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Abstract. The general approach to the application of the LS-STAG method for RANS
simulation and for numerical simulation in coupled hydroelastic problems is suggested.
According to the concept of the LS-STAG method normal Reynolds stress components are
sampled on the base mesh (similar to pressure discretization) and shear ones are sampled
in the upper right corners of the base mesh cells. Thus, for the shear Reynolds stresses
an additional mesh (xy-mesh) is introduced. In this research the LS-STAG-discretization
for convective and diffusive fluxes on the xy-mesh is developed. A software package
is developed for numerical solution of the Navier-Stokes and Reynolds-averaged Navier-
Stokes equations by using the LS-STAG method. To validate this approach and developed
software package the flow past circular airfoil at the Reynolds numbers Re = 1000 and
Re = 3900 was simulated. Some numerical results are also presented for simulation of a
circular airfoil wind resonance phenomenon.

1 INTRODUCTION

Immersed boundary methods [1] have become popular in Computational Fluid Dy-
namics over recent years for simulating flows through complex solid geometries and in
coupled hydroelasctic problems. The advantage of these methods over a method with a
body-fitted mesh is their computational efficiency: they do not require regridding when
domain shape changes in the simulation process due to hydroelastic body motion.

The LS-STAG method [2] for viscous incompressible flows simulation combines the
advantages of immersed boundary methods, the marker and cells (MAC) method and
level-set [3] method. The LS-STAG method allows to solve on the Cartesian meshes such
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complicated problems of computational mechanics as coupled hydroelastic problems. In
contrast to classical immersed boundary methods, the flow variables are computed in the
cut-cells, and not interpolated. Moreover, the LS-STAG discretization in the cut-cells is
performed by the same formulae as in rectangular cells. Numerical analogues of total
mass, momentum and kinetic energy conservation laws in each cell is a base of LS-STAG
discretization constructing, which allows to obtain physically realistic numerical solution.

However, the LS-STAG method, as all mesh methods has a significant limitation when
simulating flows with high Reynolds number: it requires extremely small space and time
steps. It leads to significant increase in computational cost. The traditional method
of solving this problem is Reynolds averaged Navier—Stokes (RANS) simulation, Large
Eddy Simulation (LES), Detached Eddy Simulation (DES) etc. [4] usage. However, as
the analysis of the literature shows such modifications of the LS-STAG method currently
do not exist. Therefore the purpose of this study is the constructing of the LS-STAG
method extension for the numerical solution of two-dimensional RANS equations. This
modification of the LS-STAG method is presented below.

2 GOVERNING EQUATIONS

Two-dimensional RANS equations is considered:

∇ · v = 0,
∂v

∂t
+ (v · ∇)v = ∇p+

1

Re
∆v +∇ · τ̂ t. (1)

Here v = v(x, y, t) = u · ex + v · ey is the dimensionless Reynolds averaged velocity,
p = p(x, y, t) is the dimensionless Reynolds averaged pressure, τ̂ t is the Reynolds stresses
tensor. The relationship between τ̂ t and flow Reynolds averaged variables is given by the
turbulence model.

The boundary conditions on the computational domain are the following:

v
∣∣
inlet

= v∞,
∂v

∂n

∣∣∣
outlet

= 0,
∂p

∂n

∣∣∣
inlet&outlet

= 0, (2)

and boundary conditions on the airfoil are no-slip conditions:

v
∣∣
airfoil

= vib,
∂p

∂n

∣∣∣
airfoil

= 0. (3)

Here vib is the velocity of the immersed boundary. The airfoil assumed to be rigid and
it can oscillate with 1, 2 or 3 degrees of freedom. Its motion is described by dynamics
equations:

¨⃗q = Φ⃗(q⃗, ˙⃗q) + Q⃗flow + Q⃗ext. (4)

