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Abstract 

We present a new mathematical model that predicts the number of users informed and influenced by messages that are 

propagated in an online social network. Our model is based on a new way of quantifying the tie-strength, which in turn 

considers the affinity and relevance between nodes. We could verify that the messages to inform and influence, as well as 

their importance, produce different propagation behaviors in an online social network. We carried out laboratory tests with 

our model and with the baseline models Linear Threshold and Independent Cascade, which are currently used in many 

scientific works. The results were evaluated by comparing them with empirical data. The tests show conclusively that the 

predictions of our model are notably more accurate and precise than the predictions of the baseline models. Our model can 

contribute to the development of models that maximize the propagation of messages; to predict the spread of viruses in 

computer networks, mobile telephony and online social networks. 
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1. INTRODUCTION 

Online social networks (OSNs) are increasingly used by many sectors of society for the purpose of informing and influencing 

people. These sectors are governments, social movements, providers of goods and services, etc. This situation is generating 

large volumes of information in Internet (Jin et al. 2013), and is playing an important role in society (Abbas 2013; Yun and 

Gloor 2015).  They need to predict the extent, amplitude or distance of the spread of information and influence they transmit 

through these networks. One way to achieve this is to study this phenomenon through Social Network Analysis (SNA),  which 

is currently used by many researchers (Kosorukoff and Passmore 2011; Yang et al. 2016; Scott 2017; Ito et al. 2018; Bandeli 

and Agarwal 2018), and it is the one that we have used in this research. 

SNA is a research method that brings together a set of concepts and metrics, such as influence, centrality metrics, threshold, 

social tie strength and homophily, ideas that comes from sociology and anthropology. SNA uses mathematical tools, such as 

graph theory, probability and statistics, and computer science tools. SNA mathematically represents a social network as a 

graph, G = (V,E), where V is a finite set of nodes and 𝐸 ⊆ 𝑉𝑥𝑉 is a set of edges that connect pairs of nodes. Nodes represent 

individuals and edges represent relationships between individuals. Network analysis focuses on the association that exists 

between nodes rather than on attributes of those nodes. Within this perspective, Linear Threshold Model (LTM) and 

Independent Cascade Model (ICM) (Kempe et al. 2003) are two stochastic baseline models that predict the dissemination of 

information and influence through social networks. A model derived of ICM is Weighted Cascade Model (WCM) (Kempe et 

al. 2003). LTM and ICM are studied and used in many recent and important scientific works to optimize the propagation of 

information in social networks, some of them are the following (Arendt and Blaha 2015; Worrell et al. 2017; Bulumulla et 

al. 2018; Cui et al. 2018; da Silva et al. 2018; Fischetti et al. 2018; N. et al. 2018). For this reason, we have evaluated our 

proposal by comparing it with the LTM, ICM, WCM baseline models and with empirical results. Each of these three predictor 

models has its own criteria on which depends the extent of propagation.  
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The Cambridge Dictionary defines the term "inform" as follows: "to tell someone about particular facts"; and the term 

"influence" is defined as "to affect or change how someone or something develops, behaves, or thinks". "Inform" and 

"influence" not only have different definitions but also they imply different processes among the people. 

After studying the baseline models, WCM and related works, in order to fill the gaps of these models, we have developed 

from the ground the Lucy Model (LM). Our model improves both the representation of the message propagation process and 

the prediction of its extent in online social networks. This work does not pretend to establish a method to maximize the 

propagation. 

LM has eight characteristics: it is predictive, computer numerical (nonanalytic), iterative, nonbased on historical data, 

stochastic, graph-oriented, time-independent, and customizable. 

We identified three factors that are not considered in baseline models and their derivate models, which are: (1) Importance 

of the messages, (2) Existence of different classes of messages, and (3) We take the idea that the nodes are informed or 

influenced after a threshold is exceeded, but the threshold must be adapted to each node, according with its relevance or 

affinity, and with the importance and class of message. Not taking into account these factors causes the models to give results 

far from reality. 

The different classes of messages that we consider are three: (1) Messages to inform, (2) Messages to influence which appeal 

to feelings and emotions, and (3) Messages to influence which appeal to interests and personal conveniences. 

On the other hand, we consider that relevance of people and affinity between them affect the strength of interpersonal 

relationships called tie strength,  consideration that is not made by existing models that quantify this strength. Based on this 

consideration, we propose a new model that represents and quantifies tie strength in online social networks. The relevance of 

people is quantified with centrality metrics (Newman 2010). Affinity is quantified with a metric that we also propose and 

that we will explain later. Affinity is an element not considered by the baseline models mentioned. 

The method we have used to evaluate our proposal has the following steps. (1) We have created a simulation environment, 

implementing on computer the four predictive models. (2) We have tracked the social network of an anonymous Facebook 

user. (3) We have carried out simulations with the four predictive models, on the social network traced already indicated. (4) 

To obtain empirical data, we have used the Facebook platform to post messages in the social network of the anonymous user 

that was previously indicated, and we have observed how far they spread. 

These tests show conclusively that the predictions of our proposal (LM) are notably more accurate and precise than the 

predictions of the baseline models and WCM.  

In order to study the behavior of Lucy Model, we carry out additional laboratory tests, modifying its parameters and using a 

synthetic (artificial) Power-Law network (Newman 2010) and two social networks: YouTube 

(https://snap.stanford.edu/data/com-Youtube.hmtl) and the social network Facebook of a specific user. 

LM may be suitable for use in different areas of human activity, for example: for predict the extent of the messages propagated 

in OSN by governments, humanitarian action, political parties, social movements, suppliers of goods and services, electoral 

and commercial campaigns, etc. Also, our model can be used as a basis to develop new models that maximize the propagation 

of messages (Wang et al. 2018), that prognostic the propagation of viruses both in computer networks (Piqueira and Araujo 

2009), in online social networks (Fan and Yeung 2011; Luo et al. 2016), and in mobile telephony networks. Our model can 

also help predict the loss of clients in mobile telephony (Phadke et al. 2013).  

This work is part of the topic social cyber security. (Carley et al. 2018), which is a new scientific area that has emerged to 

characterize and predict changes in both human (Luceri et al. 2019), social and political behavior (Robertson et al. 2019), 

governance (Paniagua et al. 2019) and national security (Mareswara Rao and Rajashekara Rao 2019). LM can be applied to 

prognostic the magnitude of the spread of misleading messages that actually lead to crimes (Zainudin et al. 2011) such as 

hate speech (Mathew et al. 2019), terrorism (Ishengoma 2013), pornography (Benevenuto et al. 2008), bullying (Kao et al. 

2019), sexual harassment (Nova et al. 2019),  prostitution and human trafficking (Ahmed et al. 2017); LM can also help 

predict the magnitude of a social outbreak such as the "Arab Spring" (Steinert-Threlkeld et al. 2015), fake news 

(Vishwakarma et al. 2019), disinformation (Bandeli and Agarwal 2018a), privacy violation (Kayes and Iamnitchi 2017) and 

frauds (Apte et al. 2019).  

This paper is structured as follows: Section 2 describes the related works. Section 3 explains Lucy Model with its modules 

representing the propagation of nonhomophilic influence, homophilic influence, and propagation of information. Section 4 

presents the validation method of Lucy Model. Section 5 shows validation results and analysis of Lucy Model. Section 6 

contains the conclusions.  

2. RELATED WORK 

Currently, there are two types of predictive models of influence propagation: those focused on graphs, and those based on 

data from previous propagations. These late predictive models are used to predict the spread of diseases (Guille et al. 2013), 

and the propagation is represented by differential equations. The first work on the spread of diseases was published by Daniel 

Bernoulli in 1766 (Dietz and Heesterbeek 2002). 

In this Section, we describe twelve models of propagation of influence, which have a direct relationship with Lucy Model. 

First we describe the two baseline models: LTM and ICM, which are fundamental in the creation of other models, some of 

which we will also describe. All these models are focused on graphs. In the following, to an informed or influenced node, we 

will call interchangeably "active node" or "activated node" 
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2.1 Baseline Models 

2.1.1 Linear Threshold Model 

This model is based on a threshold of influence for each node. A node v is influenced by each neighbor w according to a 

weight bv,w such as ∑ 𝑏𝑣,𝑤 ≤ 1𝑤 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑣 . The process is as follows: each node v chooses a threshold ϴv uniformly 

distributed in the interval [0, 1]. The threshold represents the weighted fraction of neighbors of v that must be active for v to 

become active. Given a random choice of thresholds, and an initial set of active nodes Ao (with all other nodes inactive), the 

diffusion process develops over time in discrete steps: all nodes that remained active in step t - 1 are active in step t, and any 

node v is activated if the total weight of its active neighbors is at least ϴv:  

∑ 𝑏𝑣,𝑤  ≥  𝜃𝑣
𝑤 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑣

 

In this way, ϴv represents the different latent tendencies of nodes to adopt innovation when their neighbors do; the fact that 

these are randomly selected is intended to model the lack of knowledge of those values. As it is observed, LTM is oriented to 

inactive nodes because it looks for the nodes that satisfy the activation condition. 

