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Abstract. Development of a feasible model for transport within complex vasculature network 
and tissue remains a challenge. Such a model is particularly important when considering drug 
transport within tumor environment. A drug used to cure the cancer is first transported 
through blood vessels, then it attaches to the vessel endothelium and faces biological barriers 
in the vessel wall to reach cancerous cells.  
We have developed a model for convective-diffusive drug transport which is simple and 
computationally efficient. One of the challenges was to couple fluid domain within blood 
vessels and solid domain of the tumor microenvironment. We have introduced fictitious 1D 
finite elements which appropriately take into account transport characteristics of the vessel 
walls. These characteristics include leakage and permeability of the walls. In evaluating wall 
permeability of a drug, we implemented our hierarchical multiscale methodology which 
couples molecular dynamics (MD) and continuum FE model. A numerical homogenization 
procedure was employed to obtain equivalent continuum transport parameters which account 
for interaction on molecular level between drug and solid components of the wall 
microstructure. Also, a possibility of using equivalent continuum transport models for 
capillary beds is investigated in order to further simplify and increase efficiency for the 
overall model of tumor.  
As a numerical example, we calculate transport through a capillary bed to illustrate 
applicability of our methodology. 

1 INTRODUCTION 
We here study transport of particles/molecules dissolved within blood, and their 

subsequent transport through tumor tissue. The tumor vasculature consists of an arterial and 
venous system, including larger vessels (arterioles and venules) - with diameters on the order 
of hundred micrometers, and capillary vessels with diameters as small as a few micrometers. 
We consider that transport occurs from the arterial network into tissue, which is composed of 
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cells and intercellular space, and back - from tissue to the venous networks. There are two 
coupled transport domains: a fluid domain consisting of blood and a solid (tissue) domain. 
Transport within tumors is complex due to irregular blood vessel branching and variability of 
vessel diameters and lengths. Also, blood flow is affected by presence of cells within blood 
plasma, so that the fluid has a colloidal character.  In our model we approximate the blood by 
a Newtonian fluid and neglect additional resistance at branchings. 

Two references are cited here which are the closest to our study. The most commonly used 
is the “network” method [1], where the network is represented by blood vessel segments with 
common edges (nodes) within the network. Pressure change along segments is governed by 
the Hagen-Poiseuille law, while the pressure is equal for all segments at a common node, and 
the total flux at interior nodes is equal to zero. A system of linear equations with respect to 
nodal pressures is formed and solved with the given boundary conditions, pressures and/or 
fluxes. A generalization of this concept is given in [2]. 

In our transport model for large vascular systems [3], it was necessary to resolve the 
coupling of the fluid and solid domains, and to incorporate blood vessel wall properties with 
respect to hydraulic and diffusive transport. We here give details about the methodology for 
this coupling.  

In the next section we outline the main features of our tumor computational model and in 
Section 3 introduce the concept of the fluid-solid coupling. One numerical example is given in 
Section 4, followed by concluding remarks in the last section. 

2 COMPUTATIONAL MODEL FOR MASS TRANSPORT WITHIN LARGE 
BLOOD VESSEL NETWORK AND TISSUE 

Here is summarized the formulation of our model for transport within large blood vessels 
systems and tissue, according to reference [3].    

The 1D continuity equation has the form 

 1 0rx rvv
x r r


 

   
(1) 

where vx and vr are axial and radial velocity components, and x and r are axial and radial 
coordinates, respectively. Using boundary conditions at the (pipe) vessel internal wall R: vx=0, 
vr =∂R/∂t,  this equation transforms into 

22 0v v R R
x R x R t
  

  
  

 (2) 

where v is the mean velocity.  We further assume that wall is incompressible and elastic with 
Young’s modulus E, so that the radius change due to the change in pressure p (assuming 
cross-sectional uniformity), can be related by the equation: 

2
E

R pk R
t t

 


 
 (3) 

where the elastic constant kE  is 
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0

3  
4Ek

E
  (4) 

Here, we have neglected the change of the wall thickness δ0 . The continuity equation (2) can 
be written in terms of the fluid flux Q (Q=R2πv ),

