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Abstract. In this paper we present a fully automated procedure for turbine blade op-
timisation. Optimisation process consists of geometry parametrisation using B-splines,
mesh deformation using the dynamic mesh library in OpenFOAM, numerical simulation
of transonic flow through the blade passage and finding the feasible solutions with the
Multi-Objective Genetic Algorithm (MOGA). The process proved to be robust whether
starting the optimisation from unfeasible geometry or a conventional blade profile.

1 INTRODUCTION

The motivation for this work comes from industrial demands for faster and more ef-
ficient design cycles. Turbomachinery components are regularly found in many energy
conversion processes where the work load is predetermined and constant. Thus, it is pos-
sible to optimise the components of a machine for a single operating point. The process
of turbomachinery optimisation usually consists of several steps: geometry description
in a mathematical sense (parametrisation), calculation of objective (fitness) functions,
e.g. via computational fluid dynamics (CFD) simulation, and evaluation of the obtained
solution(s). There are many optimisation approaches for different applications, from the
method of trial-and-error to advanced adjoint optimisation algorithms [1]. The most
common is the genetic or evolutionary algorithm which is based on Darwin’s theory of
natural selection: only the fittest individuals survive and provide their genetic code to
the following generation. There are many examples of turbomachinery optimisation using
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the genetic algorithm, sometimes combined with surrogate methods to decrease time-to-
solution.

Sieverding et al. [2] have developed a two-dimensional optimisation process for indus-
trial axial compressors, where they used a genetic optimisation algorithm and gave special
attention to definition of an appropriate fitness function. The separately optimised blade
sections are later stacked to create a three-dimensional blade and validated using a com-
mercial CFD code. The parametrisation of the blade section is done using the concept
of superposition of camber line and thickness distribution, and both are described by
Bezier curves. The optimisation is single objective with a fitness function which takes
into account non-dimensional loss coefficients, exit flow angle, etc. The calculation of the
function is done by simulating the flow around the blade.

Zheng et al. [3] conducted optimisation of a transonic rotor of an axial compressor. The
geometry is parametrised by B-spline and the design parameters were blade sweep and
lean angle at four different blade heights. Response surface approximation was used for
the objective function, with a polynomial and basis-function response methods. Genetic
optimisation algorithms were used for obtaining the optimal solutions for both polynomial
and basis-function methods. There were no constraints included, and variation of the
blade sections was not considered.

Optimisation of the same transonic rotor was done by Wang et al. [4] also using
a surrogate model and genetic algorithm, with an additional uncertainty analysis by
probabilistic collocation method. The uncertainty is introduced by varying the outlet
static pressure at the design operating point, and the trade-off result is compared to a
deterministic single objective optimisation result.

Siddique et al. [5] presented an optimisation process of a centrifugal pump impeller
consisting of a CFD simulation and a surrogate-based optimisation method. Inlet and
exit angles of the impeller were chosen as the design variables and maximum head and
efficiency were the two objective functions.

Ennil et al. [6] used a fully automated CFD simulation coupled with response surface
analysis and multi objective genetic algorithm to optimise a small scale axial air driven
turbine with respect to energy losses.

Before-mentioned researches do not elaborate the bottleneck of the optimisation pro-
cess, i.e. the generation of the computational mesh for the CFD simulation.

Page et al. [7] stressed the importance of meshing in the automatic CFD design
optimisation processes. They proposed an automatic mesh generation and an adjoint
based error analysis to select the optimal mesh configuration for a given geometry and
the objective function. The estimation of the error induced by space discretisation was
carried out and was used as an indicator to improve mesh quality to obtain a more accurate
solution.

However, this approach does not take into account the time needed for generation of
a complex mesh and a large number of evaluations which have to be conducted by the
genetic algorithm.
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Our paper presents a robust, fully automated fast optimisation process for turboma-
chinery, applied to a single two-dimensional blade pasagge. The process consists of four
steps:

1. geometry parametrisation using B-spline curves,

2. deformation of a starting, fully structured computational mesh,

3. CFD simulation of the compressible flow,

4. estimation of the obtained solutions and generation of new geometry by the opti-
misation algorithm.