LTM carries out successive iterations by visiting in each of them all the nodes of the graph, looking for inactive nodes whose 

weighted sum of tie strength with his active neighboring nodes is equal to or greater than his threshold. If at the end of the 

current iteration there is at least one new node activated, a new iteration is started; otherwise, the process ends. The authors 

of LTM do not specify if a node that was not influenced has a new opportunity of being influenced if it increases the number 

of active neighbors. We implemented LTM without considering this possibility because the resulting number of activated 

nodes was too large. 

As an example, in Fig. 1 we show the inactive node v and its neighbors (wi), of which w1, w4 and w5 are active. The weights 

bv,wi of the edges of v with their active neighbors are represented by lines of different thickness. If the sum of these weights 

is at least equal to the threshold ϴv, then v will be activated. 

Fig. 1 Linear Threshold Model: Activation of node v 

 

Its authors state that this model is suitable for a type of processes called complex contagion, in which it is more likely to 

activate a node if it has a certain amount of active neighbors, such is the case of the propagation of influence. 

2.1.2 Independent Cascade Model 

The influence propagation process starts with a set of active nodes Ao; the process is performed step by step as follows. When 

a node v becomes active at step t this has only one opportunity to activate each neighbor 𝑤 with a probability pv,w which is a 

system parameter. Without explications its authors set pv,w at 1% and 10% in separate tests, the higher the value of pv,w, the 

node v is more likely to influence the node w. If w has new neighbors recently activated, each of these tries to activate w. If 

v succeeds, then w becomes active in step t + 1. Otherwise, v will not make any other attempt to activate w in the following 

iterations. The process ends when further activation is not possible. ICM is oriented to the active nodes because it looks for 

these nodes to try to influence their inactive neighbors. 

In Fig. 2  we show the inactive node w and an active neighbor v. We assume pv,w = 1%. ϴw is a random number uniformly 

distributed in the interval [0, 1]. If pv,w ≥ ϴw, then w will be activated. 

Fig. 2 Independent Cascade Model: Activation of node w 
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2.1.3 Baseline models revision 

Considerations 

The authors of the baseline models LTM and ICM (Kempe et al. 2003), consider nodes of two types, namely active and 

inactive. Active node is one that has adopted an innovation; inactive node is the opposite case. The authors say that 

influencing a node is to activate that node. The propagation of influence or information starts in a set of active nodes called 

seeds. 

Over time, more and more neighbors of an inactive node (v) become active; at some point, this can cause v to become active, 

which in turn can cause that inactive neighbors of v also become active. 

Modeling restrictions of baseline models 

In the baseline models there are seven restrictions: (1) The sources of information and influence are within the social network, 

and nodes cannot be influenced by external sources. (2) No context is taken into account such as geographical region, time 

of the year, social environment, etc. (3) The topological structure of the graph remains static during the propagation process. 

(4) The activation thresholds of nodes remain constant through each message propagation process. (5) A node that has a 

certain state cannot return to an earlier state, so we say that these models are progressive. (6) No node can refuse to be seed. 

(7) No node can voluntarily be seed. 

Properties 

These models have two properties (Chen et al. 2013): monotonicity: adding nodes to a seed set does not reduce the final set 

of active nodes, and sub modularity: a decreasing marginal increment is obtained when nodes are added to a seed set. Nodes 

behave in a progressive way, that is, a node can pass from inactive to active but not from active to inactive. 

2.2 Other models 

Weighted Cascade Model (Kempe et al. 2003). This model is considered a special case of the Independent Cascade Model, 

where in each link {u,v}, node u activates node v with probability 1/dv, where dv is the degree (number of links) of node v. 

WCM performs iterations by visiting the nodes of the graph in search of active nodes. Each active node has only one 

opportunity to activate its neighbors. If at the end of the current iteration there is at least one new node activated, a new 

iteration is started; otherwise, the process ends. As with ICM, this model is also oriented to active nodes. 

Deterministic Linear Threshold Model (DLTM) (Swaminathan 2014). The difference of this model in respect to LTM is that 

the DLTM thresholds are assigned deterministically. 

Deterministic Threshold Model (DTM)(Swaminathan 2014). In this model, each directed edge (u,v) is assigned a fixed weight 

1. Each vertex v is assigned a fixed threshold ϴv such as ϴv ≥ 1 and is an integer. A vertex v changes its state Sv, from inactive 

to active (0→1), if the sum of weights of coming edges from nodes that are in active state is greater or equal to ϴv; otherwise 

vertex v remains inactive. 

Triggering Model (Kempe et al. 2003). In this model, each node 𝑣 chooses a random trigger set of neighbors Tv. If v is inactive 

at time t, but a neighbor on Tv has been activated, node v will also be activated at time t + 1. 

Only-Listen-Once Model (Kempe et al. 2003). It is a special case of the Triggering Model. Here, each node v has a parameter  

pv, so that the first neighbor of v that is activated, attempts to activate v with probability pv, and all subsequent attempts to 

activate v fail. In other words, v only listens to the first neighbor that tries to activate it. 

Nonprogressive Processes (Kempe et al. 2003). In a progressive process, nodes only go from inactivity to activity, but not 

vice versa. The nonprogressive case, in which nodes can switch in both directions, can in fact be reduced to the progressive 

case. This is achieved with thresholds of influence that vary over time, uniformly distributed in the interval [0, 1]. Node v 

remains active if fv(S) ≥ ϴv
t where f is a function that determines the intensity with which the set of neighbors S tries to 

activate v. 

Parallel Cascade (PC) model (Samadi et al. 2016). This is a model of influence propagation that uses Bayesian inference 

logic. Two opposing proposals are considered; each proposal competes to prevail in a group of people belonging to a social 

network. Each proposal is disseminated through the network starting in two sets of seeds S+ and S- respectively. Each node i 

receives the positive influence Lit and negative influence Kit at time t, which accumulate over time. To each node i is assigned 

a threshold of positive influence ϴi
+ and a threshold of negative influence ϴi

-. Node i is positively influenced if Lit – Kit ≥ 

ϴi
+, or it is negatively influenced if Kit – Lit ≥ ϴi

-; otherwise, node i remains uninfluenced. Each node accumulates influence 

that comes from its neighbors, regardless of whether it is influenced positively or negatively. Only an influenced node is able 

to propagate positive or negative influence to its neighbors. 

Partial Parallel Cascade (PPC) model (Samadi et al. 2018). This model is a variant of the PC model that allows the partial 

activation of nodes. In each period of time 0 ≤ t ≤ T each node i delivers positive (Xit) or negative Yit influence to its outgoing 

neighbors, where 0 ≤ Xit ≤ 1 and 0 ≤ Yit ≤ 1 is the partial positive (negative) activation of node i at time t respectively. The 

amount of positive Xit (negative Yit) influence is a function of Lit – Kit ≥ ϴi
+ (Kit – Lit ≥ ϴi

-). If  Lit – Kit ≥ ϴi
+ (Kit – Lit ≥ ϴi

-), 

node i is considered totally influenced in a positive (negative) way. ϴi
+ and ϴi

- might or might not be equal. 

Structural diversity model in social contagion (Ugander et al. 2012). Its authors found through empirical analysis that the 

probability of accepting a recommendation depends more subtly on the structure of the network, rather than on the number 

of friends that are influenced; that is, this acceptance depends on the different groups of neighbors instead of the number of 

neighbors. Each group or structural diversity represents a different social context to which the user belongs: family, 

coworkers, schoolmates, etc. In this model, only the first influenced friends can influence an uninfluenced friend. 

Influence propagation model (Phadke et al. 2013). This model is based in the quantification of variable called tie strength. If 

the receiver is a close friend of the sender, reflected in greater tie strength in respect to other potential senders, then the 
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receiver is more likely to be influenced. The amount of influence retained by the receiver is relative to the social tie strength. 

As soon as the receiver receives some amount of influence, he sends the same quantity of influence to all his neighbors. The 

cumulative total influence is the sum of the influences received by a node through its active neighbors. This net influence is 

used as one of the predictors for the user to make a decision. 

