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Abstract

The objective of this paper is to propose a simple approach to solve the steady state

of a wind turbine (WT) equipped with a doubly fed induction generator (DFIG), which

can be used to initialize dynamic studies of the machine. The idea is to model the

rotor‐side converter (RSC) as a constant current source connected to the rotor of

the DFIG. The resulting equivalent circuit consists of a voltage source in series with

a reactance, which makes it possible to obtain simple phasor expressions that can

be used to obtain the Park components of the variables. The proposed method is

compared with the traditional Newton–Raphson algorithm, showing that it is easier

and faster to implement, as it makes use of the phasor expressions and it does not

require an iterative process to obtain the final solution. Finally, the results of the

proposed method are used to simulate a 2‐MW DFIG‐based WT under three‐phase

faults, considering three different WT‐operating points. In these simulations, the idea

of constant rotor current is extrapolated to the entire event. The simulated results

show that both current at torque peaks are reduced. The analytical study and the

simulations have been carried out in MATLAB™.
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1 | INTRODUCTION

Wind turbines (WTs) equipped with doubly fed induction generators (DFIGs) is the most common technology utilized nowadays in wind energy

conversion systems.1 Because of the increase of renewable energy units into the distribution grids during the last years, the grid operators have

created grid codes in order to make these systems meet fault ride‐through capability; that is, WTs must keep connected to the main grid when

disturbances occur.2 For this reason, the understanding of WTs equipped with DFIGs under faults in the main grid is the first step to ensure a

continuous injection of electricity in order to improve power quality for electricity consumers.3

The most complete model when describing induction machines is the fifth‐order (or full‐order) model, which implies that five equations are

needed: four electrical equations (two related to stator and two related to the rotor) plus the mechanical equation. The classical approach to

reduce the complexity of this model is to neglect the derivatives of the stator fluxes, which results in the well‐known third‐order model.4 Regard-

ing DFIGs, a comparison between the fifth‐order model and the third‐order model is detailed in Ekanayake, Holdsworth, and Jenkins.5

The present study considers the full‐order model of the machine. Besides, the rotor‐side converter (RSC) is modeled as a constant current,

with the aim of providing a simple control to reduce the current and torque peaks that usually appear on grid‐connected equipment under fault

conditions.6,7 However, the control of the DFIG is out of the scope of this paper, as it is focused on solving the steady‐state conditions. For a more

detailed explanation about vectorial control of DFIGs for WT applications, the work done by Pena, Clare, and Asher8 can be consulted.
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When neglecting the derivative terms of the fifth‐order (or full‐order) model of the DFIG, the steady‐state model is obtained. This model,

written in dq components (using the Park transformation in the synchronous reference frame), is based on a set of nonlinear equations, which

implies that an iterative process is needed to find the analytical solution. This is achieved by the Newton–Raphson algorithm.9 Steady‐state

models in the literature usually follow this method.10-12 A different method is presented in Feijóo, Cidrás, and Carillo13 where it does not make

use of the dq components, but it still needs an iterative process to obtain the analytical solution. In the study of Slootweg, Polinder, and Kling,14

it is shown a procedure to initialize WTs with different electrical generators for power system dynamic simulations, but it makes reference to an

iterative process to obtain the final solution. In the study of Amutha and Kalyan,15 a method for obtaining steady‐state solution with four

unknown variables is presented, but this method is based on power flow analysis, so the DFIG is modeled using a reduced‐order model (from

the point of view of an electrical power system). A recent method proposed by Wu and Xie16 suggests calculating steady‐state operating

conditions for eigenvalue analysis of DFIG‐based WTs without making use of an iterative process, just by ignoring the dynamic terms of the

equations. In the study of Han, Cheng, Wei, and Jian,17 the steady state model of a specific DFIG, named dual‐stator brushless DFIG is proposed,

which appears to be a good machine to get rid of harmonics for wind applications.

The present paper focuses on the use of the per‐phase steady‐state equivalent circuit of a DFIG with a constant current (which models the

RSC) connected to the rotor of the machine. The resulting circuit consists of a voltage source in series with a reactance, by means of which it is

possible to obtain quite simple phasor expressions for the stator current, rotor current, and rotor voltage. Finally, from these expressions it is

possible to obtain the dq components (in the synchronous reference frame) of the variables to initialize dynamic studies.

The proposed method is compared with the traditional Newton–Raphson algorithm. It is shown that the presented approach is easier and faster

to implement, as it makes use of the phasor expressions and it does not require an iterative process to obtain the final solution, giving similar results.

Finally, once the steady‐state values are obtained in dq components, they are used to initialize the dynamic study of a 2‐MWDFIG‐based WT.

