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Abstract. During the last 5 years, quasi-Newton schemes have proven to be a robust
and efficient way to couple partitioned fluid-structure interaction. We showed in previous
work that they also allow to perform a parallel coupling. Bogaers et al. introduced a new
variant based on a multi-vector update [14]. This variant renders a tuning of the reuse
of old information unnecessary as all old iterations are implicitly covered in a Jacobian
update. In this work, we compare this multi-vector variant in an inverse formulation to
the classical IQN-ILS algorithm for serial as well as parallel coupling.

1 INTRODUCTION

The simulation of fluid-structure interactions is an important contribution to many
fields in science and engineering – from aero-elasticity in aerospace engineering to hemo-
dynamics in medical applications. At the same time, it is a very challenging type of
multi-physics application as it tends to be ill-conditioned and unstable in particular for
incompressible fluids.

Since fluid-structure interactions have been among the first multi-physics models con-
sidered for numerical simulation, the respective methods are in the meantime very so-
phisticated and, in particular, also a lot of very powerful monolithic solvers are available
[1, 2, 3]. We focus, however, on partitioned approaches as our aim is to provide a general
coupling tool, not only for fluid-structure interactions but also for multi-field coupling
[4] and situation where flexible ad-hoc solutions combining different existing solvers are
required. We have to design coupling numerics that are suited for black-box solvers where
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nothing but the pure input and output data of the respective solver are accessible to the
user. This enables us to use also commercial closed-source software as solvers can be
coupled to our coupling software with minimal code changes or code wrappers. Thus, we
consider the structural solver S and the flow solver F as mappings taking certain bound-
ary values as an input and delivering other values at the coupling surface between fluid
and structure as an output:

S : xf �→ xd,

F : xd �→ xf .

Here, xd denotes interface displacements or velocities at the wet surface between fluid and
structure, xf the forces or stresses modelling the impact of the fluid on the structure at
the wet surface. This notation corresponds to the well-known Dirichlet-Neumann cou-
pling between fluid and structure solvers. We are going to focus on this type of coupling
throughout this paper. Alternative ways to define boundary conditions for fluid and struc-
ture solvers often require at least some knowledge on discretization details or Jacobians
of the involved solvers. This is the case, e.g., for Robin-type boundary conditions [5].

Stability issues due to the physically strong coupling between fluid and structure, also
referred to as the added mass effect (see [6, 7]), enforce implicit coupling within each time
step. There are several ways how to realize the respective iterations which are different

1. in terms of the execution order of fluid and structure solvers,

2. in terms of the method used to stabilize and accelerate the coupling iteration.

Regarding the first, a staggered execution of fluid and structure solver, resulting in a
Gauss-Seidel type iteration has been the common approach for a long time (cf. e.g. [8]).
For compressible fluids, however, also the simultaneous execution of fluid and structure
solvers, i.e., a Jacobian-type coupling, in many cases even as an explicit version has been
in use ([8, 9]). We have presented a coupling based on the simultaneous execution of
both solvers also for incompressible fluids and examples with strong instabilities in [10].
This iteration type is not feasible for a pure fixed-point iteration. Thus, sophisticated
stabilization methods from 2. have to be used. We showed in [10] that neither constant
nor adaptive Aitken underrelaxation was sufficient to accelerate the simultaneous coupling
enough to make it competitive with the staggered iteration. Only quasi-Newton methods,
that showed the best results also for the staggered coupling over the last years ([11, 12, 13])
showed a very good performance as presented in [10], even for the parallel coupling of
more than two physical fields [4].

The combination of simultaneous solver execution with efficient quasi-Newton solvers
results in an almost optimal partitioned fluid-structure interaction simulation method.
However, the performance of the quasi-Newton methods depends on parameters such
as the number of old time steps used to estimate Jacobians, for which only experience
or try-and-error can be used to determine the optimal value. Therefore, we compare the
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quasi-Newton approach used in [11] and [10] with an alternative approach presented in [14]
for a different, block-iterative Newton solver. For this approach, information from passed
time steps is implicitly used in the Jacobian estimation by suitable norm minimization
conditions. The drawback, however, is that these methods explicitly determine and store
Jacobians whereas the quasi-Newton approach from [11] only estimates the results of
matrix-vector products involving parts of the Jacobian.

In the following1, we first present the respective different coupling methods in Sect. 2,
followed by numerical results in Sect. 3.