On the other hand, it is interesting the study that (Vishwakarma et al. 2019) perform to detect fake news in the form of images 

that are disseminated through social networks. The system uses technologies for text analysis and web scraping. Their study 

works on extracting features from the image and text. The algorithm applied uses various online resources to detect the 

credibility of the news (news channel like Fox News, CNN, and newspapers websites like The Washington Post), to detect 

the credibility of the news. The results of the algorithm are highly dependent upon the sources mentioned above, because the 

authors claim that whose trustworthiness is mandated by their good name in the market. 

2.3 Social tie strength quantification 

So far, we have described the work related to the propagation of information and influence. The number of nodes reached by 

a message that propagates through a social network depends directly on the social tie-strength between the nodes. Lucy Model 

also presents a way to quantify the tie-strength. Next, we will first describe some work related with the quantification of this 

strength. 

Phadke et al. (2013) present a way to quantify tie strength among users of a mobile phone network, using the following 

mathematical expression: 𝑤(𝑥) = 1 − 𝑒−
𝑥

𝜀2 , where x = α1x1 + α2x2 + ... + αnxn. α1, α2, … , αn and ε are assigned empirically 

using a training data set. x1, x2, … xn  are attributes expressed in values per unit, for example: number of calls placed between 

two users, the total duration of calls placed between two users, the proportion of neighbors that two users have in common 

with each other.   w(x) is restricted to the interval [0,1]. 

Girvan and Newman (2002) generalize Linton C. Freeman’s betweenness centrality. Edge betweenness measures the number 

of shortest paths that pass through an edge to connect two nodes of a network. 

Teixeira et al. (2013) define the spanning centrality of an edge e for an undirected and weighted graph as the relationship 

between the number of minimum expansion trees where e participates and the total number of minimum expansion trees. 

Donald S. Sade designs the centrality of node k-path which is generalized by (De Meo et al. 2012) and apply to edges, which 

is defined as the number of paths, of at most, length k that connects with other edges. 

(Postigo-Boix and Melús-Moreno 2018) propose to measure the distance between two nodes p and q: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝𝑞 =

 √𝑤1(𝑝1 − 𝑞1)2 +⋯𝑤𝑛(𝑝𝑛 − 𝑞𝑛)2, 1, 2, … n are attributes. wi is the assigned weight to each dimension, which is used to 

normalize or to give more or less importance to each attribute. The authors define affinity as affinity = 1 - distancepq. If 

affinity is a measure of closeness between two nodes, then affinity is a measure of tie strength between nodes. 

3. LUCY MODEL 

3.1 Introduction to the model 

The Lucy Model is oriented to social networks modeled as an undirected graph G = (V,E), where V is a finite set of vertices 

or nodes and E ⊆ VxV is a set of edges that connect pairs of nodes. Nodes represent individuals and links represent 

relationships between individuals. The same considerations, restrictions and properties of baseline models (see Section 0) 

apply. As we will see later, LM is configurable so that it adapts to the different needs of each situation, allowing flexibility 

of use. 

LM considers the propagation of three distinct classes of messages. They are (1) Messages to inform, (2) Messages to 

influence which appeal to feelings, (3) Messages to influence which appeal to personal. These messages provoke in 

individuals distinct activation thresholds, affecting the range of message propagation and the number of activated nodes. On 

the other hand, LM considers that the importance of a message and the intensity of relationship between individuals also 

affect the extent of its spread. 

Baseline models consider that a node is activated without distinguishing if they have been informed or have been influenced. 

Lucy Model considers that a node is activated according to the class of message that is propagated in the network, as indicated 

in the previous paragraph. For this reason, LM is composed by three modules, one for each message class. 

Messages are gradually propagated through the social network, so we modeled them as discrete time processes that are carried 

out step by step. Each of these steps represents one iteration for the process of each module. The process starts with a group 

of nodes called seeds that are previously activated. These nodes try to activate their neighbors, these to theirs, and so on, 

producing a cascading process. (Zuo et al. 2016) argue that the influence propagates a maximum of two hops away from a 

seed. There is a direct relationship between the number of seeds and the number of nodes that will be activated at the end of 

the process of propagating the message in the social network. Only active nodes can try to activate their neighbors. Our model 

is oriented to the active nodes because it looks for nodes from the network that are able to activate their neighbors.  

We consider that, nodes are found in one of the following three states: state 1: inactive node, state 2: active node enabled to 

activate, state 3: active node disabled to activate. If a node in state 1 is activated then the node changes to active state 2 and 

therefore acquires the ability to activate its neighbors. Each node in state 2 only has one chance to activate its neighbors. 

After a node in state 2 tries to activate its neighbors it goes to state 3. At the end of the process there will only be nodes in 

state 3 and eventually nodes in state 1. Depending on the situation, a node is activated either because it is influenced or 

because it is informed. For both situations in this paper we use the term activated. The process of changing the state of the 

nodes we will explain in detail later in this section and in Section 3.4. 
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Due to the considerations made in the previous paragraphs of this section, Lucy Model needs to know three elements: the 

topology of the network, the importance of the message, and the number and identity of the seeds. 

A message that spreads through the network is processed according to the following three steps: (1) We search in the graph 

active nodes enabled to activate (nodes in state 2). (2) Each node found in state 2 sends the message to his inactive neighbors 

(nodes in state 1). These receive the message with probability wji (see next Section 3.2). (3) If the message was received, it 

is verified if the message exceeds the activation threshold of the node, if this is the case, the node goes to state 2. Step 1 is 

described in Algorithm 1 (Section 3.4); Steps 2 and 3 are described in Algorithm 2 (Section 3.5). Fig. 3 explains the three 

above-mentioned message processing.  

Next, in this Section we describe: tie strength and probability of receiving messages; thresholds of activation and the 

probability of activating nodes; messages propagation process; and node activation process. 

Fig. 3 Node activation process 

 

3.2 Social tie strength and probability of receiving messages 𝒘𝒋𝒊 

The notion of tie strength in social networks is a property that characterizes the link between two nodes. Tie-strength can be 

quantified in three different ways: (1) In terms of the topology of the network, (2) In functional terms, that is, considering the 

number of messages that flow between nodes, and (3) Based on the attributes of the nodes: age, gender, race, etc. (Granovetter 

1973) shows that there is a relationship between tie strength and the topological structure of the network. We quantify tie 

strength in terms of the topology of the network, which is described later. 

By definition, tie strength is a “combination of the amount of time, the emotional intensity, the intimacy (mutual confiding)  

and reciprocal services which characterize the tie” (Granovetter 1973). Petróczi et al. (2006) asserts “The four indicators are 

actual components of tie-strength (closeness, duration and frequency, breadth of topics and mutual confiding), whereas 

contextual contingencies (neighbourhood, affiliation, socio-economic status, workplace and occupation prestige) are 

predictors. The first four contextual contingencies listed are features of affinity between people. Other contextual 

contingencies that characterize affinity between people are, for example: tastes, hobbies, passions, religion, family, age, 

gender, ethnicity, education, or people suffering the same tragedy. The last contextual contingency (occupational prestige) 

translates into relevance or importance of the individual within their social network. The phenomenon by which people tend 

to establish relationships for reasons of affinity is called homophily (McPherson et al. 2001; Mondani 2018), On the other 

hand, if people are interested in interacting with relevant people, these relationships are nonhomophilic. 

In summary, the two great predictors of tie-strength are: affinity between individuals and relevance of these individuals. Then 

it follows that people establish relationships for two reasons: for affinity, for the interest of relating to relevant people, or for 

both reasons. Lucy Model proposes a mathematical expression to quantify tie strength for online social networks in function 

of those two great predictors. 

Affinity is also a feeling. The affinity that node i feels with respect to node j does not necessarily equal the affinity that node 

j feels with respect to node i. On the other hand, the relevance of i in general is different from the relevance of j. Therefore 

there are two tie-strengths between i and j, one from i to j and one from j to i. The greater the affinity that j feels for i, and 

the greater the relevance that j considers that i has, then tie-strength of j to i (symbolically 𝑤𝑗𝑖) is greater. This translates into 

a greater predisposition of j to accept messages from i. 