 
 

32 0E
p QR k
t x

  
 

 
 (5) 

The equation of the balance of linear momentum, the 1D Navier-Stokes equation, for a 
pipe cross-section with the radius R, is: 

2 2

2 2

1 1x x x x x x
r x

v v v p v v vv v
t r x x r r r x




       
             

 (6) 

where   is kinematic viscosity, and   is fluid density.  This equation can be written in terms 
of pipe flux Q   as

  2 212 2 Q 0Q Q Q Q R pA
t A x R A x R x

 
  

    
          

 (7) 

where A is the cross-sectional area, and μ is the fluid viscosity;   is a dimensionless 
parameter  

2
2 2

0

2 R

xrv dr
R v

    (8) 

which is a measure of variation of velocity with distance from the axis of symmetry  (velocity 
profile); and  γ  is [4]: 

2 1x
rv v
R




      
   

 (9) 

parameter which defines the profile shape, from parabolic to plug flow. The value γ=2 
corresponds to a parabolic profile, while γ=9 can be used for oscillatory flow of one cardiac 
cycle. Parameters α and γ can be related as:    2 / 1     . For a parabolic profile, 
which is commonly assumed, α=4/3.   

Capillary wall is a multilayered composite structure with fenestrations (holes) allowing 
plasma leakage to the surrounding tissue [5].  Capillary walls can roughly be classified into 
non-fenestrated (continuous), fenestrated, and discontinuous (sinusoidal) [5].  The leakage can 
mathematically be described using the Starling hypothesis [6] (known also as Kedem-
Katchalsky equation [7]): 

   P w ves tis ves tisQ L A p p          (10) 
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where Lp is hydraulic conductivity [8], Aw is the surface area of the vessel-tissue interface, pves 
and ptis are pressures within vessel and within tissue (interstitium  pressure); ves  and tis are 
osmotic pressures in vessel and tissue, and   is the osmotic reflection coefficient. The 
leakage of fluid through vessel walls must be taken into account in the computational model. 

Convective-diffusive transport within blood vessels can be simplified if blood is 
considered as a homogenous fluid, so that the governing equation of mass balance has the 
form [9] 

0c c cv D q
t x x x
             

 (11) 

where c is concentration, D is diffusion coefficient within fluid - which may depend on 
concentration, and q is a source term.  

Particulate transport through the vessel wall is very complex due to various physical and 
biological effects, and can be expressed in the form [5] 

   1s w w ves tis lmQ D A c c Q c      (12) 

where Qs is the particulate flux, wD  is diffusion (or transport) coefficient of the wall (flux per 
unit area of the wall and unit concentration),  vesc  and tisc  are concentrations within vessel 
and tissue; and lmc  is the mean logarithmic concentration, 

 ln /
ves tis

lm
ves tis

c cc
c c


   (13) 

which can also be taken as the arithmetic mean. Diffusion coefficient wD can be determined 
experimentally or numerically.  

Interaction between particles/molecules and the wall solid components (epithelium cells, 
fibers, etc.) can dominate the transport through the wall. This interaction on a molecular level 
may be incorporated into a continuum transport model by evaluation of the effective diffusion 
coefficients (or scaling functions) using MD procedures and a numerical homogenization 
(within a multiscale-hierarchical concept); such multiscale model has been developed and 
applied to various bioengineering problems [10-14].  

We consider tissue as a porous medium where transport of fluid and particles/molecules 
(drugs, nutrients) occurs within intracellular space. The solid phase form a complex 
microstructure composed of cells, or cells and various types of fibers. The fundamental 
relations used for fluid flow and for diffusion are summarized in [15]. We cite here the basic 
Darcy’s law (which can have additional terms [15]) and the continuity equation in case of 
neglecting deformations of the solid microstructure,  

,,  no sum on ;          +q =0, sum on : =1,2,3            v
i Di i i

i

pv k i v i i
x


 


 (14) 
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where  iv  are Darcy’s velocities, Dik  are Darcy’s coefficients,  p is the interstitial pressure, 

and qv  is a source term; the second equation expresses the continuity equation.  Diffusive 
transport equation has the form (11), now extended to three dimensions, 

0,          sum on :  =1,2,3V
i i

i i i

c c cv D q i i
t x x x

    
         

 (15) 

and it also may be modified to account for specific biological effects [15].  Diffusion 
coefficients can also be calculated using the multiscale-hierarchical concept and numerical 
homogenization as for capillary wall: a reference volume is selected and equivalent diffusion 
parameters are evaluated from the mass release curves [14]. 

