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Abstract. The statistical distribution function introduced by Boltzmann and his ki-
netic equation are the fundamental basis of the kinetic theory of gases and of the basic
methods of solution of problems in the gas dynamics. At present time one of the areas of
high interest in modern physics is the plasma in fusion processes and astrophysics which
requires an extension of the kinetic processes to charged particles, in particular regard-
ing the electromagnetic interactions. We propose a unified distribution function which
includes the electromagnetic interactions for charged particles and is suitable for the solu-
tion of problems of charged particle dynamics with Boltzmann type equations and kinetic
consistent magneto gas dynamic equations.

1 INTRODUCTION

The Boltzmann equation is the fundamental basis of the kinetic theory of gases [1].
The distribution function and the kinetic equations were introduced by Boltzmann for the
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accurate description of the microscopic properties and the dynamics of gases. The macro-
scopic properties of gases can be extracted as the moments of the distribution function.
Despite the known difficulties in the solution of the Boltzmann equation modern develop-
ments are going to explore its solution on powerful high performance computing systems
by numerical methods. Two modern examples are Lattice Boltzmann Schemes (LBS) ,
which use the evolution of the distribution function and calculate the macroscopic gas dy-
namic parameters as moments of the distribution function [2] and Kinetically Consistent
Difference Schemes (KCDS), which derive the gas dynamic equation from the Boltzmann
equation by integrating the velocity space with the summational invariants [3]. The result-
ing equations gives a more reach physical models of the dynamics of gases in comparison
to the gas dynamic equations, as the Navie-Stokes equations, which are formulated phe-
nomenologically [4].

Many modern important problems require not only to study the dynamics of neutral
particles, as a gas, but also to deal with the dynamics of charged particles, as clouds of
electrons, or charged interstellar matter in astrophysics or ionized gas in strong electro-
magnetic fields as in plasma physics processes. In order to solve these problems one has
to take into account the electromagnetic interactions of the charged particles or charged
media.

The study of the relations between the statistical gas dynamics and the electromag-
netic laws goes in the direction of trying to combine directly the kinetic equations of the
charged particles with the electromagnetic equations. One approach was done by Vlasov,
who introduced the electromagnetic forces in the kinetic equation - Boltzmann - Vlasov
equations. In this approach electromagnetic interactions are introduced phenomenolog-
ically as an external Lorentz force [5] in the momentum equation. Few later attempts
to implement the electromagnetic terms directly in the distribution function faced the
difficulty with the axial vector behavior of the magnetic interactions [6, 7, 8].

We propose a new approach to define an unified distribution function, which includes
the electromagnetic terms in the distribution function for the solution of the magneto gas
dynamic problem by BLS or KCDS for charged particles in an electromagnetic field.

The main goal of this paper is to formulate the statistical distribution function with
included electromagnetic terms and prove at the first step the validity of the proposed
distribution function by the reconstruction of the kinetic consistent magneto gas dynamic
equations including the equation of the evolution of the magnetic field in the ideal case
for charged particles.

2 THEORETICAL ISSUES

The goal of the present study is the definition of the united distribution function
describing the dynamics of the charged particles (electron cloud, ionized gas), including
conditions with the external electromagnetic field.
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2.1 Distribution Function of Gas Dynamic Processes

The kinetic theory describes the gas dynamics by the Boltzmann differential equation
through the evolution of the distribution function f (x, ξ, t) [1]:

∂f (x, ξ, t)

∂t
+ ξ · ∇f (x, ξ, t) = C (f) , (1)

where: C (f) is a nonlinear integral operator which
describes the collisions of particles.

The computational interest in the kinetic formulations of gas dynamics is high due to
the linearity of the differential operator on the left side of Eq. (1). The nonlinearity is
confined by the collision term, which is generally local in x and t.

Another important feature for numerical methods is that the collision integral vanishes
in the equilibrium state when the local Boltzmann distribution function is Maxwellian:

fM =
ρm1/2

(2πkT )3/2
exp

{
− m

2kT
(ξ − u)2

}
(2)

The dynamic of the gas could be defined as the time evolution of the Maxwellian
distribution function with the conditions that the collision processes is occurred during a
characteristic time at the end of which the distribution function became Maxwellian [9].
The macroscopic observables such as density, momentum, energy flux as a function of
x and t are defined from the moments of the distribution function with respect to the
particle velocity.

Earlier investigations [11] show that the electromagnetic fields do not destroy the
validity of the distribution function and Boltzmann equation and open the way to the
implementation of the electromagnetic processes terms in the distribution function.

2.2 Electromagnetic Interactions

From the kinetic relations, in addition to the gas kinetic motions, the motions of the
charged particles is defined through nature of the electric and magnetic fields and the
forces acting on the charged particles.