The absolute affinity between nodes 𝑖 y 𝑗 is 𝐴𝑖𝑗; 𝑅𝑖 is the quantification of centrality of node i. 𝐴𝑖𝑗 and 𝑅𝑖 are magnitudes that 

have different nature and scale. To be able to combine them in a mathematical expression to obtain wji, it is necessary to 

normalize these magnitudes, then: 

𝑤𝐴𝑗𝑖= normalized(𝐴𝑖𝑗) 

𝑤𝑅𝑗𝑖= normalized(𝑅𝑖) 
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Then: 

𝑤𝑗𝑖 = 𝑓(𝑤𝐴𝑗𝑖, 𝑤𝑅𝑗𝑖) 

𝑤𝐴𝑗𝑖 is the affinity that node j feels with respect to node i. 𝑤𝐴𝑗𝑖, being normalized, is the probability that node j receives 

messages from node i considering the affinity between the two nodes. wRji is the relevance that j considers that i has. wRji, 

being normalized, is the probability that node j receives messages from node i considering the relevance of the node i. wji is 

the joint probability of two events 𝑤𝐴𝑗𝑖  and wRji probabilistically independent of each other. Then: 

𝑤𝑗𝑖 = 𝑤𝐴𝑗𝑖 ∗ 𝑤𝑅𝑗𝑖 (1) 

Tie strength wji is normalized and represents the probability that node j will receives messages from node i. As will be seen 

later, in general 𝑤𝑗𝑖 ≠ 𝑤𝑖𝑗. 

Eq. (1) is consistent with what is expressed by Mark S. Granovetter in the sense that the links within the communities are 

strong and the links between these groups are weak. In fact, the links that join communities have a small value 𝑤𝐴𝑗𝑖 , and 

therefore wji is small. Within the communities the value of 𝑤𝐴𝑗𝑖 is large, obtaining larger values of wji. Next, we find 

expressions to quantify 𝐴𝑖𝑗, 𝑤𝐴𝑗𝑖  and wRji. 

3.2.1 Affinity 𝑨𝒊𝒋 

To quantify tie strength due to affinity 𝑤𝐴𝑗𝑖, we need to calculate the affinity between nodes 𝐴𝑖𝑗 based on the network 

topology. (Golbeck 2013) states that "Those who have many mutual friends are likely to have stronger ties". If this is so, then 

we can infer that these two friends are joined by strong feelings of affection, affinity or sympathy. Recalling what Mark S. 

Granovetter said that there is a relationship between tie strength and topological structure of the network, we will find a 

mathematical expression to compute 𝑤𝐴𝑗𝑖  according to the number of common neighbors that each pair of related nodes has. 

We observed that there are the following analogies between an electrical network and a social network: (1) The two structures 

are networks that can be represented by a graph. (2) Both networks can have sources and support a flow. In the first case, the 

sources are of energy and support the flow of electric current. In the second case, the sources are of messages and support 

the flow of the said messages. (3) In an electric circuit, the current flows from the points with greater electrical potential 

towards points with less potential. In a social network, a message flows from the individuals who have the message to the 

individuals who do not have it. (4) In an electrical circuit the conductors have the property to facilitate the flow of current, 

and it depends on the physical and electrical characteristics of the material. This property is the electric conductance G. In a 

social network, links have the property of facilitating the flow of messages, and it depends on the affinity 𝐴𝑖𝑗 that exists 

between individuals. To higher affinity higher tie strength between a pair of nodes. Then there is an analogy between G and 

𝐴𝑖𝑗. 

Identifying the analogies between the two types of networks, we make the abstraction of treating a social network as if it 

were an electrical network. We then calculate the electrical conductance of the links, and assume that these measures are 

numerically equal to the affinities of the same links in the social network. Previously, for different purposes, similarities had 

already been established between two systems belonging to different areas of knowledge; for example, the ecosystem concept 

used in Biology and Life Sciences was adapted in an area of social sciences to model the business world with the name 

"Business Ecosystem" (Rong et al. 2015; Maturo et al. 2018). Another example is the modeling of computer virus propagation 

from disease propagation models in human populations (Piqueira and Araujo 2009; Uddin et al. 2015). Brandes and Fleischer 

(2005) did not determine the affinity between individuals, but establish variants of centrality measures, considering that the 

information is propagated efficiently as an electric current. 

We proceed to calculate the equivalent electrical conductance 𝐺𝑗𝑖 between nodes j and i (Fig. 6). Let us consider the portion 

of a graph presented in Fig. 4 as if it were an electrical network. Nodes 1, 2, ... n are connected to nodes i and j, and 

interconnected with each other. We assume that all links have an electrical resistance R = 1.  

The calculation of 𝐺𝑗𝑖can be done in two ways: by applying Kennelly's Theorem (Alexander and Sadiku 2017), or as follows. 

If a voltage is applied between nodes i and j, nodes 1, 2, ..., n will be at the same electrical potential, therefore there will be 

no current between these nodes (Alexander and Sadiku 2017), then their links can be eliminated, as seen in the Fig. 5. 

Fig. 4 
Graph of 

an 
electrical 
network 

 

Fig. 5 
Equivalent 
electrical 
network 

 

 

Fig. 6 𝐺𝑖𝑗 

equivalent 
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𝑅𝑗𝑛𝑖 = 𝑅𝑗𝑛 + 𝑅𝑛𝑖 = 𝑅 + 𝑅 = 2𝑅, similarly: 𝑅𝑗1𝑖 = 𝑅𝑗2𝑖 = ⋯ = 𝑅𝑗𝑛𝑖 = 2𝑅. The equivalent electrical conductance between 

nodes j and i (Fig. 6) is: 

𝐺𝑗𝑖 =
1

𝑅𝑖𝑗
+
1

2𝑅
+
1

2𝑅
+ ⋯+

1

2𝑅⏟            
𝑛

 (2) 

𝐺𝑗𝑖 =
1

𝑅𝑖𝑗
+
𝑛

2𝑅
 (3) 

If R = 1, then: 

𝐺𝑗𝑖 = 1 +
𝑛

2
 (4) 

where n  is the number of nodes connected to both nodes i and j. 

By the existing analogy already indicated between an electric circuit and its corresponding social network, we conclude that 

the equivalent conductance Gij-eq. is numerically equal to the affinity 𝐴𝑖𝑗. 

𝐴𝑖𝑗  =  1 + 
𝑛𝑖𝑗
2

 (5) 

where 𝑛𝑖𝑗 is the number of neighbors common to i and j. Observe that Eq. (5) tells us that the affinity between i and j is 

reciprocal, i.e., 𝐴𝑖𝑗 = 𝐴𝑗𝑖.  

3.2.2 Normalization of affinity and relevance 

The probability that node j receives a message from node i considering the affinity between the two nodes (𝑤𝐴𝑗𝑖) is directly 

proportional to the affinity between i and j (𝐴𝑖𝑗) in relation to the sum of the affinities of j with all its neighbors (see Fig. 7), 

that is 

Fig. 7 Affinity and relevance 

 

 
 

𝑤𝐴𝑗𝑖 =
𝐴𝑖𝑗

∑ 𝐴𝑗𝑘
𝑛
𝑘=1

{𝑗,𝑘}∈𝐸

 (6) 

Similarly, the probability that node j receives a message from node i considering the relevance of the node i (wRji) is directly 

proportional to the relevance of i (𝑅𝑖) in relation to the sum of the relevance of neighbors of  j (see Fig. 7). 𝑅𝑖 can be calculated 

by using some metrics of centrality, i.e., Degree, PageRank, Eigenvector, etc. (Bekiari and Hassanagas 2015). Then: 

𝑤𝑅𝑗𝑖 = 
𝑅𝑖

∑ 𝑅𝑘
𝑛
𝑘=1

{𝑗,𝑘}∈𝐸

 
(7) 

Equations (6) and (7) are normalized magnitudes whose values are in the interval [0, 1]. 

3.3 Activation thresholds and importance of a message 

LM considers the propagation of three distinct classes of messages, each of them with a particular purpose. They are: 

Messages to influence which appeal to interests and personal conveniences; Messages to influence which appeal to feelings; 

and Messages to inform. The extent of this spread in a social network depends on three aspects: (1) the class of message; (2) 

the importance of the message, and; (3) the relevance of the sender of the message, or the affinity between sender and receiver 

according to the message class. These aspects awaken in each receiving node a threshold that determines the probability that 

it will be activated. 

Nonhomophilic influence threshold 

The first class of messages is intended to influence people by appealing to interests and personal conveniences. Examples of 

messages of this class are economic advice; health recommendations; travel recommendations; and safety recommendations 
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for machinery operators, vehicle and pedestrian drivers, etc. People analyze these messages in a rational and objective way, 

take precautions and seek the advice of other people. In this class of influence, not accepting the influence could mean risks. 

This class of messages awakens in the people a certain threshold of influence (UNHji). 