Here q⃗ is the airfoil generalized coordinates vector, Φ⃗(q⃗, ˙⃗q) is determined by elastic and

viscous constraints imposed on the airfoil, Q⃗flow is the generalized aerodynamic force, Q⃗ext

is external mass generalized forces vector.
In case of Reynolds Stress (RSM) RANS models the Reynolds stress transport equa-

tion is solved for simulating of τ̂ t. In case of Eddy Viscosity (EVM) RANS models the
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eddy viscosity νt (and the turbulent kinetic energy k in case of two-equation models) is
simulated and Reynolds stresses are evaluated using the Boussinesq assumption [4]:

τ̂ t = νt




2
∂u

∂x

∂u

∂y
+

∂v

∂x
∂u

∂y
+

∂v

∂x
2
∂v

∂y


+

2

3
kÎ. (5)

Here Î is the second-order unit tensor.
In this study the details of the LS-STAG discretization constructing for EVM RANS

approach are presented on example of the Spallart—Allmaras (S-A) turbulence model [5].
In this model the turbulent kinetic energy is assumed to be close to zero (k ≈ 0). Thus, the
following formulae for normal (6) and shear (7) Reynolds stresses are obtained from (5):

τ txx = 2νt
∂u

∂x
, τ tyy = 2νt

∂v

∂y
, (6)

τ txy = νt

(
∂u

∂y
+

∂v

∂x

)
. (7)

The eddy viscosity in the Spallart—Allmaras turbulence model is given by the following
equations:

νt = ν̃fν1,
∂ν̃

∂t
+ (v · ∇)ν̃ = P ν −Dν +

1

σ
∇ · [(ν + ν̃)∇ν̃] +

cb2

σ
(∇ν̃)2. (8)

Here ν̃ is the S-A working variable, Dν =

(
cw1fw−

cb1

κ2
ft2

)(
ν̃

d

)2

is the destruction term,

P ν=cb1[1−ft2]S̃ is the production term, d is the dimensionless distance from the field point
to the nearest wall, ν is the dimensionless viscosity, ft2= ct3 ·e−ct4χ2

, g = r + cw2(r
6 − r),

cw1 =
cb1

κ2
+

1 + cb2

σ
, S̃ =

�����
∂u

∂y
−

∂v

∂x

����� + fν2
ν̃

κ2d2
, fν1 =

χ3

χ3 + c3ν1
, fν2 = 1 −

χ

1 + χfν1
,

fw = g

(
1 + c6w3

g6 + c6w3

)1/6

, χ =
ν̃

ν
, r =

ν̃

S̃κ2d2
, ct3 = 1.2, ct4 = 0.5, cw2 = 0.3, cw3 = 2,

cν1 = 7.1, cb1 = 0.1355, cb2 = 0.622, κ = 0.41, σ = 2/3.
The ‘Trip-Less’ (TL) approach [6] is used: firstly very high value of the S-A working

variable is setted on inlet boundary and then once a separation zone is formed value of the
S-A working variable on inlet boundary is greatly reduced. Thus, the boundary conditions
for (8) take the following form:

ν̃|airfoil ≡ 0,
∂ν̃

∂n

���
outlet

= 0, ν̃|inlet = ν̃∞(t) =

{
ν, t ≤ t∗,
0.001ν, t > t∗.

(9)
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3 MAIN IDEAS OF THE LS-STAG METHOD

The Cartesian mesh with cells Ωi,j = (xi−1, xi)× (yj−1, yj) is introduced in the rectan-
gular computational domain Ω. It is denoted that Γi,j is the face of Ωi,j and xc

i,j = (xc
i , y

c
j)

is the center of this cell. Unknown components ui,j and vi,j of velocity vector v are com-
puted in the middle of fluid parts of the cell faces. These points are the centers of cells
Ωu

i,j = (xc
i , x

c
i+1)× (yj−1, yj) and Ωv

i,j = (xi−1, xi)× (ycj , y
c
j+1) with faces Γu

i,j and Γv
i,j and

areas Mx
ij and My

i,j respectively. If i = 1, N , j = 1,M , the base mesh contains E = N ·M
cells, x-mesh contains Ex = (N − 1) ·M cells and y-mesh contains Ey = N · (M − 1).