2 QUASI-NEWTON SCHEMES FOR PARTITIONED FLUID-STRUCTURE
INTERACTION

We consider two different implicit coupling systems, namely a serial or staggered cou-
pling and a parallel or vectorial coupling systems as mentioned above in Sect. 1. The
parallel or vectorial system is preferable in case of massively parallel simulations in order
to achieve a reasonable load balancing as described in [10]. We repeat the basics of both
systems in Sect. 2.1.

Both equation systems are solved in two different ways: Using the known interface-
quasi-Newton least squares approach as in [10, 11] and a multi-vector Jacobian approxi-
mation as described in [14] for a different Newton- iteration type, a block-iterative Newton
method. The two solver alternatives are introduced in Sect. 2.2.

2.1 Execution Orders and Fixed Point Equations

In this section, we shortly recapitulate the introduction of fixed-point equations at the
wet surface between fluid and structure depending on the execution order of the solvers.

Serial Implicit Coupling Scheme (S-System). If we execute the solvers in a stag-
gered way, i.e., the flow solver first computes stresses or forces that are communicated to
the structure solver that afterwards computes new wet surface displacements or velocities,
the corresponding interface equation reads

xd
!
= S ◦ F (xd) . (1)

Parallel Implicit Coupling Scheme (V-System) The above serial implicit coupling
scheme offers some remarkable drawbacks regarding efficient parallelization. There is
a substantial mismatch of work load between the structure and the fluid field solver,
which does not allow for an efficient parallelization using the S-System. The only way
to overcome these limitations in parallel efficiency is to evaluate the fluid and structure
solver in parallel. Hereby, the V-System uses the original input/output relation for both

1A more detailed presentation of the findings of this paper including tables and figures has already
been published in the master thesis of Klaudius Scheufele [15].
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solvers but the boundary values are exchanged after each solve of the solvers executed in
parallel. This leads to the vectorial fixed-point equation

(
xf

xd

)
!
=

(
0 F
S 0

)(
xf

xd

)
. (2)

The vectorial system results in two independent instances of the S-System if solved by a
pure fixed-point iteration, but quasi-Newton solvers turn out to be powerful enough such
that one iteration of the V-System is comparable to one iteration of the S-System (cf.
[4, 10]).

2.2 Quasi-Newton Solvers for the Interface Equations

In this section, we describe two quasi-Newton schemes, which can be applied to both
aforementioned fixed-point equations (1) and (2). For sake of clarity, we introdue a unified
notation:

x :=




xd(
xf

xd

)
and H :=




S ◦ F for the staggered equation (1) ,(
0 F
S 0

)
for the parallel equation (2) .

Thus, we have to solve the fixed-point equation

H(x) = x ⇔ R(x) := H(x)− x
!
= 0 . (3)

As a pure fixed-point iteration tends to be unstable and, in particular, two times slower for
the parallel fixed-point equation compared to the staggered one (compare [10]), we use a
quasi-Newton scheme as a stabilization and acceleration after each iteration x̃k = H(xk).
We, therefore, rewrite (3) to the equivalent inverse form

R̃(x̃) := x̃−H−1(x̃)
!
= 0 .

Now, the Newton iteration reads

solve
[
I − JH−1(x̃k)

]
∆x̃k = JR̃(x̃

k)∆x̃k = −R̃(x̃k) , (4)

set xk+1 = x̃k +∆x̃k . (5)

As the exact Jacobian JR̃(x
k) := I − JH−1(x̃k), however, is not accessible for black-box

solvers, we work with an approximation ĴR̃(x̃
k). To minimize the computational cost, in

particular of solving the system (4), we do not approximate the Jacobian itself, but its

inverse ĴR̃
−1
(x̃k). To do so, we collect input-output data throughout our iterations within

a time step and generate the following matrices:

Wk = (wk
i )

k−1
i=0 =

[
∆x̃k

0,∆x̃k
1, · · · ,∆x̃k

k−1

]
, with ∆x̃k

i = x̃k − x̃i ,

Vk = (vki )
k−1
i=0 =

[
∆Rk

0 ,∆Rk
1 , · · · ,∆Rk

k−1

]
, with ∆Rk

i = R(xk)−R(xi) .

4

480



Florian Lindner, Miriam Mehl, Klaudius Scheufele, and Benjamin Uekermann

The inverse Jacobian approximately fulfills the secant equation, i.e.,

J−1

R̃
(x̃k) Vk ≈ Wk .