The greater the relevance of the individual (i) who sends a message or the greater the importance of said message (𝐼𝑝𝑗), the 

lower the threshold of influence of the individual j who receives the message, being easier to influence him. These 

considerations are fulfilled in the following mathematical equation (8). 

𝑈𝑁𝐻𝑗𝑖 = 1 − (𝛼𝑅𝑅𝑖𝑗 + 𝛽𝐼𝑝𝑗) (8) 

Where 𝑅𝑅𝑖𝑗is the relative relevance of i with respect to j; 𝐼𝑝𝑗 is the importance of message perceived by j; α and β are 

parameters that give weights to the variables. 

Homophilic influence threshold 

This class of message tries to influence people by appealing to feelings and emotions, where it counts the affinity, affection 

and sympathy of the people. Examples of messages of this class are a favor requested by someone dear; call to solidarity for 

someone dear; call to celebrate someone dear. People analyze these messages with their hearts. In this class of influence, the 

decision made does not mean risks. This class of messages awakens in the people a certain threshold of influence (UHji). 

The greater the affinity that the receiver j feels for the sender (i) who sends a message or the greater the importance of said 

message (𝐼𝑝𝑗), the lower the threshold of influence of the individual j who receives the message, being easier to influence 

him. These considerations are fulfilled in the following mathematical equation (9) 

𝑈𝐻𝑗𝑖 = 1 − (𝛼𝐴𝑅𝑗𝑖 + 𝛽𝐼𝑝𝑗) (9) 

Where, 𝐴𝑅𝑗𝑖 is the relative affinity that j feels for i. 

Information threshold 

The messages do not try to influence, they only try to inform. Examples of messages of this type are scandal, tragedy, political 

or sporting event. This class of messages awakens in the people a certain threshold of interest 𝑈𝐼𝑗. The receiving node (j) is 

activated if the news exceeds the threshold of interest. The threshold of interest 𝑈𝐼𝑗 depends on the importance of the message 

𝐼𝑝𝑗. Greater interest in the news causes lower threshold 𝑈𝐼𝑗 in node j. These considerations are reflected in the following 

mathematical equation (10) 

𝑈𝐼𝑗 =  1 − 𝐼𝑝𝑗 (10) 

3.3.1 Relative relevance and relative affinity 

Each individual has a relevance (𝑅𝑗) within his/her social environment. The relative relevance 𝑅𝑖𝑗used in Eq. (8) is the 

quantification of how relevant the node i is in comparison with the node j. Both 𝑅𝑖𝑗 and  𝐼𝑝𝑗 have to be values within the 

range [0, 1] for 𝑈𝑁𝐻𝑗𝑖  to be in this same range. For this reason the following expression that calculates the relative relevance 

of i 𝑅𝑖𝑗 =
𝑅𝑖

𝑅𝑗
 does not help us. An expression that meets the above requirements is the following one: 

𝑅𝑅𝑖𝑗 = 
𝑅𝑖

𝑅𝑖 + 𝑅𝑗
 

(11) 

There is not the possibility that 𝑅𝑗 = 𝑅𝑖  = 0 

The values that can take RRji are in the interval [0, 1]. To quantify the relevance of nodes we use PageRank centrality metric, 

since it is widely used in Social Network Analysis (Bekiari and Hassanagas 2015; Yun and Gloor 2015). 

In Eq. (9) we use ARji which is the relative value of 𝐴𝑗𝑖. According to Fig. 7, we define ARji as follows: 

𝐴𝑅𝑗𝑖 =  
𝐴𝑗𝑖

𝑀𝑎𝑥{𝑗,𝑘}∈𝐸(𝐴𝑗𝑘)
 

(12) 

3.3.2 Importance of a message 

In general, people do not perceive the importance of a message in the same way; some people give more importance and 

others give less importance to the same message. For example, if people, in general, feel that a message is important, one 

particular individual will seem to perceive it as moderately important, whereas another one will find it very important. 

In the equations [(8)-(10)] the term importance of the message (𝐼𝑝𝑗) is present. The importance is perceived by a particular 

individual j. To deal with the variability in the perception of the importance of a given subject, we relate 𝐼𝑝𝑗 with Is in Eq. 

(13), where Is is a parameter of the system that represents the average importance of the subject. We defined a scale of five 

qualitative values with their corresponding quantitative values for Is; these are very little important (0.2), little important 

(0.4), moderately important (0.6), important (0.8), very important (1.0). 

𝐼𝑝𝑗  = 𝐼𝑠 + random(𝜖) (13) 
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𝜖 is a set of values that depends on the Is parameter, as seen in the Table 1. To calculate 𝐼𝑝𝑗, a value of the set 𝜖 corresponding 

to Is is taken randomly and added to Is. 

Table 1 Relation between Is and the set 𝜖 

Parameter Is 0.2 0.4 0.6 0.8 1.0 

Set 𝜖 {0.0, 0.2} {-0.2, 0.0, 0.2} {-0.2, 0.0, 0.2} {-0.2, 0.0, 0.2} {-0.2, 0.0} 

3.4 Example of calculation of tie-strength 𝒘𝒋𝒊 and activation thresholds 

In Table 2 we show an example of 𝑤𝑗𝑖 calculation for some links of the graph of Fig. 8. To make the example more explicit, 

the centrality metric 𝑅𝑖 is the degree of the nodes. 

Fig. 8 Graph used as an example to explain the calculation of 
some variables  

 

Table 2 Calculation of 𝑤𝑗𝑖  

j,i 𝑛𝑗𝑖 𝐴𝑗𝑖 = 1+
𝑛𝑗𝑖
2

 𝐴𝑗𝑘 ∑𝐴𝑗𝑘 𝑤𝐴𝑗𝑖 =
𝐴𝑗𝑖
∑𝐴𝑗𝑘

 𝑅𝑖 𝑅𝑘 ∑𝑅𝑘 𝑤𝑅𝑗𝑖 =
𝑅𝑖
∑𝑅𝑘

 𝑤𝑗𝑖 = 𝑤𝐴𝑗𝑖 ∗ 𝑤𝑅𝑗𝑖  

1,2 1 1.5 
𝐴12=1.5 

𝐴13=1.5 
3 0.5 2 

𝑅2=2 

𝑅3=2 
4 0.5 0.25 

1,3 1 1.5 
𝐴12=1.5 

𝐴13=1.5 
3 0.5 3 

𝑅2=2 

𝑅3=2 
4 0.75 0.375 

3,1 1 1.5 
𝐴31=1.5 
𝐴32=1.5 
𝐴34=1 

4 3.75 2 

𝑅1=2 

𝑅2=2 

𝑅4=1 

5 0.4 0.15 

3,4 0 1 
𝐴31=1.5 
𝐴32=1.5 
𝐴34=1 

4 0.25 1 

𝑅1=2 

𝑅2=2 

𝑅4=1 

5 0.2 0.05 

4,3 0 1 𝐴43=1 1 1 3 𝑅3=3 3 1 1 

In Table 3 we show an example of calculation of the three types of activation thresholds for some nodes of Table 1 with 

respect to a neighbor. The graph used is the one shown in Fig. 8. The parameters α= β= 0.5, and the perceived importance of 

the message 𝐼𝑝𝑗= 0.2. 

Table 3 Calculation of activation thresholds 

j,i 𝑅𝑗 𝑅𝑖 𝑅𝑅𝑖𝑗 𝐴𝑗𝑖 𝐴𝑗𝑘 max(𝐴𝑗𝑘) 𝐴𝑅𝑗𝑖  𝑈𝑁𝐻𝑗𝑖=1-(𝛼𝑅𝑅𝑖𝑗+𝛽𝐼𝑝𝑗) 𝑈𝐻𝑗𝑖=1-(𝛼𝐴𝑅𝑗𝑖+𝛽𝐼𝑝𝑗) 𝑈𝐼𝑗= 1-𝐼𝑝𝑗 

1,2 2 2 0.5 1.5 
𝐴12=1.5 

𝐴13=1.5 
1.5 1 0.65 0.4 0.8 

1,3 2 3 0.6 1.5 
𝐴12=1.5 

𝐴13=1.5 
1.5 1 0.6 0.4 0.8 

3,1 3 2 0.4 1.5 
𝐴31=1.5 
𝐴32=1.5 
𝐴34=1 

1.5 1 0.7 0.4 0.8 

3,4 3 1 0.25 1 
𝐴31=1.5 
𝐴32=1.5 
𝐴34=1 

1.5 0.67 0.775 0.565 0.8 

4,3 1 3 0.75 1 𝐴43=1 1 1 0.525 0.4 0.8 

3.5 Search of active nodes 

Lucy Model carries out successive iterations by visiting in each of them all nodes of the graph looking for nodes in "active, 

enabled to activate" state (state 2). These nodes have only one opportunity to try to activate their neighbors, after which these 

nodes become "active, disabled to activate" (state 3).  

