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In contrast with classical simulation languages, the present
trends are cvolving towards fully integrated intersctive modelfing
and shmulation environments, These environments have to
combine interdiseiplinary techniques such as expert systems,
object oriented progemmming and dat base management.

To achieve the above objectives, the architecture of the
simulation progmmming language and thet of the run-time
simulation environment which exercises e models should be
designed aflowing modularity and flexibility. Furthermore, the
robustness of the environment should be reinforced.

In this paper the MUSS simulntion system is presented,
emphasizing the innovative concepts: the hicrarchical architecture
of the MUSS simulation language, the preprocessor analysis and
segmentation phases and the stricture of the run-time simulation
environment.

INTRODUCTION

The research Mnes of the fnstitur de Cibernetica {IC) nre
strongly influenced by the demands of the industsial and scientific
communities in Catalonia, Among them, those areas mainly related
with simulation are Automatic Control (Electelesl Engineering)
end Bioengineering,

In the seventies, simulation in the /C was based on hybrid
techniques (Huber et al. 1982). Thereafter, the simulation group
started 1o work in pure digital simulation Iangunges. As a result,
the 1613.85'5. CSSL-ltke simulation language way designed (Guasch
et al. 1984),

About 1983, the lack of modularity of the JCDSL language

was noticed gs o significant constraint in the simulation of large
systems, Therefore, the design and implementation of the Modular
Stmulation System (MUSS) got under wiy.

A Ierarchical architecture sustaining a modelling, coding and
testing botlom-up approach has been chosen and the research guide
tine has been to provide the theoretical and practical background
needed to support a modular structure without restricting the
following general objectives:

- The lenguage should be declarative and should manege a
modularity coherent with the division of the physical system
into subsystems through o minimal but sufficient number of
different blocks,

- The separation between the model description and the experiment
should be done §n such a way !gat the model remains
unchanged along the experiments and ready to be used from
another model (submodel) at the end of (he validation and
verification experiences,

- It should be possible to build a system model in & boltom-up way
relating two or more submodels from a model or submode! of
higher hierarchical level.
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- Isolated preprocessing of submodels as well as run time symbolic
access to all the variables should be able.

- The language should be designed in order to be easily extendible
to real time applications

The MUSS architecture proposed joins the object oriented
language concept and has been conceived having in mind to
suppott in a future concurrent programming and Al reasoning.

MUSS ARCHITECTURE .

The architecture of the MUSS language and related language
constructs converge with the trends on piscewise-continuons
system simulation languages (Crosbie and Hay 1982; Hay et al.
1985a) and with the state of the art on combined simulation
languages (Smart and Baker 1984; Oren 1984; Kettenis 1986).

Although the MUSS language has been designed to initially
support the continuous time modelling formatism, the simulation
environment has been conceived to easily expand the language to
combined models, As an example, the class eoncept whick allows
the generic instantiation of processes is supported although at
present, anly continuous processes are handied.

Simulntion program

A MUSS program is composed of a set of blocks whose
struclure guaraniees the proposed objectives Three types of blocks
may be present in a program:

- Submodels: provide the user with mechanisms to describe o
physical subsystem A submode! block may call and may be
called by none, one or more submodel blocks A MLSS
simulation model is composed by a set of submodels A
model is a relative concept which depends on the experiment
block being executed.

- Experiments: control the exeention of a single evolution None,
one or more models can be catled from the dynamic region of
an experiment. In the experiment block, smechanisms for
performing a set of evolutions -multi-run study- are not
provided. Experiments can ot call one each other.

- Studles: A study block controls the execution of a set of
evolutions -experiments- One or more experiments can be
invoked from the dynamic region of the study.

A program alone does not have necessarily to define a
complete environment, neither a study or experiment ready to be
executed, neither a model. The set of preprocessed and compited
blocks belonging to & program are pul together in a chosen library,
Later on, a given environment will be set up by an environment
gencrator which selects study or/and experiment blocks from
object libraries

Submodels

. Most of the commercial currently available continuous system
simulation languages are based on the SCi CSSL report {Strauss
1967). In its implementation the most important part is conicerned
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with numerical algorithms while the programming Structures are
relatively poor (Brennnn 1968; Chu 1969). In these langunges, the
only way to achieve modularity consists on the use of MACRO
pseudoblocks or hrmproccssor target langusge subroutines (most
often, FORTRAN subroutines), Although the use of MACRO
blorks ns a basic element to achieve model modularity still have
adepls (Nilsen 1982 Breltenecker 1983}, the general feeling is that
MACROS gre still needed because independent transiation of
submodel code is not always possible {(Cellier 1979; Baker and
Smart 1983; Freeman and Benyon 1984; Korn 1987).