This WT is simulated connected to a transmission grid where a three‐phase fault originates. As the sag has a short duration (just a few cycles), the

mechanical speed of the machine is assumed to be constant. Moreover, the idea of constant rotor current is applied during the entire event, with

the aim of reducing both current and torque peaks.

2 | DFIG DYNAMIC MODEL

Figure F11 shows the general scheme of a variable‐speed WT equipped with a DFIG. It consists of rotor blades, gearbox, generator, and power

converter. The converter module has a RSC, a direct current (DC) link, and a grid‐side converter (GSC). The DFIG is connected to the grid at point

of common connection (PCC) through its stator and its GSC.

The DFIG dynamic equations written in dq components using the Park transformation in the synchronous reference frame (see appendix for

more details) and considering the motor sign convention are as follows:

vsd ¼ Rs þ Lspð Þisd þMpird − Lsωsisq −Mωsirq;

vsq ¼ Rs þ Lspð Þisq þMpirq þ Lsωsisd þMωsird;

vrd ¼ Rr þ Lrpð Þird þMpisd − Lrsωsirq −Msωsisq;

vrq ¼ Rr þ Lrpð Þirq þMpisq þ Lrsωsird þMsωsisd;

Γm ¼ ℘M irdisq − irqisdð Þ;

(1)

where p = d/dt is the derivative operator, ωs = 2π f s is the grid pulsation (T = 1/ f s is the grid period), ℘ is the DFIG pole pairs, Γm is the

electro‐magnetic torque, the subscript s and r stand for the stator and for the rotor, respectively; the subscripts d and q stand for the direct

and quadrature components of the Park variables, respectively, and s = (ωs − ℘ ωm)/ωsis the DFIG slip. The DFIG dynamic equations in

Equations 1 can be represented by the equivalent circuits depicted in Figure F22, where ϕsd = Ls isd, ϕsq = Ls isq, ϕrd = Lr ird, and ϕrq = Lr irq.

FIGURE 1 Doubly fed induction generator (DFIG)‐based wind turbine with the representation of active powers, considering motor sign
convention
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The instantaneous active power, p, and reactive power, q, exchanged between the WT and the grid is given by:

p ¼ ps þ pc ¼ vsdisd þ vsqisq þ vrdird þ vrqirq

q ¼ qs þ qr ¼ vsqisd − vsdisq;
(2)

where the power losses in the converter are neglected, ie, pc = pr and the GSC is assumed to operate with unitary power factor, ie, qr = 0.

3 | INITIALIZATION METHOD

3.1 | Newton–Raphson approach

The DFIG steady‐state model is obtained from Equation 1 (just by neglecting the derivative operator, ie, p = 0) and from Equation 2. The resulting

set of equations is a nonlinear system, which can be written with the Taylor series (using the first derivative) in the iteration k:

F xð Þ ¼ F xkð Þ þ J xkð ÞΔx; (3)

where F (xk) is the linearized system of equations in the iteration k, J (xk) is the Jacobian of the function in the iteration k, ie, the derivative of the

function with respect to the variables x, and Δx = (xk + 1 – xk).

The Newton–Raphson (or NR) algorithm can be used to solve the nonlinear system (Equation 3). It consists of finding the value of the

unknown variables x that meet the following condition:

F xð Þ ¼ 0: (4)

The procedure to apply the NR algorithm starts by giving initial values to the unknown variables x. Then, the system of Equation 3 is solved.

Let xk be the value of the unknown variables in the previous iteration, xk + 1 the value of the unknown variables in the current iteration, and

considering the relation (Equation 4), we can write Equation 3 from the following expression:

xkþ1 ¼ xk − J−1 xkð ÞF xkð Þ: (5)

The iterative process is carried out until the iteration in which the error between xk + 1 and xk is lower than an admissible error ε.

The unknown variables for the DFIG steady‐state model are as follows:

x ¼ isd isq ird irq vrd vrq½ �t: (6)

The F(x) is given by neglecting the derivative term (p = 0) of the DFIG equations in Equations 1 and also by active and reactive powers given

by Equation 2:

F xð Þ ¼ f1 f2 f3 f4 f5 f6½ �t; (7)

which results in the following:

FIGURE 2 Equivalent circuit of the doubly fed induction generator (dynamic model) in Park variables (dq components), considering synchronous
reference frame and motor sign convention
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f1 ¼ vsd − Rsisd þ Lsωsisq þMωsirq

f2 ¼ vsq − Rsisq − Lsωsisd −Mωsird

f3 ¼ vrd − Rrird þ Lrsωsirq þMsωsisq

f4 ¼ vrq − Rrirq − Lrsωsird −Msωsisd

f5 ¼ p − vsdisd − vsqisq − vrdird − vrqirq

f6 ¼ q − vsqisd þ vsdisq

(8)

and the Jacobian J(x) is given by:

J xð Þ ¼ ∂F xð Þ
∂isd

∂F xð Þ
∂isq

∂F xð Þ
∂ird

∂F xð Þ
∂irq

∂F xð Þ
∂vrd

∂F xð Þ
∂vrq

� �
(9)

which results in the following:

J xð Þ ¼

−Rs Lsωs 0 Mωs 0 0

−Lsωs −Rs −Mωs 0 0 0

0 Msωs −Rr Lrsωs 1 0

−Msωs 0 −Lrsωs −Rr 0 1

−vsd −vsq −vrd −vrq −ird −irq

−vsq vsd 0 0 0 0

2
6666666664

3
7777777775

: (10)

3.2 | Proposed phasor approach

The per‐phase steady‐state equivalent circuit of a DFIG is depicted in Figure F33A, where Vs and Vr are the stator and rotor voltage phasors, respec-

tively, Is and Ir are the stator and rotor current phasors, respectively, Xsl = Xs – Xm is the leakage stator reactance, Xrl = Xr – Xm is the leakage rotor

FIGURE 3 Per‐phase steady‐state equivalent circuit of a doubly fed induction generator. A, General scheme, B, proposed scheme with a current
source connected to the rotor, C, simplification, and D, final scheme. Motor sign convention
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reactance, Rs and Rr are the stator and rotor resistances, respectively, and s is the DFIG slip. All the represented magnitudes are reduced to the

stator, and the motor sign convention has been adopted.

The proposed approach consists on considering a current source connected to the DFIG rotor. This current source models the RSC in Figure 1,

assuming that it injects a constant current to the DFIG rotor. The proposed per‐phase steady‐state equivalent circuit is depicted in Figure 3B. Note

that as the current that circulates through the rotor series branch is imposed by the current source, the resulting simplified circuit is depicted in

Figure 3C. Finally, the branch that consists of the mutual reactance connected in parallel to the current source can be redrawn by its equivalent

voltage source (called Er) in series to the mutual reactance, as shown in Figure 3D. The analytical expression for this voltage source is as follows:

Er ¼ jXmIr : (11)

The equivalent reactance Xeq shown in Figure 3D is the series connection between stator reactance and mutual reactance:

Xeq ¼ Xsl þ Xm: (12)

It should be noted that the proposed per‐phase equivalent circuit depicted in Figure 3D reminds us the per‐phase equivalent circuit of a

synchronous machine. According to the proposed circuit of Figure 3D, the stator current can be obtained by means of the following expression,

where Rs is neglected compared with Xsl (it is usually an order of magnitude lower18):

Is ¼
Vs − Er
jXeq

: (13)

The apparent power exchanged between the stator of the DFIG and the grid is as follows:

Ss ¼ 3VsIs
* ¼ 3Vs

Vs−Er
jXeq

� �*

¼ Ps þ jQs: (14)

Developing the previous equation, we obtain the following expressions for the stator active power (Ps) and for the stator reactive power (Qs):

Ps ¼ −3
VsEr sinδ

Xeq
; (15)

Qs ¼ 3
Xeq

V2
s − VsEr cosδ

� �
; (16)

where the stator voltage is assumed to be the origin of phasors (Vs ¼ Vs0
º ¼ Vs) and the angle of Er is named δ to show its similitude with the load

angle in a synchronous machine.

The active power exchanged between the DFIG rotor and the grid corresponds, approximately, with minus s times (s = mechanical slip) the

stator power19:

Pr ≈ −sPs; (17)

and the addition of Equations 15 and 17 gives the overall active power exchanged between the DFIG and the grid:

P ¼ Ps þ Pr ¼ 3 s − 1ð ÞVsEr sinδ
Xeq

: (18)

The reactive power exchanged between the DFIG rotor and the grid is zero, as the GSC in Figure 1, usually works with unitary power factor.

Then, the overall reactive power exchanged between the DFIG and the grid corresponds to the stator reactive power:

Q ¼ Qs þ Qr ¼ 3
Xeq

V2
s − VsEr cosδ

� �
: (19)

The objective of the proposed algorithm is to find the analytical expressions of Is, Ir, and Vr in order to initialize the transient regime of the

DFIG‐based WT, whose dynamic model is given by Equations 1 and 2.