The level-set function φ = φ(x, y) [3] is introduced for immersed boundary Γib de-
scription [2]. The boundary Γib is represented by a line segment on the cut-cell Ωi,j.
Locations of this segment endpoints are defined by a linear interpolation of the variable
φi,j = φ(xi, yj). The cell-face fraction ratios ϑu

i,j and ϑv
i,j are introduced [2]. They take

values in interval [0, 1] and represent the fluid parts of the east and north faces of Γi,j

respectively. In 2D case, the cut-cells can be classified into trapezoidal, triangular and
pentagonal cells. Examples of each type cut-cells are presented on fig. 1.

Figure 1: Location of the variables discretization points on the LS-STAG mesh: (a) Cartesian Fluid
Cell; (b) North Trapezoidal Cell; (c) Northwest Pentagonal Cell; (d) Northwest Triangle Cell.

To preserve the five-point stencil structure of the MAC method we need to make
distinction between the discretization of the normal and shear stresses (fig. 1). The nor-
mal stresses are sampled in the center of Ωi,j cell while the shear stresses are sampled

4
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in its corners. Normal and shear Reynolds stresses are sampled similarly. It is conve-
niently to sample the eddy viscosity and the S-A working variable at the same points as
the shear stresses. Thus, in case of the LS-STAG method usage for RANS-based mod-
els we need the fourth mesh (xy-mesh with Exy = (N − 1) · (M − 1) cells) with cells
Ωxy

i,j = (xc
i , x

c
i+1)× (ycj , y

c
j+1). The faces of these cells are Γxy

i,j and their areas are Mxy
i,j .

4 THE GENERAL FORM OF THE LS-STAG DISCRETIZATION FOR
RANS EQUATIONS

According to the concept of the LS-STAG method equations (1) should be written in
integral form for cell of the base mesh, cell of x-mesh and cell of y-mesh respectively:

∫

Γi,j

v · n dS = 0, (10)

d

dt

∫

Ωu
i,j

u dV +

∫

Γu
i,j

(v · n)u dS +

∫

Γu
i,j

pex · n dS −
∫

Γu
i,j

ν∇u · n dS −
∫

Γu
i,j

τ txxex · n dS −
∫

Γu
i,j

τ txyey · n dS = 0,

d

dt

∫

Ωv
i,j

v dV +

∫

Γv
i,j

(v · n)v dS +

∫

Γv
i,j

pey · n dS −
∫

Γv
i,j

ν∇v · n dS −
∫

Γv
i,j

τ tyyey · n dS −
∫

Γv
i,j

τ txyex · n dS = 0.

Formally, the difference between the integral form of the RANS equations (10) and
integral form of the Navier–Stokes equations, for which the LS-STAG discretization was
constructed in [2], is only presence of the underlined terms.

The general form of the LS-STAG discretization for (10) can be written as the following:

DxUx +DyUy + U
ib
= 0, (11)

d

dt
(MxUx) + CxUx +Gx(P − Txx)−Dτ

xTxy − νKxUx + Sib,c
x − νSib,ν

x = 0,

d

dt
(M yUy) + CyUy +Gy(P − Tyy)−Dτ

yTxy − νKyUy + Sib,c
y − νSib,ν

y = 0.