In contrast, new simulation languages offer a higher level of
modularity in, at east, two aspects :

= They allow propram blocks consistent with the division of the
physical system into sybsystems.

- They allow the automatic building of the model by the use of
submodels.

Oren (Oren 1979b) defined the coneept of modular coupled
model, A modular coupled model consist of several submodels
where coupling specifications defins the input/output relationships
between submodels. Depending on the disposition of each
submodel relative to other submodels, two types of modular
coupled madels can be defined:

« Hierarchical model: several coupled submodels where a1 Jeast
one of the submodels is fiself a coupled mode,

- Flat model: several coupled submodels. The submodels are not
themselves coupled models.

MUSS submodel block

MUSS uses the hierarchical modelting approach. Submodel
blocks may be translated in isolntion which helps 1o mnke the
modelling turnaround time shorter than langunpes that need to
translate el the submodel and experiment blocks each Ume a
chenge is made on & submodel or experiment block.

The submodet block consists of the classicat two regions, an
initial region and a dynamic reglon plus a static region which is
equivalent to the sratic structure of GEST (Oren 1984). The statie
region i described basically in terms of model descriptive
variables such as state, input and output varjables and constanis
and parameters,

Although the inclusion of the classical termina! region has
been rejecled bectuse the cafeulation to be performed when a
finish conditions meet can alweys be included in the experiment,
its incorporation in the submodel block can be done without
restricting the proposed objectives,

MUSS experlment block

A stmulation experiment is defined as a simmlation run over a
period of time {rom a known initial frame (Symons 1986). Unlike
currently developed simulation lanpuages, the MUSS experiment
block monitors the execution of a single simulation run In contrast
with the other langunges whose experiment descriptions may
monitor the execution of a set of runs.

We rather distinguish between a simulation experiment and o
simulation study, The study block described in the next section
provides the mechanisms to perform 2 set of related experiments.

A model without an experiment can not be executed. Even
though an experiment may be called by a study. The experiment
can always be optionally executed in independence with respect to
the study.

In the most genernl case an experiment block my have three
segments: a dynamic segment, a control segment and an output
segment. The dynamic segment has the classie three regions:
initial, dynamic tnd terminaf regions plus a static region.

MUSS study block

The study block manitors the execution of a sel of
eaperiments -simulation study-, Usually, the study block will be
called from the MUSS simulation environment, The study block
may be optionally called from sophisticated main programs coded
by the users. Moreover, the study itself may be supplied by the
user in C target code, which in turn, calls the experiment biocks
through a clear set of interfacing routines.

Like the experiment block, in the most general case a study
block may have three segments: a dynamic segment, a control
segment and an output segment. The dynamic segment has four
regions: initial, dynamic, terminal and static regions.

SUBMODEL ANALYSIS

Monolithic simulation languages are not flexible enough to
easy the task of studying models of high complexity, even for
experl users, New structures -macro, sample, submodel, module,
model- have been rdded to simulation lanpunges to increase its
modularity, but this effort to incrense the modularity has not been
extended to increment the ‘intelligence’ of preprocessors and
compllers for simulation languages.

Different aspects regarding the robusiness of simulation
software have been described in (Elzas 1979) an expanded jater in
{Cellier 1984), In the design of the MUSS system and special care
has been given to its robustness:

~ The hierarchical structure of the MUSS simulation language is
suitable for the division of the real system into subsystems.

~ Redundancy is introduced in Lhe submodel code. For example,
the user is forced 1o declare all the submode) variables,

- The use of LALR(1) grammars to specify the MUSS language
increases the robustness of the MUSS preprocessor with
respect to its maintainability-

- The MUSS preprocessor ensures that syntactical errors will not
pro&agate from the preprocessor to the C compiler stage

- The MUSS proprocessor performs extensive error checking
looking for modet consistency and completeness.

- MUSS relies on reputed numerical algorithms increasing the
robustness of the run-time system (MUSS  simulation
environment).

In the analysis of the submode! code four functional main
phases can be distinguished (Guasch 1987);

- Code consistency
consistency.

- Submodel dynamic initialization analysis; In this phase, besides
checking that the submodel can be properly initialized, the
exccutable code needed for initializing the current submodel
(this includes the discontinzous functions initializations) and
the called lower level submodels is grouped into the initial
segment.