The first step is to obtain the analytical expression for the angle δ. From Equation 18, we obtain the sinus of this angle:

sinδ ¼ PXeq

3 s − 1ð ÞVsEr
; (20)

and from Equation 19, we obtain its cosine:
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cosδ ¼ V2
s −QXeq=3

VsEr
: (21)

Then, the angle δ is obtained as follows:

δ ¼ arctan
sinδ
cosδ

� �
¼ arctan

PXeq

s − 1ð Þ 3V2
s −QXeq

� �
0
@

1
A: (22)

The second step is to obtain the modulus of Er. It can be obtained from Equations 20 and 21 by means of the following trigonometric

relationship:

sin2δþ cos2δ ¼ 1; (23)

which results in the following:

Er ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
s−QXeq=3

Vs

 !2

þ PXeq

3 s−1ð ÞVs

� �2

vuut : (24)

Then, the phasor Er can be written in its rectangular form as follows:

Er ¼
V2
s −QXeq=3

Vs
þ j

PXeq

3 s − 1ð ÞVs
: (25)

The third step is to obtain the analytical expression for the DFIG rotor current. According to Equations 11 and 25, we can write as follows:

Ir ¼ − j
Er
Xm

¼ PXeq

3 s − 1ð ÞVsXm
þ j

QXeq=3 − V2
s

VsXm

 !
: (26)

The fourth step is to obtain the analytical expression for the DFIG stator current. It can be obtained by applying the Kirchhoff's voltage law to

the left mesh of the circuit of Figure 3C (neglecting the stator resistance, as Rs < < Xsl):

Vs ¼ jXslIs þ jXm Is þ Irð Þ; (27)

which results in the following:

Is ¼ −
1
Xeq

XmIr þ jVsð Þ; (28)

and substituting Equations 26 in 28, it results in the following:

Is ¼ −
P

3 s − 1ð ÞVs
− j

Q
3Vs

: (29)

The last step is to obtain the analytical expression for the DFIG rotor voltage, which can be obtained by applying the Kirchhoff's voltage law to

the right mesh of the circuit of Figure 3B:

Vr

s
¼ Ir

Rr
s
þ jXrl

� �
þ jXm Is þ Irð Þ; (30)

and substituting Equations 26 and 29 in Equation 30, it results in the following:

Vr ¼
QXms
3Vs

þ PXeqRr
3 s − 1ð ÞVsXm

þ V2
s −QXeq=3
VsXm

 !
Xm þ Xrlð Þs

þ j
sP

3 s − 1ð ÞVs

� �
−Xm þ Xeq Xm þ Xrlð Þ

Xm

� �
þ Rr
Xm

QXeq=3 − V2
s

VsXm

 !" #
:

(31)

Finally, in order to initialize the set of the DFIG dynamic equations given by Equations 1 and 2, the steady‐state values of the dq components

must be calculated. They are easily obtained by means of the previous analytical expressions, as in balanced steady‐state conditions, the Park

components of a variable x can be obtained according to Equation 43 from appendix:
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xd ¼
ffiffiffi
3

p
X cos φXð Þ ¼

ffiffiffi
3

p
Re Xf g

xq ¼
ffiffiffi
3

p
X sin φXð Þ ¼ ffiffiffi

3
p

Im Xf g:
(32)

According to Equation 32, the dq components of the DFIG rotor current can be obtained from Equation 26 as follows:

ird ¼ PXeqffiffiffi
3

p
s − 1ð ÞVsXm

; irq ¼
ffiffiffi
3

p QXeq=3 − V2
s

VsXm
: (33)

According to Equation 32, the dq components of the DFIG stator current can be obtained from Equation 29 as follows:

isd ¼ Pffiffiffi
3

p
s − 1ð ÞVs

; isq ¼ −
Qffiffiffi
3

p
Vs

: (34)

Finally, according to Equation 32, the dq components of the DFIG rotor voltage can be obtained from Equation 31 as follows:

vrd ¼
ffiffiffi
3

p QXms
3Vs

þ PXeqRr
3 s − 1ð ÞVsXm

þ V2
s −QXeq=3
VsXm

 !
Xm þ Xrlð Þs

" #

vrq ¼
ffiffiffi
3

p sP
3 s − 1ð ÞVs

� �
−Xm þ Xeq Xm þ Xrlð Þ

Xm

� �
þ Rr
Xm

QXeq=3 − V2
s

VsXm

 !" #
:

(35)

In summary, the steady‐state of the DFIG is defined by the power Equations 18 and 19, the rotor current (Equation 26), the stator current

(Equation 29), and the rotor voltage (Equation 31). And the initial conditions for the dynamic analysis of the DFIG are given by the dq components

of the rotor current (Equation 33), the stator current (Equation 34), and the rotor voltage (Equation 35). It should be noted that the proposed

model is only valid for sinusoidal balanced steady‐state conditions. If sinusoidal unbalanced conditions take place, then the model should include

symmetrical components (both positive‐sequence and negative‐sequence components) by applying the Fortescue transformation.