In Fig. 9 we show an example of the process of propagation of activation of nodes in a graph of six nodes with the first tour 

of the graph (iteration). Initially there are two nodes in state 2 (seeds): nodes 1 and 4. (a) The first node in state 2 is 1 that is 

able to activate node 2. (b) The nodes 1 and 2 go to state 3 and 2 respectively. The next node in state 2 is node 2 that is able 

to activate node 6. (c) The nodes 2 and 6 go to state 3 and 2 respectively. The next node in state 2 is node 4, which is not able 
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to activate any node. (d) Node 4 goes to state 3. The next node in state 2 is node 6 that is able to activate node 3. (e) The 

nodes 6 and 3 go to state 3 and 2 respectively. Then, the first iteration ends. Since the graph has a node in state 2, a new 

iteration is started. The next node in state 2 is node 3 that is not able to activate any node. (f) Node 3 goes to state 3. There 

are no more nodes in the graph in state 2, so at the end of this iteration the node activation process ends. This process is 

summarized in Algorithm 1 in the form of a pseudo code. 

Fig. 9 Activation propagation process 

 

 
 

Algorithm 1. Search active nodes enabled to activate 
 
Input: graph 

Output: seeds (activated nodes) 

Begin 

      Repeat  
        newCycle ← 0 

        for i = 1 to i = n do 

               if i is enabled to activate(state[i] == 2) then 

    i is disabled to activate: state[i] ← 3 
                   for j = 1 to j = n do 

            if  j is inactive (state[i] == 1) then 

              Algorithm 2: Sending messages and activating 

             nodes 

         end if 

                 end for j 

               end if 

         end for i      
      Until newCycle == 0 

End. 

 

3.6 Node activation process 

Step 2 (Sending messages) and step 3 (activation of nodes) of our proposal LM are summarized in Algorithm 2. 

 

 

Algorithm 2. Sending messages and activating nodes 
Begin 

   Calculate the affinity for each link: 𝐴𝑖𝑗 

   Calculate the normalized affinity: 𝑤𝐴𝑗𝑖  

   Calculate the relevance of nodes: 𝑅𝑖  ← centrality[i] 

   Calculate the normalized relevance: wRji 

   Calculate tie strength: 𝑤𝑗𝑖 ← 𝑤𝐴𝑗𝑖 ∗ 𝑤𝑅𝑗𝑖 
   if node j does not receive the message from node i then end 

   Read the importance of the message Is 

   Calculate the perceived relevance for each node: 𝐼𝑝𝑗  
   Calculate the relative relevance of sending node i: 𝑅𝑅𝑖𝑗 
   Calculate the relative affinity of receiving node j:ARji 
   if the  propagation is nonhomophilic influence  then 

         Calculate threshold of influence: UNHji  

   end if 
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      if the type of propagation is information then 

 Calculate threshold of information:𝑈𝐼𝑗 

   end if 
   if the type of propagation is hemophilic influence then  

 Calculate threshold of influence:UHji 
   end if 
   if the random[0, 1] ≥ threshold then 
 Node j is activated and enabled to activate: state ← 2 
 At the end of the present iteration, a new one will begin: 
 newCycle ← 1 
   end if 
end. 

4. VALIDATION METHOD OF LUCY MODEL 

The only criteria used by the baseline models (LTM, ICM), WCM and our model (LM) to predict the range of message 

propagation is the number of activated nodes. In this way, we have been able to determine the accuracy of the results of our 

model by comparing them with those of the other authors. 

To demonstrate the validity of Lucy Model, we perform the following validation steps: 

Designing Validation Objectives 

The tests we have carried have three objectives: First, to demonstrate in a conclusive way that the predictions of Lucy Model 

are notably more accurate and more precise than the predictions of the baseline models and WCM. Second, to show the 

flexibility of Lucy Model when its parameters are modified to adapt to different situations. Third, to show the behavior of 

Lucy Model in three different types of networks: a synthetic Power-Law network (Newman 2010), a Youtube social network, 

and a tracked Facebook network. 

4.1 Designing the validation 

The tool we used to generate the synthetic network was GenRndPowerLaw from the Stanford Network Analysis Project 

(SNAP). The Youtube network was also obtained from SNAP. 

Power-Law (Newman 2010) is a mathematical relation utilized by algorithms that generate synthetic networks. Power-Law 

networks are a class of random networks because the links are randomly added to a static set of nodes. The degree distribution 

obeys the power law 𝑝(𝑘) =  
𝑘−𝛾

𝜁(𝛾)
, where 𝑝(𝑘) is the probability of a node having degree 𝑘, 𝜁(𝛾) is Riemann's Zeta function, 

and 𝛾 > 1 is the exponent that takes values between 2 and 3 for social networks. When 2 ≤ 𝛾 ≤ 3 occur, these networks are 

called scale-free networks because there is a high probability that nodes with high degree are connected to other nodes with 

a high degree (Li et al. 2005), characteristic that is typical of social networks. 

We chose to use a Power-Law network because many existing social networks are said to be of this type, e.g.: friends 

networks (Hein et al. 2006), telephone call networks (γ = 2.1), email networks (γ = 2.0), World Wide Web (γ = 2.1) (Newman 

2010), and online social networks (Duong-Ba, Thuan Hong 2014). In Table 4, we show the characteristics of the graphs that 

we are using. 

Table 4 Characteristics of the graphs used 

Graph  Node 

number 

Edge 

number 

Max 

degree 

Mean 

grade 

Facebook 968,810 2,742,523 4,804 5.66 

YouTube 1,134,890 2,987,624 28,754 5.34 

Power-Law 

exponent γ=2.1 

1,000,000 3,382,218 143,309 6.76 

Next, we elaborate the validation protocols to carry out their validation activities and present the results. 

4.1.1 Protocol for empirical data extraction 

To validate Lucy Model's results, we extracted empirical data of messages propagation in the Facebook social network of an 

anonymous user, who has a personal profile. For this purpose, we spread messages through different seed users. Each 

published message included a hyperlink to a page of a web server; in this way, the Facebook user who received the message, 

by clicking on the hyperlink could access complete information related to that message. The number of people who accessed 

the web server we counted as activated people. 

The seed users were twenty-three Discrete Mathematics students from the March-July 2018 period of the Faculty of 

Engineering of the Universidad de Cuenca. 

Three classes of messages were designed and published: A nonhomophilic message, a homophilic message, and an 

informative message. Specifically, the messages were espionage in WhatsApp, abandonment of pets, and racism, respectively. 

Each seed published each class of message for a single time, scheduled as follows: Day 1: seed 1. Day 2: seed 2. Day 3: seed 
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3. Day 4: seed 4. Day 5: seed 5. Day 6: seeds 6, 7, 8, 9 and 10. Day 7: seeds 11, 12, 13, 14 and 15. Day 8: seeds 16, 17, 18, 

19, 20, 21, 22 and 23. The participation of the seeds was in descending order according to their number of friends on 

Facebook. We program the publication of messages in this way to know the contribution of each seed or group of seeds in 

the total number of activated nodes. We had this same purpose when we carried out the laboratory tests with the LM, LTM, 

ICM and WCM models. On the other hand, we try to ensure that the publication of each message takes place in the shortest 

possible time so that the messages do not lose relevance and interest in the nodes to be activated. The publication of the three 

classes of messages took place between June 25 and July 4 of the year 2018. 

4.1.2 Protocol for laboratory tests 

The simulation to predict the extent of the propagation of messages with the respective models, was carried out in the tracked 

Facebook network of the same anonymous user used in the field experiments. We had to trace it up to three hops from the 

anonymous user because the messages propagate up to two hops of a seed (Afrasiabi Rad and Benyoucef 2012; Zuo et al. 

2016). Tracking at various depth levels is not allowed by the official Facebook APIs, due to its security policies. For this 

reason we use FBS script (González Toral, Santiago 2018). This script uses Facebook's Front-end, is developed in the Python 

language, allows automatic tracking, and takes into account that Facebook could block the user's account. The process of 

tracking the network was slow since it was carried out in twenty-seven days from May 28 to June 23 of the year 2018. 