The electric field has the polar vector behavior and the corresponding velocity of
charged particles follows the direction of the electric field and can be considered as simple
drift of the charged particles in the direction of the electric field.

The magnetic field has the axial vector behaviour and acts in a different way respect
to other fields. As well known the motions of the charged particles in magnetic field
affects only the direction of the velocity and the motion of the charged particle has a
circular trajectory in the plane perpendicular to the magnetic field. The theory of complex
variables is ideally suited to solve problems involving two dimensional circulation and in
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many ways complex variable theory is simpler than real variable theory and much more
powerful [12].

As an example let’s consider the motions of the charged particle in the uniform magnetic
field [13]. The magnetic filed is directed along the z - axis. The equation of the motions
is:

d

dt
p =

e

c
v ×B (3)

can be rewritten in term of momentum:

p =
Ev

c2
(4)

where E is the energy of particle, which in the
magnetic field is constant.

E

c2
dv

dt
=

e

c
v ×B (5)

Or in the velocity components:

d

dt
vx = ωvy,

d

dt
vy = −ωx,

d

dt
vz = 0 (6)

where: ω = ecB
E

Multiplying first eq. of 6 on i and summing with second eq. of 6

d

dt
(vx + ivy) = −iω(vx + vy) (7)

from which:

vx + ivy = v0te
i(ωt+α) (8)

where v0t and α are real.
Select real and imaginary parts:

vx = v0tcos(ωt+ α), vy = −v0tsin(ωt+ α) (9)

where the v0t =
√

v2x + v2y and α defined by the
initial conditions.

This relation means that v0t is the velocity of the charged particle in plane xy, constant
during the motions in the magnetic field.
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2.3 Proposed Distribution Function

Following the above considerations the velocity as result of the electromagnetic inter-
action can be defined as a complex velocity involving the electric and magnetic terms:

vem ∝ α1E+ iα2B (10)

The important results of this considerations are that the electric field term of the
velocity could be consider as contribution to the drift velocity and the magnetic term in
the conditions when the Larmor radius is smaller in comparison to the total volume is
part of the statistical velocity term.

In order to evaluate the distribution function at the equilibrium state, we refer to the
Boltzmann H-theorem [14].

We consider the charged particles as spherical particles. The charged particles gas
state is uniform and the velocity distribution function f is independent of x, y, z. The
Boltzmann equation reduces to:

∂f

∂t
=

∫ ∫ (
ff 1 − f ′f 1′

)
vreldσdp

1 (11)

where:
vrel = |v − v1| is the relative initial velocity
between the two colliding particles,
dσ is the differential collision cross section,
dp1 is the momentum of the second particle.

The ′ symbol indicates the final states after the collision.
According to the Boltzmann H-theorem the distribution function at the equilibrium

should minimize the integral quantity H:

H =

∫
f log fdc (12)

Combining Eq. 11 and 12 we obtain:

∂H

∂t
=

∫
∂

∂t
(f log f) dc =

∫
(1 + log f)

∂f

∂t
dc (13)

from which:
∂H

∂t
=

1

4

∫ ∫ ∫
log(

ff 1

f ′f 1′
)
(
ff 1 − f ′f 1′

)
vreldσdp1dc (14)

At the equilibrium, according to the H-theorem:

∂H

∂t
= 0 (15)
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from which the relation is obtained:

log f0 + log f 1
0 = log f ′

0 + log f 1′

0 (16)

This relation shows that log f is an invariant of the collision and can be expressed as the
sum of the kinetic invariants:

log f0 = β1 + β2 ·mξ + βB ·mξ − β3
m

2
ξ2 (17)

where:
β1 is a real number, scalar related to the mass,
β2 is a real vector, related to the total momentum
including magnetic terms,
βB is a complex vector, related to the magnetic
field,
β3 is a real number, scalar related to the energy

It is convenient to recast the equation 17 in the form:

log f0 = log β0 −
m

2
β3

(
ξ − β2

β3

− βB

β3

)2

(18)

with β0 real number, scalar recasting β1 and β3.
We require that the distribution function takes only real values in order to preserve its

meaning as distribution:

� log f0 = 0

�
(
ξ − β2

β3

− βB

β3

)
· �

(
ξ − β2

β3

− βB

β3

)
= 0

�ξ · �ξ − β2

β3

· �ξ −�ξ · βB

β3

+
β2

β3

· βB

β3

= 0

�ξ ≡ βB

β3

(19)