- Discontinuous function computations analysis: During this phase,
the code needed to evaluate the discontinuous functions of the
current submodel and those in the called fower level
submodels is grouped into the discontinuous Segment.
Moreover, discontinuous functions are classified in order to
generate run code reducing the time overhead at event
occutrences.

- Dynamic computations: During this phase, the code needed lo
calculate derivatives is grouped into the ODE segrent
(Ordinary Differcntial Equations sepment).

Submodel sortin

As Clancy (Clancy and Fincherg 1965} states, the
development of a sorting methed by Stein (Stein and Rose 1960)
was an important step lowards the design of more powerful and
fexible Continuous System Simulation Languages (CSSL). Since
then, this feature has been provided by many widely used CSSL.
fanguages.

checking: This stage, looks at the code
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Tie automatic sorting of the sentences makes free the user
from the responsibility of ensuring n proper execution order of tie
simuiation madel code. This important fenture should be
supporied, in our opinion, by modern simulalion Innguages.

The MUSS languags has been concelved as declarative and lts
architecture hierarchical. The soring algorithm which has to
convest the source code into a procedural one faces a problem not
{ound in clussical monolithic architectures, that of the information
oops.

A sentence in the dynamic code in which a submode! is
invoked is formally equivalent to sn assignment statement: it has a
set of input and output varinbles (the submods! interface), The
difference arises from the fact that the cou ling of the varinbles in
the interface through the calied submodcrcode is hidden to the
preprocessor sorting procedure, If that procedure delects algebraic
loops involving interface varimbles, the loop may be really
algebraic -which would be the case if the nbove mentioned
coupling is algebrmic- or merely an information loop.

Known approaches to avoid inforimation loops are:

- Handle the submodets as MACROs, The statements of the calied
submodels will be sprend over the statements of the calling
submodel. In this case, ol the submodels must be able to be
retrieved in source form, Moreover, MACRO-like facilities
should be provided, Furthermore, the time spent at
preprocessing time increases because of the necessity of
translating all the lower level submodels which have to be
handled ltke MACRO's.

- Force either the submodel input variables or the submodel output
variables to be all state type, This approach, in our apinion, is
restrictive because the correspondence between the physical
i;ubsys!cm and the mzbmodcislin the hierarchical model can be
oSt

- Force the user to separate the computation of the derivatives from
the outpul computations wirlch are assembled in a specific
block in which the outputs only depend on state variables, The
main objection to this approach i§ that the user is forced to
bother sbout requirement imposed by restrictions in serting
capabililies, Morcover, a different type of submodel has o be
defined for coding subsystems when the submodel output
variables are algebraically related 1o the submodet input
variables. -

The method used by the MUSS preprocessor {Guasch 1987),
based on the segmentation of the ODE segment, does not impose
restrictions bn the submodel architecture neither in the hiemarchy, It
is based on the segpmentation of the ODE segment into
subsegments (stare, algebraic and derivative sepments) which can
be cheracterized by the following structural properties:

- State segment: submodel output variables in it depend only on
parameters, constants or stale variables, Therefore, they may
not exist pure algebraic chalns between input and output
variables.

- Algebraic segment: it clusters the input-output slgebraic
computations

- Derivative segment: computations involving cutput variables are
not aliowed, Derivative compulations, when clauses and
computations to be performed at communication Intervals wilt
be assembled In this segment.

Therefore, at preprocessing time, any call to a lower level
submodel will be splitted into several calls, one for each submodel
segment ({initia}, discontintous, state, alpebraic and derivative
segments).

-TIME LATION ENVIR ENT

Following the generally accepted software engineering
principles proposed by (Oren and Zelgler 1979u), the
experimentation with models has to be comgezeiy separated from .
models themselves. The architecture of MUSS goes one step

forward scparating experiments from Studies  increasing the
modularity of the simulation environment The concept of
modularity is one of the most important concepts of structured
programming (Golden 1985), Nevertheless, modularity alone is not
enough lo‘Froduce well designed programs but it helps {0 increase
the reliebility of simulation software.

In .!his scgtion, we wjl! enalyze the siructure of the MUSS
simuEatagn environment Figure | represents models, experiments
and studies in an user defined interactive simulation environment

aw

experiment level

model level

—

Figure |

The models appear at the Jowest level of the hierarchy. They
are composed by a hierarchical set of sthmode! blocks. From the
uscr perspective a model is a tree of submodels {ie. submoded 5/ 1
calied from submodel 53 does not model the same physical
subsystem as submode! 517 called from from submodet s9). From
the implementation point of view, the submodel hierarchy can
better ba handied u5 a digraph

In the next bottom-up level of the hierarchy, experiment
blocks appear. Experiment blocks may call zero, one or more
models. Its goal i5 to contro! a run.