We next summarize the basic finite element equations for blood vessels and tissue, based 
on the above fundamental equations. First, the 2-node pipe 1D element for fluid flow is 
derived form (7) by a standard Galerkin procedure [9],   

1 1             vv vv vp ext vv t
IJt t

       
M K Q K P Q M Q  (16) 

where extQ  is external nodal flux, and  tQ is the flux at start of time step of size t . The 
matrices are given in  [3], with the matrix Kvv being a function of the flux Q within the 
element. Further, we differentiate equation (7) with respect to axial coordinate x, and then 
write that equation in the weak form, as (for equilibrium iteration “i”) 

   ( 1) ( 1) ( ) ( 1) ( 1) ( 1) ( 1) ( 1)p i p i i i p i p i i p i t           M K P F M K P M P  (17) 

where tP is nodal pressure at start of time step. Details are given in [3]. 
The balance equation (17) represents the basic equation with pressures as the nodal 

variables in which the continuity equation (5) is incorporated.  During solution process, 
equation (16) is used for updating fluxes in matrices of equation (17).  The derived equations 
for 1D FE are applicable to deformable and rigid pipes. In case of a rigid pipe, equation (17) 
reduces to linear equation:  

p K P F  (18) 

leading to a system of equations used in the “network” method [1], [2].  Details about the 
above derivations are given in [16]. 

In case of diffusion, there is additional system of equations, following from the balance 
equation (15),  

 
           

1
11 1 11 1i

ii c i i ic c cv ext V t c cv
c ct t


              

M K K C Q Q M C C K K C  (19) 

where the matrices and the source vector V
cQ  are evaluated at end of time step;  1iC and tC  

are nodal concentrations at the iteration (i-1)  and  start of time step, respectively;  and ext
cQ  is 
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the external nodal flux vector. The matrix which couples convection and diffusion within the 
pipe is the matrix cvK . The matrices are given in [16].  

The FE balance equation for fluid transport within tissue follows form continuity equation 
(14),

 ( ) ( 1)t i ext V t i
t t

   K P Q Q K P  (20) 

while the convective-diffusive balance equation has the form (19); details are given in [3]. 

3 FINITE ELEMENT FOR COUPLING FLUID AND SOLID DOMAIN 
We have above summarized the governing transport equations in differential and FE form.  

They differ for the fluid domain (within blood vessels) and tissue. The boundary between 
these two domains is represented by blood vessel walls, which have their own transport 
characteristics. Here, following [3] we introduce a 2-node 1D fictitious element to connect the 
two domains, with including the wall transport properties. The fictitious element AB (Fig. 1) 
have the node A connected to fluid, hence the node A is a node of 1D pipe element; and the 
node B is the node of the continuum (tissue) medium. Geometrically, the nodes A and B are 
at the same spatial position. There are gradients of pressure and concentration between nodes 
A and B. The characteristics of the AB element are such that they represent the particulate and 
fluid transport properties of the parts (L/2 in Figure 1) of pipe elements associated to the 
common node A.    

 
Figure 1: Fictitious 1D element for connection of blood vessel and tissue finite elements [3]. The node A 

belongs to a 1D vessel FE, while (at the same spatial position) the node B of the fictitious element belongs to a 
tissue continuum FE. 