4 | CASE STUDY

4.1 | DFIG‐based WT parameters

The data of the studied 2‐MW WT equipped with DFIG is shown in Table T11 (adapted from Slootweg et al20). The maximum power point (MPP)

curve from the wind vs the WT speed is given in Figure F44, where A, B, and C are the following operating points:

TABLE 1 Characteristics of the wind turbine equipped with doubly fed induction generator (adapted from Slootweg et al20)

DFIG Rated Values

Un (phase‐to‐phase) = 690 V f n = 50 Hz ωm = 900–1900 rpm p = 2

DFIG parameters in pu (Ub = 690 V, Sb = 2 MW and f b = 50 Hz)

Rs = 0.01 Rr = 0.01 Xsl = 0.1 Xrl = 0.08 Xm = 3.0 Hm = 0.5 s

WT parameters

Pn = 2 MW ωt n = 18 rpm ωt min = 9 rpm ωt max = 19 rpm Ht = 2.5 s

r = 37.5 m (radius) vw n = 12 m/s (rated wind speed) rgb = 1:100 (gearbox ratio)

Abbreviations: DFIG, doubly fed induction generator; WT, wind turbine.

FIGURE 4 Power extracted from the wind (thin blue lines) and optimum power (thick red line) of the wind turbine (WT) equipped with doubly
fed induction generator. A, B, and C are the operating points studied in the paper [Colour figure can be viewed at wileyonlinelibrary.com]
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• Point A: vw = 12 m/s, P = Pn, and s = −0.27.

• Point B: vw = 9.3 m/s, P = 0.5 Pn, and s = −0.09.

• Point C: vw = 5.4 m/s, P = 0.1 Pn, and s = 0.33.

4.2 | DFIG steady‐state analysis

The steady‐state analysis of the DFIG‐based WT will be carried out by means of the two approaches commented in Section 3. Before that, it is

necessary to obtain the value of the extracted power from the wind and the value of the DFIG mechanical slip corresponding to this power. For

this purpose, the following procedure is followed14:

1) Given a known wind speed, vw, it is possible to obtain the power that can be extracted from this wind speed and its corresponding WT speed

from the MPP curve shown in Figure 4. Note that the power extracted from the wind corresponds to the active power delivered by the DFIG,

neglecting the power losses in the machine.

2) Knowing the WT speed, ωt, the mechanical speed of the DFIG, ωm, can be given by the following equation:

ωm ¼ ωmrgb; (36)

where rgb is the gearbox ratio (the mechanical losses in the gearbox have been neglected).

3) Knowing the DFIG speed, ωm, the mechanical slip, s, is obtained as follows:

s ¼ ωs −℘ωmð Þ=ωs (37)

Once the DFIG slip, s, is known, it is possible to apply either the Newton–Raphson algorithm or the proposed phasor‐based expressions in

order to solve the DFIG steady‐state regime.

Figure F55 shows the procedure to be followed by each approach, and Table T22 shows the obtained results for the three steady‐state regimes

given by the three WT operating points in Figure 4. The results shown in Table 2 are given in per unit (pu) values, according to the following

expressions:

isd pu ¼ isdffiffiffi
3

p
Ib

; isq pu ¼ isqffiffiffi
3

p
Ib

; ird pu ¼ irdffiffiffi
3

p
Ib
;

irq pu ¼ irqffiffiffi
3

p
Ib

; vrd pu ¼ vrdffiffiffi
3

p
Vb

; vrq pu ¼ vrqffiffiffi
3

p
Vb

;

(38)

where the base values are Ub = 690 V, Sb = 2 MW and Ib ¼ Sb=
ffiffiffi
3

p
Ub

� �
¼ 1673:5 A.

According to the results shown inTable 2, it is possible to observe that the Newton–Raphson algorithm converges fast (in just 3 iterations the

results present an error ε < 10−4). Regarding the proposed approach, it should be observed that in just one iteration (as we only need to apply the

phasor equations), we obtain similar results as with the Newton–Raphson approach: just compare the results obtained in the 3rd iteration with

the results obtainedwith the proposed approach.Moreover, it is observed that the required computing time to carry out the simulations is two orders

of magnitude smaller in the proposed phasor‐based approach than in the traditional Newton–Raphson algorithm.