We use this as a system of equations for the entries of our approximate ĴR̃
−1
(x̃k). As k is in

general much smaller than the number of degrees of freedom at the coupling interface, Wk

and Vk are tall and thin matrices. Thus, we get an underdetermined system of equations

for the entries of ĴR̃
−1
(x̃k):

ĴR̃
−1
(x̃k)Vk = Wk . (6)

In the following, we present two approaches to compute ĴR̃
−1
(x̃k) or the result of

applying part of the approximate Jacobian to −R̃(x̃k) = −R(xk), respectively, based on
this secant equation.

2.2.1 Interface quasi-Newton Least Squares (IQN-LS)

The interface quasi-Newton least squares method presented in [11] uses the norm min-
imization ∥∥∥ĴR̃

−1
(x̃k)

∥∥∥
F
→ min (7)

to enhance the secant equation (6) to a system with a unique solution for ĴR̃
−1
(x̃k). Here,

‖ · ‖F is the Frobenius norm. This gives the approximate inverse Jacobian

ĴR̃
−1
(xk) = Wk

(
V T
k Vk

)−1
V T
k

and the update formula

xk+1 = x̃k +Wk (V
T
k Vk)

−1Vk

(
−R(xk)

)
︸ ︷︷ ︸

=: α

.

We do not have to explicitely compute the inverse Jacobian, but can restrict ourselves
to compute only the vector α. This can be realized very efficiently by solving the least
squares problem

minα∈Rk‖Vkα +R(xk)‖2 ,
where ‖ · ‖2 denotes the Euclidian norm.2

The convergence properties of the IQN-LS method can be greatly improved, if the in-
put/output informations from previous time steps are incorporated into the secant equa-
tion, i.e., into Wk and Vk. To achieve this, the difference matrices V n+1−R, · · · , V n, V n+1

2Note that the update formula for xk+1 also shows that skipping the fixed point iteration step (com-
puting x̃k = H(xk)) before using a quasi-Newton step would have lead to linearly dependent columns in
Wk: We then would always correct xk to xk+1 by adding multiples of differences xk − xi from previous
iterations as we would have to use Wk = (∆xk

0 ,∆xk
1 , . . . ,∆xk

k−1) with ∆xk
i = xk − xi in this case. Using

induction over the iterations, we see that all columns of Wk would be in the space spanned by x0 and
x1 − x0.
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and W n+1−R, · · · ,W n,W n+1 from the previous R ∈ N time steps are stored and included
in the secant equation of the current time step, i. e., we replaceWk and Vk by the enhanced
versions

W
(R)
k =

[
W {n+1−R},W {n−R}, · · · ,W {n+1}

k

]
,

V
(R)
k =

[
V {n+1−R}, V {n−R}, · · · , V {n+1}

k

]
.

This additional information significantly improves the convergence as shown in [11] and
Sect. 3. However, the optimal parameter R of reused time steps is highly problem de-
pendent and there is no analytical method available to determine the optimal R. Thus,
in practice, R has to be determined based on experiences and in a costly try-and-error
process. Also, linear dependencies and contradicting information within the accumulated
difference matrices need to be handled properly. The alternative quasi-Newton approach
presented in the next section provides an automatic implicit incorporation of informa-
tion from passed time steps and, thus, avoids these drawbacks of the IQN-LS method.

However, this requires to explicitly compute ĴR̃
−1

instead of only the short vector α ∈ Rk.

2.2.2 Interface quasi-Newton Multiple Vector Jacobian (IQN-MVJ)

The IQN-MVJ method presented here is a newly developed quasi-Newton fluid-structure
coupling approach. It combines the idea of approximating the Newton iteration defined
by (4) and (5) based on the secant equation (6) with the ideas presented in [14] for Jaco-
bian approximations in the context of a block-iterative Newton method. To implicitly use
information from previous time steps, the IQN-MVJ method uses a different norm mini-
mization than the IQN-LS method in order to achieve uniqueness of the inverse Jacobian
approximation: ∥∥∥ĴR̃

−1
(x̃k)− ĴR̃

−1

prev

∥∥∥
F
→ min , (8)

where ĴR̃
−1

prev denotes the last inverse Jacobian approximation of the previous time step.
Thus, our approximations always stay as close as possible to the approximation from
the last time step. This automatically guaranties that we profit from past information
without having to explicitely use old W and V matrices again. We get the approximate
inverse Jacobian

