingering effect was observed in the course of our numerical calculations. The figure 
3 shows the formation of viscous fingers for five-point scheme of flooding at κ=1/5 and 
τ=0.045 values. For comparison, the figure 3 is supplemented by the figure from [13] (figure 
6a in the cited paper) obtained experimentally for similar geometry placement of wells. 

Additionally, the figures 4 and 5 show us the flooding area for seven-point and nine-point 
schemes of flooding. For comparison the left parts of these pictures show the flooding area 
with viscosity ratio κ=1 and the right parts – with κ=1/4. 

 
Figure 3:  Saffman-Taylor instability of the front of flooding for the five-point scheme   
(on the left – the numerical calculation for the mobility κ=1/5   = 1/5 and  = 0.0450,  

on the right - the data from [13]). 
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1, 0.0516       1/ 4, 0.0439    

Figure 4: The flooding area for seven-point scheme of flooding. 

      
1, 0.0277       1/ 4, 0.0232    

Figure 5: The flooding area for  nine-point scheme of flooding.  

Further, the Table 1 shows the values of the water breakthrough time into the producing 
wells  and the Table 2 - the waterflood sweep efficiency Kwse, calculated for four of waterflood 
patterns with different values of κ. Abbreviation VF (viscous fingers) indicates the 
appearance of the "viscous fingering" for the selected scheme of the flooding. Therefore, due to 
violation of the smoothness of the flooding front the count of the waterflood sweep efficiency Kwse for 
a given value of κ is not possible. For greater clarity, the columns of Table 2 are supplemented with 
values taken from the book by F. Craig [11] for the case of κ=1. 
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Table 1: The values of dimentionless time τ for different values of the mobility ϰ  

Scheme 
of flooding 

Values of the dimensionless breakthrough time τ 
κ=1 κ=1/2 κ=1/3 κ=1/4 

Five-point 1152 1017 960 VF 
Front row 1820 1500 VF VF 

Seven-point 516 472 452 439 
Nine-point 277 252 240 232 

Table 2: The values of waterflooding coverages Kcov for different values of the mobility ϰ 

Scheme 
of flooding 

Values of the waterflood sweep efficiency Kwse   
κ=1 [8] κ=1  κ=1/2 κ=1/3 κ=1/4 

Five-point 70% 72,5% 63,5% 60% VF 
Front row 58% 57,2% 47% VF VF 

Seven-point 73% 75,2% 68,5% 65,3% 63,3% 
Nine-point 55% 52,7% 48% 45,5% 44% 
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