Then, it can be concluded that the proposed method is easier and faster to implement than the conventional Newton–Raphson algorithm, as it

makes use of the phasor expressions and it does not require an iterative process to obtain the final solution, which implies that the computing time

required for the simulations is reduced.

4.3 | DFIG dynamic behavior under grid faults

The proposed method to initialize the dynamic study of a DFIG has been simulated considering that the DFIG‐based WT starts its operation in

steady‐state conditions and after a short period of time a three‐phase fault is provoked in the power system. This three‐phase fault originates

a symmetrical voltage sag which is seen in the PCC in Figure 1 as a decrease in the voltage magnitude from its rated value.

A voltage sag is a reduction in the root mean square voltage between 0.1 and 0.9 pu of the prefault voltage between 10 ms (or 0.5 cycles

assuming a frequency of 50 Hz) and 1 minute. This definition is stated by the international regulation Institute Q5of Electrical and Electronics Engi-

neers (IEEE) Std 1159–2009 on monitoring electric power quality.21 Other international standards on voltage sags make reference to achieve

immunity on grid connected equipment under voltage sags, such as the International Q6Electrotechnical Commission (IEC) Std 1000‐4‐11‐100422

or the regulations set by the CIGRE/CIRED/UIE Working Group on that field.23 Apart from these international standards, grid operations of
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TABLE 2 Doubly fed induction generator steady‐state solutions (in pu) under the three wind turbine operating points

WT Operation
Point

Iteration
Number

Newton–Raphson Algorithm (with Max Adm Error ε = 10−4) a Proposed Phasor‐Based Method b

isd isq ird irq vrd vrq isd isq ird irq vrd vrq

A 1 –1.000 0 1.033 –0.333 –0.263 –0.052 –0.789 0 0.816 –0.333 –0.266 –0.043

P = Pn 2 –0.795 0 0.822 –0.333 –0.266 –0.042 ‐ ‐ ‐ ‐ ‐ ‐

s = −0.27 3 –0.796 0 0.822 –0.333 –0.266 –0.042 ‐ ‐ ‐ ‐ ‐ ‐

B 1 –0.500 0 0.517 –0.333 –0.087 –0.011 –0.459 0 0.474 –0.333 –0.087 –0.012

P = 0.5 Pn 2 –0.462 0 0.477 –0.333 –0.087 –0.011 ‐ ‐ ‐ ‐ ‐ ‐

s = −0.09 3 –0.462 0 0.477 –0.333 –0.087 –0.011 ‐ ‐ ‐ ‐ ‐ ‐

C 1 –0.096 0 0.099 –0.333 0.343 0.002 – 0.145 0 0.149 –0.333 0.344 0.004

P = 0.1 Pn 2 –0.147 0 0.152 –0.333 0.344 0.006 ‐ ‐ ‐ ‐ ‐ ‐

s = 0.33 3 –0.147 0 0.152 –0.333 0.344 0.006 ‐ ‐ ‐ ‐ ‐ ‐

aREQUIRED COMPUTING TIME (IN Matlab™ SOFTWARE): 22.797 MS (FOR WT OPERATING POINT A).
bREQUIRED COMPUTING TIME (IN Matlab™ SOFTWARE): 0.134 MS (FOR WT OPERATING POINT A).

FIGURE 5 Comparison between the
Newton‐Raphson algorithm (with admissible
error ε = 0.0001) and the proposed phasor‐
based method to solve the steady‐state
regime of the doubly fed induction generator‐
based wind turbines, used for the initialization
of its dynamic studies
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several countries have developed the so‐called grid codes in order to set the conditions in which WTs must remain connected to the grid when

voltage sags occur, thus ensuring minimum levels of power quality. Examples of these grid codes are the Danish Eltra & Elkraft's grid code,24 the

German TenneT TSO GmbH's grid code25 or the Spanish Red Electrica's grid code.26

Voltage sags can be characterized by four parameters27: depth (h), duration (Δt), phase‐angle jump, and fault current angle (ψ). The simulated

voltage sag is assumed to have a depth h = 0.5, a duration Δt = 5.5 cycles, and the fault current angle is ψ = 80° (note that this angle varies from

75° to 85° for transmission grids,28 which is where the DFIG‐based WT is connected).

In order to simulate the DFIG‐based WT in a simplistic way, the following assumptions have been made:

1) The control can maintain the rotor current constant in the synchronous reference frame; ie, the rotor current during the voltage sag is the

same as the steady‐state rotor current (the values of this current can be seen in Table 2).