In order to formulate the fictitious FE, we express the fluid flux according to equation (10) 
as  
 

 f p p A BQ L A P P   (21) 

where pL  and pA  are the equivalent hydraulic conductivity and surface, respectively.  We 

have neglected the osmotic part of the transport in this equation.  The product p pL A  can be 
evaluated as 
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1
2

e e
p p p

e

L A L A   (22) 

where summation is over elements e with the common nod A; the coefficient ½ indicates that 
half of the total element surface belongs to the common node A. Then, the incremental form 
of balance equation can be written as, 

( ) ( 1) ( 1)p i ext i p i   K P Q K P  (23) 

where 

1 1
1 1

p
p pL A

 
   

K  (24) 

( 1)ext iQ  are fluxes from the surrounding elements (for node A those are 1D blood vessel 
elements, and for node B are tissue elements); and the nodal pressure vector has the terms PA 
and PB. 

We formulate the convective-diffusive FE starting from the expression for flux, 

   1c w c A B lmQ D A C C Q C      (25) 

where wD  and cA  are the equivalent diffusive transport coefficient and equivalent diffusion 

surface, respectively; Q   is the equivalent fluid flux, which can be determined from pipe flow 
equations;  and lmC  is the is the mean logarithmic concentration (according to (13)).  The 
equation (25) can be transformed into the incremental form and then written into the FE 
format (23), 

( 1) ( ) ( 1) ( 1) ( 1)c i i ext i c i i
c

     K C Q K C  (26) 

where ( 1)c iK  is the transport matrix, and ( 1)ext i
c

Q  are diffusion fluxes coming from 

connecting pipe and continuum elements. The matrix ( 1)c iK  is  

 
 

    
1

1
1

1 1
1

1 1ln /

i
c i

w c i
A B

QD A
C C







   
         

K  (27) 

The flux  1iQ   can be determined from equation (21). 
Finally, we present a concept of the tumor model where the role of the fictitious 1D finite 

element is emphasized. Figure 2 shows a tumor model where larger vessels are represented by 
1D pipe elements, while capillary bed is modeled by the equivalent continuum elements [3]. 
The pipe elements are connected to tissue by the fictitious elements. Also, the fictitious 
elements are employed in the numerical homogenization to obtain equivalent transport 
parameters of the continuum. With this concept, the model of tumor becomes very efficient 
and can be used in research and further in medical practice. 

589



Milos Kojic, Miljan Milosevic, Vladimir Simic, Arturas Ziemys, Mauro Ferrari 
 

 8 

 
Figure 2: Concept of a tumor model with use of 1D fictitious elements for coupling fluid and solid domains 

4 NUMERICAL EXAMPLE 
Here we present application of our model on a capillary bed domain. The model consists of 

capillary network, located between the inlet artery (left) and outlet vein (right side of model).  
Blood vessels are modeled by 1D finite elements and surrounding tissue is modeled by 2D 
FEs. Boundary conditions include: inlet and outlet pressures and inlet and outlet concentration 
of a drug, with PIN = 25mmHg, POUT = 10 mm Hg, CIN = 25 M/l and COUT = 10 M/l.  

 
Figure 3: Concentration field within capillary bed domain for different times: a) t = 0.2s b) t = 10s  and c) t = 

20s; d) Mass change over time in the 2D surrounding tissue  
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It is taken that the tissue boundary, within the indicated square, is impermeable. Fluid 
viscosity is 7.5 x E-6 mmHgs, while diameters of vessels are in the range of 30 mm for artery 
and vain down to 4 mm for capillary network. Leakage coefficient of the wall is 1 x E-3 mm 
/s, permeability of capillary wall is 0.05 Mole / mm2 s, diffusion coefficient in capillary is 5 x 
E+5 mm2/s, diffusion coefficient in tissue is 1000 mm2/s, and the Darcy coefficient in tissue is 
1.0 x E-4 [mm2 / mmHg s]. Concentration distributions of the drug within the capillary bed 
and surrounding tissue at times: t=0.2s, 10s and 20s is shown on Figures 3a,b,c respectively. 
Mass change during time in 2D surrounding tissue is shown on Fig 3d. 

4 CONCLUSIONS 
A 1D finite element is formulated for coupling fluid and solid domains in modeling 

transport within tumor. The element captures complex transport characteristics of capillary 
walls and provides an efficient way to simulate transport of drugs from blood vessels to 
tissue. 
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