Here P ∈RE is the discrete pressure, Ux∈REx and Uy∈REy are the discrete components
of the velocity vector, Txy∈RExy is the discrete shear Reynolds stresses, Txx∈RE and
Tyy ∈RE are the discrete normal Reynolds stresses; Sib,c

x ∈REx , Sib,ν
x ∈REx , Sib,c

y ∈REy ,

Sib,ν
y ∈REy are source terms; U

ib∈RE is the mass flux; Dx∈M(R)E×Ex , D
y∈M(R)E×Ey ,

Dτ
x∈M(R)Ex×Exy , D

τ
y∈M(R)Ey×Exy are the divergence discrete analogues; K

x∈M(R)Ex×Ex

and Ky∈M(R)Ey×Ey represent the discretization of the diffusive terms; Cx∈M(R)Ex×Ex

and Cy∈M(R)Ey×Ey represent the discretization of the convective terms; Gx = −DT
x and

Gy = −DT
y are the gradient discrete analogues.
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As in [2], matrices Dx and Dy have the following structure (i = 1, N , j = 1,M):

Dx
P (i,j)=ϑ

u
i,j∆yj, Dx

W (i,j)=−ϑu
i−1,j∆yj, Dy

P (i,j)=ϑ
v
i,j∆xi, Dy

S(i,j)=−ϑv
i,j−1∆xi. (12)

We need to construct the LS-STAG discretization of terms with shear Reynolds stress
underlined by two lines in (10), as they appear only in the RANS equations. Both for
rectangular cells, and for all types of cut-cells the following unified formulae can be written
down:∫

Γu
i,j

τ txyey ·n dS≈
1

2
(ϑv

i,j∆xi + ϑv
i+1,j∆xi+1)τ

t
x|i,j −

1

2
(ϑv

i,j−1∆xi + ϑv
i+1,j−1∆xi+1)τ

t
xy|i,j−1, (13)

∫

Γv
i,j

τ txyex ·n dS≈
1

2
(ϑu

i,j∆yj + ϑu
i,j+1∆yj+1)τ

t
xy|i,j −

1

2
(ϑu

i−1,j∆yj + ϑu
i−1,j+1∆yj+1)τ

t
xy|i−1,j.

Thus, matrices Dτ
x and Dτ

y in (11) can be defined as the following:

i = 1, N − 1 :

{
Dτ

x,P (i, j) = (ϑv
i,j∆xi + ϑv

i+1,j∆xi+1)/2, j = 1,M − 1;

Dτ
x,S(i, j) = −(ϑv

i,j−1∆xi + ϑv
i+1,j−1∆xi+1)/2, j = 2,M ;

(14)

j = 1,M − 1 :

{
Dτ

y,P (i, j) = (ϑu
i,j∆yj + ϑu

i,j+1∆yj+1)/2, i = 1, N − 1;

Dτ
y,W (i, j) = −(ϑu

i−1,j∆yj + ϑu
i−1,j+1∆yj+1)/2, i = 2, N.

The time integration of the differential algebraic system (11) is performed with a semi-
implicit Euler scheme. Predictor step leads to discrete analogues of the Helmholtz equa-
tion for velocities prediction �Ux, �Uy at the time tn+1 = (n+ 1)∆t:

Mn+1
x

�Ux−Mn
xU

n
x

∆t
+Cn

xU
n
x +Sib,c,n

x −DT,n
x (P n−T n

xx)−Dτ,n
x T n

xy−νKn+1
x

�Ux−νSib,ν,n+1
x =0, (15)

Mn+1
y

�Uy−Mn
yU

n
y

∆t
+Cn

yU
n
y +Sib,c,n

y −DT,n
y (P n−T n

yy)−Dτ,n
y T n

xy−νKn+1
y

�Uy−νSib,ν,n+1
y =0.