ĴR̃
−1
(x̃k) = ĴR̃

−1

prev +
(
Wk − ĴR̃

−1

prevVk

) (
V T
k Vk

)−1
V T
k

and the update formula

xk+1 = x̃k + ĴR̃
−1
(x̃k)

(
−R(xk)

)

= xk +
(
ĴR̃

−1

prev +
(
Wk − ĴR̃

−1

prevVk

) (
V T
k Vk

)−1
V T
k

) (
−R(xk)

)
.
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There is a close relation of the IQN-MVJ update scheme to the Broyden method: The
Broyden method also minimizes distances between successively computed Jacobian ap-
proximations within a Newton iteration. However, Broyden minimizes the distance of
approximations between two successive iterations, whereas we minimize the distance be-
tween Jacobian approximations in two successive time steps. This also implies that our
updates are not only rank-one modifications as more than one new input/output pair is
added for the update of the Jacobian approximation from the previous time step to the
Jacobian approximation of the current time step.

In Algorithm 1, we oppose the two quasi-Newton approaches, the established IQN-LS
method from [11] and our new variant. Summarizing Sect. 2, we state that we have
described four different coupling methods, which are going to be considered for numerical
test cases in Sect. 3. For clarity reasons, we give an overview of our combinations in
Tab. 1.

Algorithm 1 Quasi-Newton schemes, left: the IQN-LS algorithm, a matrix free approach that approx-
imates for the inverse Jacobian of the residual operator, right: the IQN-MVJ algorithm which explicitly
stores the matrix of the Jacobian estimation. The inverse of the Jacobian of the residual operator is
approximated using information from previous time steps implicitly.

IQN-LS
initial value x0

x̃0 = H(x0) and R0 = x̃0 − x0

x1 = x0 + 0.1 ·R0

for k = 1 . . . do
x̃k = H(xk) and Rk = x̃k − xk

Vk = [∆Rk
0 , . . . ,∆Rk

k−1] with ∆Rk
i = Ri −Rk

Wk = [∆x̃k
0 , . . . ,∆x̃k

k−1] with ∆x̃k
i = x̃i − x̃k

decompose V k = QkUk

solve the first k lines of Ukα = −QkTRk

∆x̃k = Wα
xk+1 = x̃k +∆x̃k

end for

IQN-MVJ(x)
initial value x0 and ĴR̃

−1

prev
= 0

x̃0 = H(x0) and R0 = x̃0 − x0

x1 = x0 + 0.1 ·R0

for k = 1 . . . do
x̃k = H(xk) and Rk = x̃k − xk

Vk = [∆Rk
0 , . . . ,∆Rk

k−1] with ∆Rk
i = Ri −Rk

Wk = [∆x̃k
0 , . . . ,∆x̃k

k−1] with ∆x̃k
i = x̃i − x̃k

ĴR̃
−1

(x̃k) = ĴR̃
−1

prev

+
(
Wk − ĴR̃

−1

prev
Vk

) (
V T
k Vk

)−1
V T
k

∆x̃k = −ĴR̃
−1

(x̃k)Rk

xk+1 = x̃k +∆x̃k

end for

Serial System Vectorial System

IQN-LS S-IQN-LS V-IQN-LS

IQN-MVJ S-IQN-MVJ V-IQN-MVJ

Table 1: Numerical coupling methods examined in this paper: each method is defined
by choosing either the serial fixed-point equation (1) or the vectorial fixed-point equation
(2) and either the least-squares quasi-Newton solver described in Sect. 2.2.1 or the multi-
vector Jacobian approximation quasi-Newton approach from Sect. 2.2.2.
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3 NUMERICAL RESULTS

3.1 Software

All numerical experiments were conducted using the coupling library preCICE and the
simulation toolbox OpenFOAM. We give a brief summary of both below.

preCICE is a library for flexible numerical coupling of single-physics solvers. preCICE3

is developed at the Technische Universität München and the Universität Stuttgart. It uses
a partitioned black-box coupling approach, thus requiring only minimal modifications to
existing solvers. Its software architecture as a library in conjunction with a high-level
API fosters quick and minimal-invasive integration into existing codes. Integration can
be realized in less than 30 lines of code. preCICE offers a wide variety of runtime con-
figurable aspects of numerical coupling like serial and parallel as well as explicit and
implicit coupling schemes. The latter category includes the schemes presented in this
paper. Subcycling enables to combine problems that show convergence on different time
scales. Coupling between non-matching grids can be achieved by data mapping methods
ranging from simple projection methods to approaches based on radial-basis functions.
preCICE is written in C++ and features a clean and modern software design with exten-
sive unit and integration testing while maintaining minimal external dependencies and
easy extensibility. For more information, refer to [12].