Each of these steps will be described in the next section.

2 METHODOLOGY

In this section, each of the four steps of the optimisation loop will be described. The
flowchart of the optimisation loop is shown in Fig. 1.

2.1 Geometry parametrisation

Figure 1: Optimisation loop

To achieve communication between the
optimisation algorithm and the CFD simu-
lation, i.e. the mesh deformation utility, it
was necessary to describe the blade geom-
etry in a straightforward way. The easiest
and most convenient, but maybe not the
most practical way for blade profiles, is to
represent the geometry with control points.
These control points are defined by the op-
timisation algorithm as the design parame-
ters. However, the following step of the op-
timisation process, the mesh deformation,
requires many more points than the defined
number of control points. To connect the
control points and extract more points in–
between which will describe the geometry
more precisely, we chose to parametrise the
blade using periodic B-spline curves [8]. B-
spline approximates the control points and
is easily deformed by changing the posi-
tion of the control points. The result is a

smooth and continuous blade surface without any sudden and sharp jumps. Each segment
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of the curve between the two control points is of the 5th degree and 40 parametrisation
points were extracted from each segment. An example of a parametrised NACA 4421
profile can be seen in Fig. 2.

2.2 Mesh deformation
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Figure 2: NACA 4421 blade with control points in
red and B-spline in black

In [9] an overview of numerical errors
resulting from the discretisation procedure
(treating convection and temporal terms)
and mesh-induced errors is given. Consis-
tent use of discretisation schemes in blade
passage simulations can be ensured, but
mesh-induced errors are more difficult to
measure and control. A large number of
geometries are tested by the optimisation
algorithm and it is time demanding to cre-
ate a new computational mesh for each ge-
ometry. In order to compare the results for
different geometries, similar mesh resolu-
tion and quality (orthogonality, skewness)
must be ensured for each case. Creating
the computational mesh by hand for every single geometry to have more control over the
resulting mesh properties is impossible. Automatic meshing algorithms cannot provide
the same or even similar mesh configuration for different geometries, no matter how small
the shape variation is. This is the reason a mesh morphing procedure was developed for
blade geometry optimisation, using the dynamic mesh library implemented in OpenFOAM

[10].
The morphing procedure is based on the assumption that the computational mesh

behaves as an elastic body in a state of equilibrium, as described in [11]. If some force
acts on the boundary of the body, it will cause the motion of the boundary which will
influence the interior of the body. Influence of boundary motion on interior points of the
mesh can be described with a Laplace equation:

∇ · (γ∇�u) = 0 (1)

where �u is the displacement vector, and γ is the diffusion coefficient. By applying the
Laplace displacement equation with a constant coefficient γ, the largest deformation of the
mesh elements occurs near the mesh boundary. It usually leads to extreme mesh distortion
and negative cell volumes. This is why a space dependent coefficient of diffusivity is
used. Notice that increase of the diffusivity coefficient results in lower deformation of the
mesh element. Thus, it is beneficial to define the diffusivity coefficient to be inversely
proportional to distance of the mesh element from the mesh boundary. The function can
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be linear, quadratic or exponential [11]. In this study, a quadratic function is used:

γ(l) = l−2, (2)

where l is the minimum distance of the mesh element from the mesh boundary.
The Laplace displacement equation (1) is discretised into a linear system of equations:

[A] · �uk = rk, k = 1, 3, (3)

where �A is the coefficient matrix, �u is the unknown vector of displacement and �r is the
right hand side vector. The new geometry configuration is defined with a set of points
obtained from the parametrisation which are introduced into the system (3) as a fixed
value (Dirichlet) boundary condition.

2.3 Numerical simulation

After obtaining the new mesh from the deformation procedure, simulation of transonic
flow through the blade passage is performed using foam-extend, a community driven
fork of the open source software OpenFOAM. The governing equations are the continuty
equation (4), momentum equation (5) and energy equation (6).