Under this condition the distribution function can be expressed as:

log f0 = log β0 −
m

2
β3

∣∣∣∣ξ − β2

β3

− βB

β3

∣∣∣∣
2

(20)

f0 = β0e
−m

2
β3

∣∣∣ξ−β2
β3

−i�βB
β3

∣∣∣2
(21)

where the module sign indicates explicitly that the complex distribution function f is
real-valued and the � symbol in the exponential makes explicit the complex nature of the
vector βB.
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The relations 19 and 21 define the distribution function at the equilibrium. The param-
eters β0,β3,β2 can be obtained from the moments of the distribution function 21 respect
to the kinematic invariants with the integrals respecting the prescription 19. The rela-
tion 19 defines the integral in the complex plane along a line L parallel to the real axis

and shifted in the direction of the imaginary axis of the quantity �ξ ≡
(

βB

β3

)
.

The real and imaginary parts of the moment of the distribution function respect to the
mass m:

� :

∫

L

mf0d
3ξ = ρ

� :

∫

L

mf0d
3ξ = 0 (22)

From the first of the equations 22 the relation is obtained:∫

L

mβ0e
−m

2
β3

∣∣∣ξ−β2
β3

∣∣∣2
d3ξ

=

∫ +∞

−∞
mβ0e

−m
2
β3|c|2d3c = mβ0

(
2π

mβ3

)3/2

mβ0

(
2π

mβ3

)3/2

= ρ (23)

The second of the equations 22 shows that the distribution function is real-valued.
The real and imaginary parts of the moment of the distribution function respect to the

momentum mξ:

� :

∫

L

mξf0d
3ξ = ρu

� :

∫

L

mξf0d
3ξ =

B
√
µρ

(24)

where:
µρ is a constant with dimensions m4/C2 needed for dimensional congruence of the

equation.
From the first of the equations 24:

�
∫

L

mξβ0e
−m

2
β3

∣∣∣ξ−β2
β3

−i�βB
β3

∣∣∣2
d3ξ

= �
∫ +∞

−∞
m

(
c+ Ree

(
β2

β3

)
+ i�

(
βB

β3

))
β0e

−m
2
β3|c|2d3c (25)

= ρ�
(
β2

β3

)

ρ�
(
β2

β3

)
= ρu (26)
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From the second of the equations 24:

�
∫

L

mξβ0e
−m

2
β3

∣∣∣ξ−β2
β3

−i�−βB
β3

∣∣∣2
d3ξ

= �
∫ +∞

−∞
m

(
c+ �

(
β2

β3

)
+ i m

(
βB

β3

))
β0e

−m
2
β3|c|2d3c (27)

= ρ Im

(
βB

β3

)

ρ�
(
βB

β3

)
=

B
√
µρ

(28)

Finally the real and imaginary parts of the moment of the distribution function respect
to the thermal kinetic energy:

� :

∫

L

m

2
c2f0d

3ξ =
3

2

ρkT

m

� :

∫

L

m

2
c2f0d

3ξ = 0 (29)

From the first of the equations 29:

�
∫

L

m

2
c2β0e

−m
2
β3

∣∣∣ξ−β2
β3

−i�βB
β3

∣∣∣2
d3ξ

= �
∫ +∞

−∞

m

2
c2β0e

−m
2
β3|c|2d3c (30)

=
3

2

ρ

mβ3

3

2

ρ

mβ3

=
3

2

ρkT

m
(31)

The relations 23, 26, 28, 31 define the coefficients β0, β2,βB,β3:

β0 = ρ
m1/2

(2πkT )3/2
(32)

β2 = u (33)

βB = i
B

√
ρµ

(34)

β3 =
1

kT
(35)

Using the above definitions we obtain the local complex Boltzmann Maxwellian distribu-
tion function of charged particles with drift velocity u including the electric field contri-
bution and statistical term including the ψ as thermal velocity and statistical term as a

8

946



B. Chetverushkin, N. D’Ascenzo, A.Saveliev and V. Saveliev

function of B, taking in to account the axial behavior of magnetic field.

fM =
ρm1/2

(2πkT )3/2
exp

{
− m

2kT

∣∣∣∣(ξ − u)− i
B

√
µρ

∣∣∣∣
2
}
, (36)

where:
ρ is the density,
ξ is the particle velocity
u is the drift velocity,
T includes also the electromagnetic contribution,
µ is the magnetic permeability, in general is a function of ρ.

2.4 The Macroscopic Magneto Gas Dynamic Parameters

The macroscopic hydrodynamic and electromagnetic observables are obtained respec-
tively as the real and imaginary part of the integral along the line L parallel to the real
axis and shifted by iB/

√
µρ in the imaginary axis direction.