2) The DFIG speed is assumed to be constant, as the voltage sag has a short duration (Δt = 5.5 cycles or 110 ms assuming that the grid fre-

quency is 50 Hz).

According to the aforementioned two assumptions, it is observed that the electrical equations in Equation 1 become a set of differential

equations with constant coefficients, where the unknown variable is the transformed stator current (isd and isq). As a result, Equation 1 can be

solved analytically. This is a good tool to explain and understand the behavior of DFIG‐based WTs in order to meet the fault ride‐through

requirements imposed by grid operators. There are not many analytical studies on DFIGs in the literature. An example of them can be found

in López et al,29,30 where there is no specific control algorithm on the rotor current. In Lima, Luna, Rodríguez, Watanabe, and Blaabjerg, 31 the

rotor voltage peak is calculated analytically. Few articles also contemplate the proper design of the proper converter, such as Chondrogiannis

Barnes32 or Hu and He.33

The dynamic study of the DFIG‐based WT has been carried out considering the three WT operating points in Figure 4, and the represented

magnitudes (shown in Figure F66) are follows: abc components of the stator current, abc components of the rotor current, abc components of the

rotor voltage, and the electro‐magnetic torque. The variables are represented with their per unit (pu) values, considering the following base values:

Ub = 690 V, Sb = 2 MW, Ib ¼ Sb=
ffiffiffi
3

p
Ub

� �
¼ 1673:5 A; ωb = 2πfb = 100π rad/s, and Γb = Sb/(ωb/℘) = 12.73 kNm:

FIGURE 6 Behavior of a wind turbine (WT) equipped with a doubly fed induction generator (assumption of constant rotor current and constant
speed) under symmetrical sags caused by three‐phase faults. Sag characteristics: h = 0.5, Δt = 5.5 cycles, and ψ = 80º. A, WT operating point A
(vw = 12 m/s, P = Pn, and s = −0.27), B, WT operating point B (vw = 9.3 m/s, P = 0.5 Pn, and s = −0.09.), and C, WT operating point C (vw = 5.4 m/s,
P = 0.1 Pn, and s = 0.33) [Colour figure can be viewed at wileyonlinelibrary.com]
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is abc pu tð Þ ¼ is abc tð Þffiffiffi
2

p
Ib

; ir abc pu tð Þ ¼ ir abc tð Þffiffiffi
2

p
Ib

vr abc pu tð Þ ¼ vr abc tð Þffiffiffi
2

p
Vb

; Γm pu tð Þ ¼ Γm
Γb

:

(39)

Figure 6A shows that when the DFIG‐based WT operates at its most unfavorable conditions (ie, delivering its rated power to the grid

when it rotates at its rated speed), the control strategy lets the stator current peaks be reduced noticeably, as they reach only 8% above

the rated value. It is also observed that the rotor current remains constant during the entire transient, as this is the requirement imposed

by the proposed control approach. With respect to the rotor voltage, this figure shows that after voltage recovery this variable can exceed

values above 40% of the steady‐state value. This can be a real problem in ensuring the controllability of the machine, and some limits in

the power converter sizing about rotor voltage should be defined. Finally, the electro‐magnetic torque shows a 50‐Hz oscillation during the

voltage sag and a peak of 60% above the steady state value once the fault is cleared. Again, more efforts should be made to reduce these

peaks, but this is out of the scope of this paper. With respect to Figure 6b and Figure 6c, the same behavior is revealed, but in these cases,

the machine operates delivering 50% and 10% of its rated power, respectively. So the less severe the WT operating point is, the smaller the

variable peaks are, which is a logical consequence.

According to the results shown in Figure 6, the following conclusions can be drawn:

1) The proposed method for initialize the dynamic behavior of the DFIG makes it possible to start the simulations at steady‐state conditions.

2) The fact of extrapolating the idea of constant rotor current to the entire event (before, during, and after the voltage sag) has resulted in a sim-

ple control that makes it possible to reduce the current and torque peaks. This is a really good point, as when voltage sags appear, a proved

effect is that there appear both large current and torque peaks,6,7 which will eventually cause a malfunction of the grid‐connected equipment.

3) It can be observed that during the voltage sag, there appear noticeable oscillations in the electro‐magnetic torque. These oscillations could be

reduced if more sophisticated control algorithm is implemented, which is out of the scope of this paper.