The predictions made by the four models LM, LTM, ICM and WCM depend on probabilistic elements. In the case of LM, 

these elements are three: (1) Probability that the nodes receive the message [(Eq. (1)]. (2) Probability of exceeding the 

activation threshold of each receiver node [equations: (8)-(10)]; and (3) Estimating the importance of the message perceived 

by each receiving node [Eq. (13)].  

We have used the same 23 seeds that we had used in the field experiments. The seeds were organized in the same way as in 

the field experiments, that is, in a descending manner by the number of neighbors or degree. We form the following sets of 

nodes: A = {1}, B = {1,2}, C = {1,2,3}, D = {1,2, ..., 4}, E = {1, 2, ..., 5}, F = {1,2, ... 10}, G = {1,2, ... 15}, and H = {1,2, 

... 23}. We did it in this way to determine how much each seed or group of seeds contributes in the activation of the nodes. 

We use the Monte Carlo Method (Bolthausen and Wüthrich 2013) to predict the number of activated nodes, executing 

thousand times each of the four models (LM, LTM, ICM, WCM), and for each group of seeds, starting with group A. In this 

way the results converge to an average value of extent, amplitude or distance of propagation of messages. In each execution 

we uniformly generate random numbers in the interval [0, 1] with the purpose of solving the thresholds for activation of 

nodes and perceived importance of the message (Ip). 

Monte Carlo Method is based on Jakob Bernoulli's Theorem, also called Law of large numbers. The theorem states that if 

X1, X2, X3, … is an infinite sequence of independent random variables having the same expected value μ and standard 

deviation σ, then Xn = (X1+ . . . +Xn) n⁄  converges in probability to μ. That is, for any positive number ε we have  

𝐼𝐶1−𝛼(𝜇) =  𝑥 ̅ ±  𝑍𝛼 2⁄
𝜎

√𝑛
 

This is a method of numeric stochastic research that allows obtaining approximate solutions to complex, deterministic and 

probabilistic problems, as is our case (Masayuki Yano et al. 2013). 

In the case of Lucy Model, this process was done with each of the three classes of propagation of messages: informative, 

nonhomophilic, and homophilic. Both for the subject that the messages treat and for their design we consider that they have 

very little importance (Is). On the other hand, we have estimated that the weights (α and β) of the variables of the activation 

thresholds are equal. For these reasons, in LM the parameters were set with the following values: α = 0.5, β = 0.5 and Is = 

0.2. In order that the LTM and LM results are comparable in similar conditions, we have decided that bv,w of LTM is equal to 

wji [Eq. (1)] of LM. In ICM we fix pv,w  = 1%. 

The message propagation models were implemented in computer simulators. The tools used were C/C++ programming 

language, SNAP graph mining library, NodeXL network analyzer, spreadsheet, and PC core i7 processor, 8GB, 64-bit Ubuntu 

operating system. 
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5. VALIDATION RESULTS AND ANALYSIS 

5.1 Field experiments 

Based on the protocol for empirical data extraction described in the previous section, we show in the Fig. 10 the results of 

the field experiments. We notice two characteristics: 

1. There is a similar behavior in the propagation of the homophilic message and the nonhomophilic message. 

2. The number of nodes activated with the informative message is lower than those reached by the other two classes of 

messages. 

Fig. 10 Tracked Facebook network: Empirical results 

 

 

5.2 Laboratory tests 

Figures Fig. 11-Fig. 13 show the grade of accuracy achieved by laboratory predictions made by Lucy Model, LTM, ICM and 

WCM, compared to empirical evidence. In the case of Lucy Model, these figures show the number of nodes activated as a 

result of the propagation of a nonhomophilic, homophilic and informative message, respectively. In these figures there is a 

gray band inside which are all the curves (B) of Lucy Model. Each curve corresponds to different values assigned to the 

parameters (α, 𝛽, Is) of the activation thresholds [Eq. (8) -Eq. (10)]. The curves that delimit the gray bands were obtained 

with α = 0 and β = 1. In this way, 𝑈𝑁𝐻𝑗𝑖  =  𝑈𝐻𝑗𝑖  =  𝑈𝐼[𝑗]  = 1 – 𝐼𝑃[𝑗]. The curves marking the upper and lower borderline 

of these bands were obtained with Is = 0.2 and Is = 1, respectively. 

In these figures we clearly observed that the band of Lucy Model is much closer to the result of the empirical experiments, 

compared to the predictions of the baseline and WCM model. 

 The lower and upper borders of the gray bands of the three next figures mark the minimum and maximum number of 

activated nodes predicted for each message class. The black curve that is within the each gray band indicate the number of 

nodes predicted for Is=0.2 and α=0.5. 

The laboratory tests that we carried out with Lucy Model and the field experiments, resulted in a very small number of 

activated nodes compared to the almost one million nodes of the tracked Facebook network and the millions of nodes of the 

Facebook platform. This was due to the fact that, in both tests, we had available a set of seeds with very little relevance with 

respect to other nodes in the network. 

In Fig. 11, Fig. 12 and Fig. 13, LM has with seed 8 the greatest growth in the number of activated nodes. This is because the 

neighbors have stronger tie strength with the seed 8 compared to the previous seeds. Therefore, the probability that the 

neighbors receive the message and they are activated is greater. 

Fig. 11 Accuracy: Propagation of a nonhomophilic message. A: 
empirical data. B min: LM min. B: LM (Is=0.2, α=0.5). B max: LM 
max. C: ICM (pv,w=1%). D: LTM. E: WCM 
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Fig. 12. Accuracy: Propagation of a homophilic message. A: 
empirical data. B min: LM min. B: LM (Is=0.2, α=0.5). B max: LM 
max.. C: ICM (pv,w=1%). D: LTM. E: WCM. 

 

 

Fig. 13 Accuracy: Propagation of an informative message. A: 
empirical data. B min: LM min. B: LM (Is=0.2). B max: LM max. 
C: ICM (pv,w=1%). D: LTM. E: WCM 

 

 
 

The Figs. Fig. 11-Fig. 13 also show the flexibility of Lucy Model modules to adapt to the different levels of importance of 

the message to be published, as well as the different weights that the user of the model wishes to give to the parameters of 

the activation thresholds of nodes. 

LM activates a much smaller number of nodes in relation to the other models because we consider the probability (wji) that 

the nodes receive the message, while the other models do not. If in LM we only consider the probability of influence UNHji 

and without considering wji, the results are as follows (see Fig. 14). 

Fig. 14 Accuracy: Propagation of a nonhomophilic message. A: 
empirical data.  B’: LM (Is=0.2, α=0.5).  C: ICM (pv,w=1%). D: 
LTM. E: WCM 

 

 

In figures 15-17 we show Lucy Model behavior in different types of networks: the tracked Facebook network, a Youtube 

network, and a synthetic Power-Law network. The laboratory tests allowed us to make some findings. 
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Fig. 15 Lucy Model. Tracked Facebook network. Three classes of 
messages. Is = 0.2, α = 0.5 

 

 

In figures Fig. 16 and Fig. 17 since we used other networks, we had to use other seeds. We chose the 23 nodes with the 

highest value of PageRank centrality as seeds and ordered them in a descendent way. With these seeds, the nodes activation 

is much greater as we see in the respective figures. In three Lucy Model modules we use the same parameters: Is = 0.2, α = 

0.5. 

Fig. 16 Lucy Model. Youtube network. Three classes of 
messages. Is = 0.2, 𝛼 = 0.5 

 

 
 

Fig. 17 Lucy Model. Synthetic network Power-Law. Three classes 
of messages. Is = 0.2, 𝛼 = 0.5 

 

 

Firstly we find two characteristics: 

1. The informative message reaches the smallest propagation with respect to the other types of messages. This result is the 

same obtained in the field experiments (see Fig. 10). 

2. The nonhomophilic message and the homophilic message had almost the same number of activated nodes. Indeed, the 

average relative difference in the number of activated nodes with these two types of messages in the Facebook, YouTube 

and Power-Law networks is 0.46%, 0.85% and 0.19% respectively. We obtained similar results in the empirical 

experiments. 

Regarding the second characteristic, the activation of nodes depends on tie-strength and the activation threshold. Tie-strength 

between nodes is the same regardless of the class of message that propagates through the network. The activation of nodes 

depends on their respective thresholds (8) and (9). These thresholds are almost identical (UNHji ≈ UHji), differing in that (8) 

depends on the relevance of nodes, while (9) depends on the affinity between nodes. Therefore, the number of activated nodes 

in these cases is very similar as reflected in Figs. Fig. 15 to Fig. 17. 