ρ =

∫

L

mfMd3ξ (37)

u =
1

ρ

∫

L

mξfMd3ξ (38)

E =

∫

L

1

2
mξ2fMd3ξ (39)

B = − 1
√
µρ

∫

L

mξ∗fMd3ξ (40)

Thus, by using this distribution function to calculate the mass, momentum and energy
fluxes most of the electromagnetic contribution is calculated directly, i.e. one does not
have to solve the hydrodynamic and magnetic force components separately or differently,
as it will be shown below.

3 RECONSTRUCTION OF THE IDEAL MAGNETO GAS DYNAMICS
SYSTEM OF EQUATIONS

In order to provide the validity of the proposed statistical complex distribution func-
tion, we show that the equilibrium condition reproduces correctly the ideal magneto gas
dynamics system of equations.

9
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The magneto gas dynamics system of equations is obtained by the integration of Eq. (1)
with vanishing collision integral along the line L with respect to the particle velocity ξ.
The summational invariants φ(ξ) =

(
m,mξ, 1

2
mξ2

)
and φ(ξ) = mξ∗ are used, respectively,

for the gas dynamics observables and the magnetic induction:

∫

L

φ (ξ)
∂

∂t
fM(x, ξ, t)dξ

+

∫

L

φ (ξ) div(ξfM(x, ξ, t))dξ = 0 (41)

The continuity equation for the density is obtained from the real part of Eq. (41) with
the summational invariant φ (ξ) = m:

� :

∫

L

m
∂

∂t
fM(x, ξ, t)dξ

+

∫

L

m
∂

∂xi

(ξifM(x, ξ, t))dξ = 0; (42)

After substituting the integration variable and inserting the proposed distribution func-
tion, we obtain:

∂

∂t

∫ +∞

−∞
m

ρm1/2

(2πkT )3/2
exp

{
− m

2kT
|ξ′|2

}
dξ′

+
∂

∂xi

∫ +∞

−∞
m (ξ′i + ui)

ρm1/2

(2πkT )3/2
exp

{
− m

2kT
|ξ′|2

}
dξ′

= 0 (43)

Finally from the evaluation of the integrals in Eq. (43) we obtain:

∂ρ

∂t
+

∂ρui

∂xi

= 0. (44)

Similarly, using the summational invariants φ (ξ) = (mξ, 1
2
mξ2) respectively, we obtain

from (41) the conservation laws for the momentum and energy, including the magnetic
field contribution:

∂

∂t
ρui +

∂

∂xk

[(
p+

B2

2µ

)
δik + ρuiuk −

BiBk

µ

]
= 0 (45)

∂

∂t
E +

∂

∂xi

[
ui

(
E + p+

B2

2µ

)
− Bi

µ

∑
k

ukBk

]
= 0 (46)
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The total energy density includes thermal, kinetic and magnetic energies:

E =
3

2
p+

1

2
ρu2 +

B2

2µ
(47)

The magnetic induction evolution equation is obtained from the imaginary part of Eq. (41)
with the summation invariant φ (ξ) = (mξ∗):

� :

∫

L

mξ∗i
∂

∂t
fM(x, ξ, t)dξ +

∫

L

mξ∗i
∂

∂xk

(ξkfM(x, ξ, t))dξ

= 0; (48)

After substituting the integration variable and inserting the distribution function, we get
the equation for the imaginary part as:

− ∂

∂t

∫ +∞

−∞
m

Bi√
µρ

ρm1/2

(2πkT )3/2
exp

{
− m

2kT
|ξ′|2

}
dξ′

− ∂

∂xk

∫ +∞

−∞

(
m

1
√
µρ

(ξ′kBi − ξ′iBk + ukBi − uiBk)

ρm1/2

(2πkT )3/2
exp

{
− m

2kT
|ξ′|2

})
dξ′ = 0 (49)

The evaluation of the Eq. 49 gives:

∂

∂t
Bi +

∂

∂xk

(ukBi − uiBk) = 0 (50)

For the compressible media, we use the linear approximation of the magnetic permeability:

µ =
µv

ρ
(51)

where µv is a constant representing the magnetic permeability per volume.

4 CONCLUSIONS

We propose the novel complex Boltzmann Maxwellian distribution function which in-
cludes electromagnetic interactions in a natural way and gives the possibility to recon-
struct the macroscopic observables and magneto gas dynamic equations through moments
of the distribution function.
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This approach gives the possibility to use the proposed distribution function for the
solution of the magneto gas dynamic problems by kinetic consistent methods and lat-
tice Boltzmann methods, which are now considered as the most perspective ones for the
calculation on modern parallel computing systems [15] .

The computational kinetic schemes with the use of the proposed complex distribution
function provide a methods derive the full magneto gas dynamic equations for the charged
particles in a more physical way.
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