OpenFOAM The fluid and structure simulations were done using a software based on
OpenFOAM4 resp. the foam-extend-3.1 project5. The preCICE adapter and the actual
solver were developed by David Blom et.al. from TU Delft. The fluid solver uses a 2nd

order finite volume discretization of the incompressible Navier-Stockes equation. Instead
of the standard PISO (pressure implicit with splitting of operator) algorithm it uses a
coupled solution algorithm as described in [16]. Time integration is performed by the
second order backward differencing scheme. The fluid equations are formulated in the
arbitrary-lagrangian-eulerian perspective whereas the mesh movement uses radial basis
function interpolation [17]. The structural domain is modeled using a fully langrangrian
formulation and a Saint Venant-Kirchhoff model. For more information, refer to e.g. [13].

3.2 Three-dimensional flow over an elastic structure

Scenario description. This case depicts a three-dimensional laminar and incompress-
ible flow over an elastic structure. The scenario is assumed to be symmetric in the
x/y-plane, hence, the simulation is only performed in one half of the domain. The ge-
ometry of the scenario and physical results are shown in Fig. 1 (a). The computational

3http://www5.in.tum.de/wiki/index.php/PreCICE Webpage
4http://www.openfoam.org/
5http://www.extend-project.de/

8

484



Florian Lindner, Miriam Mehl, Klaudius Scheufele, and Benjamin Uekermann

Table 2: Three-dimensional flow over an elastic structure. Average numbers of coupling
iterations for IQN-LS and IQN-MVJ, and for serial and parallel coupling. The iteration
numbers are averaged over the first 40 time steps. Different numbers of reused time steps
are evaluated.† For a well-conditioned V-system we scaled the forces by a factor of 4.0 ·104
for IQN-LS and 104 for IQN-MVJ.

Reuse (R) 0 1 2 3 4 5 6 7 8

S-IQN-LS(R) 5.15 4.75 4.50 4.45 4.65 5.05 5.65 5.70 6.15

S-IQN-MVJ(R) 5.15 5.22 5.57 5.87 6.32 6.70 7.00 7.45 7.62

V-IQN-LS(R)† 9.30 7.85 7.07 6.90 6.70 6.80 7.05 7.15 7.45

V-IQN-MVJ(R)† 6.65 6.75 6.82 7.27 7.47 7.72 8.02 8.10 8.52

domain has a length of 1.5m along with a width and height of 0.4m, whereas the elastic
rectangular structure with dimensions 0.2m × 0.2m × 0.2m is mounted on the wall. The
fluid flow is driven by a parabolic velocity profile v with peak velocity vmax = 0.2 m

s
which

is imposed as a Dirichlet boundary condition at the inflow boundary. The profile is faded
in smoothly for t < 2.0. At the opposing side standard outflow conditions are applied, on
the symmetry surface free-slip conditions as well as no-slip conditions on all remaining
boundaries. The fluid density is 1× 103 kg

m3 , the dynamic viscosity 1× 10−3 Pa s. The

density of the structure is 1× 103 kg
m3 , the Poisson ratio 0.4 and the Young’s modulus is

set to 1× 104 N
m2 .

Results. The simulation domain is decomposed into 1632 cells for the fluid and 32 cells
for the structure mesh. Forty time steps with a time step size of 0.1 s are performed. A
relative convergence measure of 10−5 for the forces as well as for the displacements at
the fluid-structure interface is used. The results of the simulation are shown in Tab. 2.
The average number of iterations over the first 40 time steps are shown for the IQN-LS
as well as for the IQN-MVJ quasi-Newton scheme with different numbers of reused time
steps. To precondition the V-system, we scale the forces in advance, such that forces and
displacements have the same order of magnitude. It can be seen from Tab. 2, that the
IQN-LS and the IQN-MVJ approach yield quite similar results for the S-system (serial
coupling) as well as for the V-system (parallel coupling). As the IQN-MVJ implicitly
incorporates information from previous time steps via the norm minimization in eq. (8)
there is no benefit in collecting columns from previous time steps for the V and W
matrices. Hence, the IQN-MVJ scheme is more robust and there is no need to tune for
an optimal number of reused time steps (R).