∂ρ

∂t
+∇ · (ρ�u) = 0 (4)

∂�u

∂t
+∇ · (ρ�u⊗ �u)−∇ · (ν∇�u) = −∇p, (5)

∂ρe

∂t
+∇ · (ρe�u) = ρ�g · �u+∇ · (σ · �u)−∇ · �q + ρQ (6)

The energy equation is weakly coupled with the rest of the system because e (specific
internal energy), and temperature T influence ρ and convective velocity �u through the
equation of state, written here for the ideal gas (7).

ρ =
P

RT
= ψP, (7)

where ψ is the compressibility,

ψ =
1

RT
. (8)

Compressibility effects can be observed at higher fluid velocities, and Mach number
is commonly used to determine the critical velocity at which the flow can be considered
compressible.

In this study k − ω SST [12, 13] turbulence model was used.
The results of the numerical simulation were processed, objective function values were

calculated from corresponding flow variables and delivered to the optimisation algorithm.
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In turbines, stator blades are vital parts of the geometry. They are used to accelerate
the fluid flow as much as possible with the smallest possible pressure drop, while directing
the fluid flow at optimal attack angle onto rotors. Having this in mind, objective functions
were defined as follows. The target was to produce a geometry that would give the largest
increase in velocity while keeping the pressure drop as small as possible. Thus, ∆u and
∆p were defined as:

∆u = uoutlet − uinlet −→ maximise, (9)

and
∆p = pinlet − poutlet −→ minimise. (10)

2.4 Multi-objective optimisation

Within this work genetic optimisation algorithm was used. Genetic algorithm is a
derivative free global method. Derivative free methods are usually more robust than the
gradient based approaches and they are applied when the problem is non-smooth, multi
modal or poorly behaved. On the other hand, this approach is usually more computa-
tionally demanding because of its slower convergence rates for finding an optimal solu-
tion(s). Multi-objective Genetic Algorithm, MOGA [14], an algorithm specially designed
for multi-objective problems was used, since there were two objective functions which are
conflicting with each other. This means a unique optimal solution doesn’t exist, but the
algorithm calculates a set of feasible Pareto solutions. Each solution is a trade-off since
the objective functions cannot achieve their optimal values simultaneously.
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Figure 3: Geometric constraints

Settings of the MOGA algorithm were as
follows:

• size of a generation: 50

• number of children: 40

• crossover rate: 0.75

• mutation rate: 1

• maximal number of generations: 10

The latter was used as the stopping cri-
terion for the optimisation loop.

To achieve convergence of the opti-
mal solution in a reasonable amount of
time, strong geometric constraints were
prescribed for the design variables, Fig. 3.
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3 RESULTS AND DISCUSSION

Figure 4: Initial geometry and computational meshFigure 5: Optimised geometry and computational
mesh after second MOGA pass

We decided to start the optimisation process with a dummy geometry, a shape which
is not a stator blade in any sense, Fig. 4. The reason for such initial geomery is that
we wanted to see if the deformation algorithm is able to deform the mesh starting from
a distorted and very different shape, while keeping the mesh quality, and to see whether
the optimisation process can produce a good result starting from a far from ideal initial
geometry configuration. The blade was split into suction and pressure side to form a
passage. It is possible to expand the width of the passage in the mesh deformation
algorithm to accomodate thicker blades, but this was avoided by prescribing geometric
constraints. The computational mesh is fully structured and has approximately 28000
cells. Mesh refinement study was conducted and current mesh density was chosen because
it provided satisfactory results while being computationally less expensive than the finest
mesh tested. In case of errors appearing in the mesh deformation procedure (negative
volume cells, highly skewed or non-orthogonal cells), these cases would be rejected as
suboptimal and would not be evaluated, but this happened in none of the cases. The
patches parallel to the blade walls were treated as periodic, using General Grid Interface
(GGI) [15] for interpolation of flow variables. Value of total pressure was defined at the
inlet, and value of static pressure at the outlet. Several attack angles were tested and
here the results for attack angle α = 5◦ are presented.