 

Then: 

𝐴𝑅𝑗𝑖  ≈  𝑅𝑅𝑖𝑗 (14) 
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Then, the relative affinity that the receiver j feels for the transmitter i is numerically equal to the relative relevance of the 

transmitter i in relation to the receiver j. Therefore, the propagation of both nonhomophilic and homophilic messages can be 

predicted using either the activation threshold (8) or the (9). 

In the Eq. (11): 𝑅𝑅𝑗𝑖 = 
𝑅[𝑗]

𝑅[𝑖]+𝑅[𝑗]
 

Analogously     𝑅𝑅𝑖𝑗 = 
𝑅[𝑖]

𝑅[𝑖]+𝑅[𝑗]
 

Then: 

                           𝑅𝑅𝑗𝑖  +  𝑅𝑅𝑖𝑗  =  1 (15) 

To explain the first and second characteristics, we replaced the values of the parameters in the equations of the activation 

thresholds [(8)-(10)], and using equations (14)-(15), we verified that: 𝑈𝐼𝑗 > UHji ≈ UNHji 

On the other hand, and analogous to Eq. (14): 

𝐴𝑅𝑖𝑗  ≈  𝑅𝑅𝑗𝑖 (16) 

From equations [(14)-(16)]: 

𝐴𝑅𝑗𝑖  +  𝐴𝑅𝑖𝑗  ≈  1 (17) 

Also, from the equations (14) and (17): 

𝐴𝑅𝑖𝑗  +  𝑅𝑅𝑖𝑗  ≈  1 (18) 

Equation (14) empirically obtained, and the deduced equations (15), (17) and (18), are very interesting because they relate 

relative affinity and relative relevance between nodes. 

Regarding performance, our model is mathematically expressed with matrices (algorithms 1 and 2), but its implementation 

in software is inefficient both in processing time and in memory utilization. For this reason, we do not use adjacency matrices 

but linked lists of adjacency. For example, the tracked Facebook network has 968.810 nodes and 2.742.523 edges, with an 

average degree of only 5,66. To represent this network with an adjacency matrix, we need a matrix of 968.8102 cells. To 

represent the same network with linked adjacency lists, we need only 968.810 ∗ 5.66 memory locations. The amount of 

memory required with adjacency matrices is 171.167,84 times larger than the amount of memory required with linked lists 

of adjacency. The space of memory used is in the order of  𝑂(𝑛 ∗ 〈𝑘〉)  where n is the number of nodes and 〈𝑘〉 is the average 

grade of the graph. Clearly 𝑛 ≫ 〈𝑘〉. The simulators LM, LTM, ICM and WCM were constructed with both adjacency matrix 

and linked lists. In Table 5 we compare the performance of the models with the two data structures. In Table 6 we present 

the execution times of the four models implemented with linked lists. The performance of the models with the YouTube and 

Power-Law graphs were very similar to the results presented in Table 5 and Table 6. 

Table 5 Performance of simulators implemented with tracked Facebook network and different data structures 

LM, LTM, ICM, WCM 

Data structure Required memory 

positions 

Relative memory size Execution time 

Adjacency matrix 𝑛2 
𝑛

〈𝑘〉
= 171.167,84 

It was not possible to run the simulator because 

the size of the matrix overflowed the computer 

memory 

linked lists 𝑛 ∗ 〈𝑘〉 1 Less than 20 minutes 

Table 6 Execution times (mm:ss) of simulators, implemented with tracked Facebook network and linked lists 

LM: LTM ICM WCM 

Nonhomophilic Homophilic Informative    

13:14 18:39 15:20 6:22 6:32 19:27 

In Table 7 we show the accuracy of the results expressed through the root mean square error (𝑅𝑀𝑆𝐸 =

√
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖−𝐴𝑐𝑡𝑢𝑎𝑙𝑖)

2𝑛
1

𝑛
) of the predictions of LM, ICM, LTM and WCM regarding empirical experiments. The error of LM 

was calculated with the curve that marks the upper borderline of the gray bands, which is the one that produces the maximum 

error. 
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Table 7 Accuracy: Root Mean Square Error 

Message class LM LTM ICM WCM 

Nonhomophilic 53 238 1,759 241,352 

Homophilic 52 236 1,757 241,350 

Informative 58 241 1,761 241,357 

Table 8 shows the precision in terms of standard deviation of the predictions of LM, LTM, ICM and WCM shown in Figs. 

Fig. 11, Fig. 12 and Fig. 13. We found that Lucy Model obtains significantly more precise results compared to the other 

models. 

Table 8 Precision: Standard Deviation 

Lucy Model 
LTM ICM WCM 

Nonhomophilic Homophilic Informative 

12.47 15.69 6.99 861 81 356,667 

5.3 Findings 

A message of homophilic influence and a message of nonhomophilic influence are of a different nature, and therefore their 

respective activation thresholds are a function of different variables. But, we found that their node activation curves are 

practically the same in laboratory tests, and similar in field experiments, That is, the two classes of messages produce the 

same results. These results led us to the conclusion that it is not necessary to define two thresholds of activation of nodes but 

only one, unifying the two variables (affinity and relevance) into a single variable. 

6. CONCLUSIONS 

Benefits derived from Lucy Model 

The most conclusive result of our research is that the predictions made by Lucy Model are notably more accurate and precise 

than those made by the baseline models Linear Threshold Model and Independent Cascade Model, and by Weighted Cascade 

Model. 

The contribution of our work is to identify new elements that are present in the processes of propagation of information and 

influence in real life, and that have not been taken into account before. These elements were incorporated into LM, allowing 

the model to represent these processes in a finer and closer way to reality. These are (1) three classes of message propagation 

in social networks: homophilic influence, nonhomophilic influence, and informative. (2) The concept of affinity between 

nodes and the metric to calculate it. (3) Concept of tie strength defined as the probability that a node receives a message, and 

the mathematical expression to quantify it. (4) Concept of activation threshold defined as the probability of activation a node. 

Each node to influence (j) has a different activation threshold for each message propagation class and for each influencing 

node (i). (5) Importance of a message for people in general and the perceived importance for each individual in particular. 

(6) LM is configurable to allow flexibility of use to adapt to different levels of importance of a message, as well as to assign 

different weights to some variables that intervene in the model. It is important to indicate that we design LM before knowing 

experimental data. 

On the other hand, the results of node activation of Lucy Model, like LTM, ICM, and WCM, have the characteristics of 

monotonicity and submodularity, concepts that we defined in Section 0. 

Regarding the performance of our model, the use of adjacency linked lists instead of adjacency matrices has allowed us to 

use very small processing time and memory space, and to perform experiments with much larger graphs in the order of 

millions of nodes at much higher speeds, demonstrating the effectiveness of LM. 

In relation with the utility of LM, some sectors of society (governments, social movements, sellers, etc.) that use OSNs need 

to know the extent of the spread of information and the influence they transmit through these networks. LM will facilitate 

telecommunication engineers with the task of performing different types of analysis about the characteristics of the 

information and influence propagation through online social networks, satisfying these sectors´ need. Our proposal can be 

used to help develop new models that maximize the propagation of messages; to predict the spread of viruses in both computer 

networks and mobile phone networks that could be propagated even through online social networks. Our model can also help 

predict the loss of clients in mobile telephony. 

Limitation of Lucy Model implementation 

The LM implementation allows to work with graphs of up to five million nodes., in a computer PC core i7, memory 8 GB 

and Ubuntu (64 bit) operating system. For larger graphs we require hardware with more capacity. 

Difficulty of validation 

In order to validate the results of this kind of models, it is necessary to trace the corresponding social network, a task that is 

very cumbersome and long, since it could last several weeks and even months. This is due to the security measures imposed 
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by the companies that own the online social networks such as Facebook. To overcome this difficulty, synthetic networks are 

used. 

Future work 

LM considers only homophilic or only nonhomophilic processes of propagation of influence. It would be important to design 

a model that considers both types of influence at the same time. On the other hand, our model only considers the propagation 

of influence in a particular sense; it would be very interesting to model the propagation of influence in at least two senses or 

opposite influences. We suggest studying the propagation of nonhomophilic influence in an online social network, where 

accepting influence carries risks, for example: acquiring a new technology or investing in a new business. Another future 

work could be to predict not only how many nodes but which nodes will be activated. We recommend studying the 

propagation processes with networks that evolve their topology over time using LM model. Another future work could be to 

determine the time expressed in hours or days that takes the activation of a certain percentage of nodes in a network. On the 

other hand, it may be interesting to study the propagation characteristics of negative feelings, bad news and fake news. 

Finally, we recommend studying the maximization of activation with LM. 
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