Here ∆t is the constant time discretization step. Corrector step leads to the following
discrete analogue of Poisson equation for Φ = ∆t(P n+1 − P n):

An+1Φ = Dn+1
x

�Ux +Dn+1
y

�Uy + U
ib,n+1

, (16)

A = −Dx(Mx)−1(Dx)T − Dy(My)−1(My)T , A ∈ M(R)E×E. Then flow variables at the
time tn+1 are computed by the following formulae:

Un+1
x = �Ux+(Mn+1

x )−1DT,n+1
x Φ, Un+1

y = �Uy+(Mn+1
y )−1DT,n+1

y Φ, P n+1 =
Φ

∆t
+P n. (17)

After this step in case of RANS equations, new values of Reynolds stresses T n+1
xx , T n+1

yy ,
T n+1
xy are computed by solving the discrete analogues of the corresponding equations. It

should be noted that linear systems are solved using the BiCGStab method [7] with the
ILU- and multigrid [8] preconditioning. An original algorithm for the solver cost-coefficient
estimation [9] is used for the optimal parameters choice for the multigrid preconditioner.

6
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5 EXTENSION OF THE LS-STAG METHOD FOR THE SPALLART —
ALLMARAS TURBULENCE MODEL

Since the eddy viscosity and shear Reynolds stresses sampling points are the same,
according to (7) it is possible to write down:

τ txy|i,j = νt
i,j

(
∂u

∂y

�����
i,j

+
∂v

∂x

�����
i,j

)
. (18)

The eddy viscosity average on the cell Ωi,j of the base mesh should be used for normal
Reynolds stresses computing (6):

τ txx|i,j=2νt
i,j

∂u

∂x

�����
i,j

, τ tyy|i,j=2νt
i,j

∂v

∂y

�����
i,j

, νt
i,j=αi,j(ν

t
i,j + νt

i,j−1 + νt
i−1,j + νt

i−1,j−1), (19)

αi,j =





0, if Ωi,j is a solid cell,
1/3, if Ωi,j is a triangular cell,
1/4, otherwise.

Moreover, the eddy viscosity reconstructing by S-A working variable (8) is performed in
the obvious way, since νt, ν̃ and fν1 are computed at the same points.

The transport equation (8) in integral form has the following form:

d

dt

∫

Ω∗

ν̃ dV +

∫

Γ∗

(v · n)ν̃ dS=

∫

Ω∗

(P ν −Dν) dV +
1

σ

∫

Γ∗

[ν + ν̃]∇ν̃ · n dS +
cb2

σ

∫

Ω∗

(∇ν̃)2 dV. (20)

It is obvious that
∫

Ωxy
i,j

(P ν −Dν) dV ∼= Mxy
i,j (P

ν
i,j −Dν

i,j) = Mxy
i,j Si,j because production

and destruction terms are sampled at the same points as the S-A working variable.
Convenience of ν̃ discretization on the xy-mesh consists mainly in the fact that due to

this ∂ν̃/∂x and ∂ν̃/∂y are sampled on the y-mesh and x-mesh respectively:

∂ν̃

∂x

�����
i,j

=
ν̃i,j − ν̃i−1,j

ϑv
i,j∆xi

,
∂ν̃

∂y

�����
i,j

=
ν̃i,j − ν̃i,j−1

ϑu
i,j∆yj

. (21)

The discretization of the last term in (20) is the following:

∫

Ωxy
i,j

(∇ν̃)2 dV ∼=(βi+1,j + βi+1,j+1)

(
∂ν̃

∂x

�����
i+1,j

)2

+(βi,j + βi,j+1)

(
∂ν̃

∂x

�����
i,j

)2

+ (22)

+(βi,j + βi+1,j)

(
∂ν̃

∂y

�����
i,j

)2

+(βi,j+1 + βi+1,j+1)

(
∂ν̃

∂y

�����
i,j+1

)2

=SG
i,j.

Here βi,j = αi,jVi,j, Vi,j is the area of Ωi,j cell.