One iteration of the process, including parametrisation, mesh deformation, numerical
simulation and objective function evaluation lasted 13 minutes, on a single Intel i5-4570
(3.2 GHz) CPU core. Numerical simulation took the longest, 12 minutes (92,3%), mesh
deformation took less than a minute (7,7%) while geometry parametrisation and objective
function evaluation took less than 1 second. In comparison, the same iteration with an
automatic meshing algorithm, [16], would take 15 minutes, and it wouldn’t be possible
to control local mesh quality. The process is easily parallelizable, as multiple evaluations
can be done on different processor cores at the same time.
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Figure 6: Pareto front
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Figure 7: Pareto optimum after second MOGA op-
timisation (red) compared to the initial optimum
(black)

The process ran 887 evaluations before reaching the stopping criterion of 10 generations
and the resulting Pareto front is shown in Fig. 6. Red stars represent four chosen
characteristic geometries, for which objective functions’ values are shown in Tab. 1, as
well as the values for the initial geometry. The corresponding geometries are shown in
Figs. 8, 9, 10, 11, going from left to right in the Pareto front, Fig. 6.

Table 1: Parameters of four characteristic Pareto front geometries.

Point on the Pareto front Objective function values

Initial geometry
∆u = 2.695 m/s
∆p = 2251.37 Pa

∆p/∆u = 835.39 Pa/ms−1

1
∆u = 1.633 m/s
∆p = 1274.37 Pa

∆p/∆u = 780.39 Pa/ms−1

2
∆u = 4.185 m/s
∆p = 2919.64 Pa

∆p/∆u = 697.64 Pa/ms−1

3
∆u = 5.589 m/s
∆p = 5057.05 Pa

∆p/∆u = 904.82 Pa/ms−1

4
∆u = 6.839 m/s
∆p = 6245.39 Pa

∆p/∆u = 913.20 Pa/ms−1

Solution 2 had the smallest pressure drop for the given velocity increase, and we have
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Figure 8: Optimal solution 1 Figure 9: Optimal solution 2

Figure 10: Optimal solution 3 Figure 11: Optimal solution 4

chosen it to conduct further optimisation using MOGA to see whether starting from a
feasible solution would produce different results. After 702 evaluations, a final shape of
the stator blade was obtained, Figs. 5 and 7. The values of the objective functions for
this blade were ∆u = 5.576 m/s and ∆p = 3131.40 Pa, which is 561.59 Pa of pressure
drop per 1 m/s velocity increase, while for the first Pareto optimum, this ratio was 697.64
Pa per 1 m/s. Thus, second pass of MOGA, or starting from a feasible initial geometry,
produced a better result.
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Tessa Uroić, Borna Šojat and Hrvoje Jasak

4 CONCLUSIONS

We developed a robust optimisation procedure in which we included a mesh defor-
mation algorithm which enabled us to localise numerical errors induced by the spatial
discretisation in the Finite Volume Method. Additionaly, the mesh deformation utility
contributed to the efficiency of the overall procedure because it is considerably faster than
the automatic meshing algorithm we tested. The procedure could be made even more ro-
bust by carefully defining the design variables, e.g. parametrising the camber line with
a set of control points and defining a blade thickness distribution. 16 parametrisation
control points were chosen as the design parameters. Genetic algorithm which was used
has to perform a large number of evaluations to converge to an optimal set of solutions,
and strong geometric constraints were prescribed to narrow the design space. Starting
the optimisation process from an unfeasible geometry produced a set of feasible solutions
without any failures in any of the steps of the process. Starting the optimisation process
from the best of those solutions yielded an even better solution, according to the objective
functions. This optimisation process can be modified for three-dimensional cases and more
complex geometries, e.g. for applications in naval architecture, aeronautical engineering,
etc.
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