The next-up level may include study blocks. Its objective is
the controi of model experimentation {(ie. optimization,
identification, sensitivity analysis).

The dialog level is on top. In the dialop level the MCL (MUSS
Command Language) language is used to communicate with the
simulation environment. An user defined simulation environment
may include a large number of models, experiments, studies and
data files. Thus, a pood management of the environment is very
important To achieve that goat, the MCL has been designed in
order to provide the users with a friendly interface with the MUSS
environment. MCL can be seen as the monitor of the simulation
envirorment. Through it, information about eny lower level block
can be got Moreover, From the dialog level experiment or study
instances of any experiment or study present in the environtent
can be created and activated for execution.
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Model structyre

The structure of MUSS models has been designed to solve the
main problems refated to the herarchical modelling approach and
the separate eompilation of submodels of the MIJSS simulation
system. These problems are:

- Reentrance: g private data storage area must be allocated and
handled for ench submodel instance.

- Symbolic access: The present MUSS prototype nllows symbolic
access 1o all submodel variables and access to the sabmode!
information stored in o model data base,

- Dynamic memory management: each piecewise continuous
model can nlso be seen 85 a generic model but does not
actually occupy data sioraf,ch An instance may be crepted,
called and destroyed implicitly. To ereate and destroy 2 model
instance implies alfocation and deallocation of dafa storage
private to each submodel instance.

= Model initializaiion: the static initialization s performed when
instances of continuous processes are created and the dynamic
Initialization s performed before each each simulation run
(experiment) when the initial segments are executed.

USS ¢ and lpnpua L

The Muss Command Language (MCL) is the language
through which simulation users communicate with the MUSS
simulation environment. MCL contains an extensive friendly sct of
commands that allows users 10 do tasks such us:

- Get information nbout medels, experiments and studies presest in
the simulation environment,

- Execute selected studies and/or experiments,

- Bdit and execute MCL command files.

- Get run time statistics from instrumental variables in the systent.

Some of the most representative cammands are:

~ show: dispinys information about the user defined simulation
environment,

- create: creates active versions (instances) of sludies and
expetiments present in the enviropment.

- ser block: sets lgc default block (study, experiment or submodel
block). The default block can be directly accessed

- type variable: displays the values of ‘study, experiment or
submodel variables, paramelers or constants.

- do: invokes for execution an active version of a study or an
experiment.

- remove: delete an active version of a study or an experiment.

PRESENT IMPLEMENTATION STATE

A prolotype of the simulation environment hag been
completed and successfully tested. Its core embraces the following
main modules:

« The MCL interpreter, it has the responsibility for understanding
users’ commands. It has been coded using automatic compiler
production techniques,

~ The MCL executive which embodies the set of algorithms
achieving the users’ commands. It includes those processes
involved in study, experiment and model instantiation,
nctivation, execution and deletion. It also allocates the
dynamic memory necessary for thie integration package.

- The LSODAR integration and root finder packape. 1t is written in
Fortran, Some minor changes have been introduced to
properly interface it with the MUSS environment.

« The LSODAR front-end routine, Its main tasks are: set the base
addresses of the working memory areas; set set _the
discontinuous states associated o the discontinuous functions
at initial time and at each event occurrence; invoke IO tasks
at each communication point; and call the LSODAR package
with the proper input argements,

A prototype of the MUSS preprocessor is still being coded.

At AL e 4 e

CONCLSIONS
The main results derived from this research project are:

- The proposed architecture of the MUSS language is coberent with
the natural division of the physical system into subsystems
trough the minimal but sufficient number of blocks which
have been defined

- The segmentation concept contributes to the reliability of the
simulator software. Splitting up the submodel code into the
initial, ODE and discontinuous segments is consistent with the
functional tasks involved in a simuintion run.

- Isolated preprocessing of the submodet, experiment and study
blocks iz atlowed, It has been achicved, avoiding restrictions,
by the division of the ODE segment into the state, algebraic
and derivative subsegments.

« The design of the MUSS strengths a modularity converging to the
object oriented language concept. The MUSS run-time
simulation environment sefinition is close to that of object
oricx;tcd languages and therefore it can be considered o good
starting point (v embody reasoning; on the other hand, s
architecture which differentiates four levels (dialog, study,
experiment and model) opens the door Lo introduce Artificial
Intelligence (A1) techniques to each one independently.

Recent studies suggest that object-oriented methodelogies and
object-oriented programming languages can contribute o the
design of more powerful simulation environments.
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