7
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And for the diffusive term in (20) we obtain∫

Γxy
i,j

[ν + ν̃]∇ν̃ · n dS ∼= (23)

∼=
1

2

(
∆yj(ϑ

u
i,j + ϑu

i+1,j)

2
+
∆yj+1(ϑ

u
i,j+1 + ϑu

i+1,j+1)

2

)
∂ν̃

∂x

�����
i+1,j

(
ν+

ν̃i,j + ν̃i+1,j

2

)
−

−
1

2

(
∆yj(ϑ

u
i,j + ϑu

i−1,j)

2
+
∆yj+1(ϑ

u
i,j+1 + ϑu

i−1,j+1)

2

)
∂ν̃

∂x

�����
i,j

(
ν+

ν̃i,j + ν̃i−1,j

2

)
+

+
1

2

(
∆xi(ϑ

v
i,j + ϑv

i,j+1)

2
+
∆xi+1(ϑ

v
i+1,j + ϑv

i+1,j+1)

2

)
∂ν̃

∂y

�����
i,j+1

(
ν+

ν̃i,j + ν̃i,j+1

2

)
−

−
1

2

(
∆xi(ϑ

v
i,j + ϑv

i,j−1)

2
+
∆xi+1(ϑ

v
i+1,j + ϑv

i+1,j−1)

2

)
∂ν̃

∂y

�����
i,j

(
ν+

ν̃i,j + ν̃i,j−1

2

)
.

Then Kxy∈M(R)Exy×Exy and Sν
xy∈RExy can be defined:∫

Γxy
i,j

[ν + ν̃]∇ν̃ · n dS ∼= Kxy
S (i, j)ν̃i,j−1 +Kxy

W (i, j)ν̃i−1,j +Kxy
P (i, j)ν̃i,j+ (24)

+Kxy
E (i, j)ν̃i+1,j +Kxy

N (i, j)ν̃i,j+1 + Sν
xy, i,j .

Similarly, discretization for the convective term in (20) on the xy-mesh is obtained:∫

Γxy
i,j

(v · n)ν̃ dS ∼=
[ūes]− + [ūen]−

4
· ν̃i+1,j −

[ūws]+ + [ūwn]+

4
· ν̃i−1,j+ (25)

+
([ūes]+ + [ūen]+)− ([ūws]− + [ūwn]−) + ([v̄nw]+ + [v̄ne]+)− ([v̄sw]− + [v̄se]−)

4
· ν̃i,j+

+
[v̄nw]− + [v̄ne]−

4
· ν̃i,j+1 −

[v̄sw]+ + [v̄se]+

4
· ν̃i,j−1,

ūes = ūi,j + ūi+1,j, ūen = ūi,j+1 + ūi+1,j+1, ūws = ūi,j + ūi−1,j, ūwn = ūi,j+1 + ūi−1,j+1,

v̄nw = v̄i,j + v̄i,j+1, v̄ne = v̄i+1,j + v̄i+1,j+1, v̄sw = v̄i,j + v̄i,j−1, v̄se = v̄i+1,j + v̄i+1,j−1,

ūi,j = ϑu
i,jui,j∆yj, v̄i,j = ϑv

i,jvi,j∆xi, [c]+ = (c+ |c|)/2, [c]− = (c− |c|)/2.

This leads to matrix Cxy∈M(R)Exy×Exy . Additionally, the S
c
xy∈RExy contains a non-zero

components, which correspond to the boundaries of the computational domain.
Thus, the following difference analogue of (20) is obtained:

ν̃n+1=(Mxy,n+1)−1

[
Mxy,n{ν̃n+∆t·Sn}+∆t

(
Kxy,nν̃n+Sν,n

xy +cb2S
G,n

σ
−Cxy,n+1ν̃n−Sc,n

xy

)]
.

(26)

8
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6 NUMERICAL EXPERIMENTS

6.1 Flow past a fixed circular airfoil

The flow past circular airfoil was simulated using the developed modification of the
LS-STAG method at the Reynolds numbers Re = 1000 (on non-uniform meshes 120×148
with ∆t = 5 ·10−2 and 240×296 with ∆t = 10−3) and Re = 3900 (on non-uniform meshes
120× 148 with ∆t = 10−3 and 240× 296 with ∆t = 5 · 10−4). These values of the Re were
chosen because the experimental data [10] and results of other researchers [11, 12, 13]
are known for them. The time averaged drag coefficient CD and the Strouhal number St
were computed. Computational results are shown in table 1. These results are in good
agreement with experimental data for simulation on coarse meshes by using the proposed
modification of the LS-STAG method.