3.3 Wave propagation in a three-dimensional elastic tube

Scenario description. This test case simulates the wave propagation in a straight,
three-dimensional elastic tube (cf. e.g. [11]). The length of the tube is 0.05m. The fluid

9
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domain has a diameter of 0.003m, whereas the tube thickness is 0.001m. Both ends of
the tube are fixed. For the initial duration of 0.003 s, the boundary condition for the
pressure inlet is set to a fixed value of 1333.2Pa. Thereafter, the inlet pressure is set to
zero. At the outlet, the pressure is set to zero. The fluid has a density of 1× 103 kg

m3 , and

a dynamic viscosity of 3× 10−3 Pa s. The density of the elastic structure is 1.2× 103 kg
m3 ,

the Young’s modulus 3× 105 N
m2 , and the Poisson’s ratio 0.3. A pressure pulse propagates

through the tube as shown in Fig. 1 (b).

(a) (b)

Figure 1: Geometry and physics of the simulated scenarios. (a) Three-dimensional flow
over an elastic structure. Streamlines and pressure contours in the fluid domain at t =
2.8 s. (b) Wave propagation in a three-dimensional elastic tube. Geometry and pressure
contours on the fluid-structure interface at t = 8.9 · 10−3 s

Results. The fluid mesh consists of 17600 cells, and the structure mesh contains 800
cells. Hundred time steps of 1× 10−4 s are performed. A relative convergence measure of
10−5 is used for both, the displacements and the traction on the fluid-structure interface.
The results of the simulation are shown in Tab. 3. It can be observed that the behavior of
S-IQN-LS(9) and S-IQN-MVJ(0) is quite similar, cf. Fig. 2 (a), which confirms the results
of Sect. 3.2. Also, it seems to be advantageous to reuse more time steps for the parallel
coupling than for the serial coupling. Furthermore, for parallel coupling, it turns out that
the IQN-MVJ scheme is more robust and performs slightly better than the IQN-LS. This
dominance of the IQN-MVJ(0) over the IQN-LS(17) is mainly due to the fact that the
IQN-MVJ is far more robust during the attack time of the simulation, as can be seen
from Fig. 2 (b).

4 CONCLUSIONS

We applied the multi-vector update scheme from Bogaers et al. [14] on the inverse
Jacobian formulation – the similar setting that was used by Degroote et al. to derive the
classical IQN-ILS scheme [11]. We tested this new coupling scheme, the IQN-MVJ, as
well as the IQN-ILS for serial and parallel coupling on two 3D scenarios. The multi-vector
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Table 3: Wave propagation in a three-dimensional elastic tube. Average numbers of
coupling iterations over first 100 time steps for IQN-ILS and IQN-MVJ, and for serial
and parallel coupling. Different numbers of reused time steps are evaluated. † For a well-
conditioned V-system, we scale the forces by a factor of 1010 for IQN-LS and 4.0 · 108 for
IQN-MVJ.

Reuse(R) 0 1 3 5 7 9 11 13 15 17

S-IQN-LS(R) 9.97 9.45 6.80 6.35 6.17 6.05 6.05 6.06 6.15 6.21

S-IQN-MVJ(R) 5.36 8.97 9.47 9.32 9.25 9.21

V-IQN-LS(R)† 21.41 18.63 13.73 12.90 12.28 11.95 11.71 13.36 13.36 11.47

V-IQN-MVJ(R)† 8.67 15.18 17.66 17.60 16.99 17.13

(a) (b)

Figure 2: Wave propagation in a three-dimensional elastic tube. Iteration numbers for
IQN-LS and IQN-MVJ, and for serial and parallel coupling. (a) timesteps 16 to 100, (b)
timesteps 1 to 15.

update renders, as expected, a fine-tuning of the reuse of old information unnecessary.
Similar to our previous findings for IQN-ILS [10], IQN-MVJ almost retains the conver-
gence order, when moving from the serial coupling to the parallel one. In upcoming work,
we want to automate the pre-conditioning of the parallel coupling.
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