In summary, the presented method based on phasors is a simple approach that can be used to obtain the steady‐state values of the Park

variables, which are useful to initialize the dynamic studies of a DIFG‐based WT. It has also been shown that the fact of considering a constant

current in the DFIG rotor is a simple approach to control the DFIG under disturbances, although more studies are needed to validate it. To that

purpose, the authors' previous works on DFIG under symmetrical sags,34 unsymmetrical sags,35 or under the most severe sags36 can be consulted,

where all sag conditions (durations and depths) have been considered to show the time evolution of the DFIG electro‐mechanical variables under a

faulty grid. Nevertheless, the advantage of the proposed method is that it helps in the prediction and explanation of the DFIG behavior under

voltage sags.

5 | CONCLUSIONS

The present paper has proposed an algorithm to initialize the dynamic studies of WT equipped with DFIG based on solving the steady state by

assuming a constant current source in the rotor. This current source models the RSC of the DFIG. The obtained equivalent circuit consists of a

voltage source in series with a reactance, which simplifies the analysis of the DFIG. The phasor expressions of the stator current, rotor current,

and rotor voltage have been developed, and from these expressions, the steady‐state expressions for the dq components have been determined.

The proposed method has been compared with the traditional Newton–Raphson algorithm, giving similar results with a negligible error. It has

been shown that the proposed method is easier and faster to implement, as it makes use of the phasor expressions and it does not require an iter-

ative process to obtain the final solution that makes it possible a reduction in the computing time to carry out simulations in a software package.

Finally, the obtained steady‐state results with the proposed method have been used to initialize the dynamic simulation of a 2‐MW WT

equipped with DFIG under a faulty grid. Three different WT operating points (given by three different wind speed values) have been considered.

In this simulation, the idea of constant rotor current has been kept during the entire event, ie, before, during, and after the fault in order to reduce

the current and torque peaks that appear on grid‐connected equipment exposed to faults.

The presented study helps in the initialization of DFIG‐based WTs for simulation of dynamic studies, making use of a simple and fast approach

based on phasors.
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APPENDIX

PARK TRANSFORMATION

The power‐invariant (or normalized) form of the Park transformation37 is defined as follows:

P Ψð Þ ¼
ffiffiffi
2
3

r
1ffiffiffi
2

p 1ffiffiffi
2

p 1ffiffiffi
2

p

cos Ψð Þ cos Ψ −
2π
3

� �
cos Ψþ 2π

3

� �

− sin Ψð Þ − sin Ψ −
2π
3

� �
− sin Ψþ 2π

3

� �

2
66666664

3
77777775
; (40)

where Ψ is the transformation angle. By means of this matrix, it is possible to obtain the zero component (0), the direct component (d), and the

quadrature component (q), which are the transformed components of the abc components of a variable. If the synchronous reference frame is

assumed, the angle that is used to transform the stator variables is Ψs = ωst, while the angle that is used to transform the rotor variables is

Ψr = Ψs ‐℘θm = sωst ‐℘θm0, where θm0 is the initial mechanical angle (at t = 0), which is assumed to be 0. Then, for a given variable x:

xs 0dq ¼ P ωstð Þxs abc ; xr 0dq ¼ P sωstð Þxr abc

xs abc ¼ P ωstð Þ−1xs 0dq ; xr abc ¼ P sωstð Þ−1xr 0dq :
(41)

Assuming that the windings (stator and rotor) of the DFIG are isolated Y or Δ connected, the zero components of the transformation are not

considered.

Finally, let us assume sinusoidal balanced steady‐state conditions. In this case, the abc components of any variable x are given by:

xsa ¼
ffiffiffi
2

p
Xs cos ωstþ φxs

	 

xra ¼

ffiffiffi
2

p
Xr cos sωstþ φxr

	 

xsb ¼

ffiffiffi
2

p
Xs cos ωstþ φxs −

2π
3

� �
xrb ¼

ffiffiffi
2

p
Xr cos sωstþ φxr −

2π
3

� �

xsc ¼
ffiffiffi
2

p
Xs cos ωstþ φxs −

2π
3

� �
xrc ¼

ffiffiffi
2

p
Xr cos sωstþ φxr þ

2π
3

� � (42)

and substituting Equation 42 in Equation 40, we obtain the dq components of the variable under sinusoidal balanced steady‐state conditions:

xsd ¼
ffiffiffi
3

p
Xs cos φXs

	 

; xrd ¼

ffiffiffi
3

p
Xr cos φXr

	 

xsq ¼

ffiffiffi
3

p
Xs sin φXs

	 

; xrq ¼

ffiffiffi
3

p
Xr sin φXr

	 
 (43)

where the direct (d) component of the transformed variable equals the real part of the phasor expression multiplied by
ffiffiffi
3

p
, while the quadrature (q)

component of the transformed variable equals the imaginary part of the phasor expression multiplied by
ffiffiffi
3

p
.
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