Table 1: Comparison of CD and St with established results from the literature.

Turbulence model Number Re = 1000 Re = 3900
of cells CD St CD St

Experiment [10] 0.98 0.21 0.93 0.22
LES [11] 1 103 520 — — 1.08 —

S-A, present study 17 760 1.12 0.26 0.86 0.18
S-A, present study 71 040 1.03 0.25 1.12 0.25

k − ε [12] 46 304 1.00 0.15 1.00 0.15
Real k − ε [12] 46 304 — 0.17 — 0.20
SST k − ω [12] 46 304 — 0.23 — 0.25

k − ε [13], ANSYS 388 550 1.17 — 0.74 —
SST k − ω [13], ANSYS 388 550 0.99 — 0.62 —

LES [13], ANSYS 388 550 1.15 0.21 1.07 —

6.2 Circular airfoil wind resonance

Coupled aeroelastic problems appear when simulating autorotation and auto-oscillations
phenomena, in particular, airfoil wind resonance. Such problems are complicated for nu-
merical solution, since it is necessary to take into account interference between the flow
and moving immersed body. In case of sufficiently massive body, coupled aeroelastic prob-
lems can be solved using step-by-step splitting numerical algorithm, firstly simulating flow
around a body moving with known parameters and then computing the dynamics of the
body with known hydrodynamic loads [14].

To simulate wind resonance phenomenon we have considered the motion of the circular
airfoil with diameter D across the stream (with one degree of freedom). Airfoil’s constrain
assumed to be linear viscoelastic and its motion (4) is described by the following ordinary
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differential equation:

mÿ∗ + bẏ∗ + cy∗ = Fy. (27)

Here m is the airfoil’s mass, b is the damping factor, c is the constraint’s elasticity, Fy is
lift force, y∗ is the deviation from the equilibrium. The natural frequency of the system
ω ≈

√
c/m (damping assumed to be small) can be set by varying of the coefficient c.

Number of computations have been performed on non-uniform grid 272×292 with time
discretization step ∆t = 0.0001 and the following dimensionless parameters: Re = 1000,
V∞ = 3.0, m = 39.15, b = 0.731. The dimensionless natural frequency of the system is
the following:

Shω =
ω

2π
·
D

V∞
= 0.150 . . . 0.280. (28)

Computational results are in good agreement with the previous studies [15]. Maximum
amplitude (fig. 2) is about 0.4D and it occures when the natural frequency of the system
Stω is close to the Strouhal number, calculated for a fixed airfoil St ≈ 0.24 [2].

Figure 2: Maximum amplitude of the circular airfoil oscillations at Re = 1000

7 CONCLUSIONS

- The key points of the LS-STAG method extension for RANS-based turbulence mod-
els are described. For the shear Reynolds stresses and for the eddy viscosity an
additional mesh (xy-mesh) is introduced.

- The general approach to the construction of the LS-STAG discretization for differ-
ential equations of the EVM RANS models on the additional xy-mesh is shown on
the example of the Spalarat — Allmaras model.

- A software package is developed for the numerical simulation of the bodies’ motion in
the viscous incompressible flow by using the LS-STAG method and its modifications.
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- To validate this approach and the developed software package the flow past a circu-
lar airfoil at the Reynolds number values Re = 1000 and Re = 3900 was simulated.
Computational results are in good agreement with established results from the lit-
erature.

- Simulation of a circular airfoil wind resonance phenomenon is considered. Compu-
tational results are in good qualitative agreement with the experimental data.
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