Enabling Hardware Randomization Across the
Cache Hierarchy in Linux-Class Processors

Max Doblas', Toannis-Vatistas Kostalabros!, Miquel Moreté!' and Carles Hernandez?

!Computer Sciences - Runtime Aware Architecture, Barcelona Supercomputing Center
{max.doblas, vatistas.kostalabros, miquel.moreto} @bsc.es
’Department of Computing Engineering, Universitat Politécnica de Valéncia
carherlu@upv.es

Abstract—The most promising secure-cache design approaches
use cache-set randomization to index cache contents thus thwart-
ing cache side-channel attacks. Unfortunately, existing random-
ization proposals cannot be sucessfully applied to processors’
cache hierarchies due to the overhead added when dealing with
coherency and virtual memory. In this paper, we solve existing
limitations of hardware randomization approaches and propose
a cost-effective randomization implementation to the whole cache
hierarchy of a Linux-capable RISC-V processor.

I. INTRODUCTION

Recently reported security vulnerabilities exploit key,
high-performance, processor features such as the use of spec-
ulative execution [11] in order to get access to classified
information of victim processes executed in the CPU. In
Spectre-like attacks, speculative execution is used to force the
execution of instructions not belonging to the regular program
path to obtain private information from the victim’s address
space. Since the misspeculated paths are not functionally
visible, they have to rely on microarchitectural side-channels
to obtain the secret information. Cache side-channel attacks
have been shown to be a feasible and powerful tool to leak
sensitive information from a victim process [13]], [[16].

The design of secure caches has become a very active
area of research. The most promising secure-cache design
approaches randomize the mapping from memory line to the
cache-set in order to thwart cache side-channel attacks [14]],
[18]], [20], [21]]. These cache designs use a parametric, keyed
function to index cache contents. The function is fed with a
subset of the target address’s bits and a key obtained from an
entropy source and it dictates the cache set to look for that
value. When the key value used in this function is altered, the
memory line to cache-set mapping changes. By extend, the
cache conflicts observed will be completely different.

The complexity of building an attack exploiting cache
conflicts relies on the ability of the attacker to find an eviction
set [[19]]. When cache randomization is in place, eviction sets
have to be rediscovered every time the key used to index cache
contents is modified. The key modification frequency defines
the maximum vulnerable time-window of the system against
a side-channel attack.

Recent proposals have shown that cache randomization can
be successfully applied to Last-Level Caches (LLCs) to pre-
vent cache side-channel attacks at the cost of increasing cache

access latency [14], [[15], [21]. However, in many computing
domains (e.g. safety-critical systems) protecting LLCs is not
enough as it does not provide any security guarantees for
attacks targeting other upper-level caches [22].

Unfortunately, applying cache randomization to the whole
cache hierarchy is more challenging as it requires the ran-
domization approaches to have low implementation costs and
support virtual-to-physical memory translation. The majority
of current processors rely on Virtually-Indexed Physically-
Tagged (VIPT) first level caches for enhanced performance.
Such designs allow reducing cache access latency as virtual-
to-physical translation is done in parallel with the cache access.
Current cache randomization solutions cannot be directly
applied to such cache designs without sacrificing performance.
Moreover, keeping coherence across the cache hierarchy re-
quires being able to transparently index cache contents both
with physical and virtual addresses.

In this paper, we propose the first randomization mechanism
that can be applied to the whole cache hierarchy of a processor
design with virtual memory support. In particular, this paper
makes the following contributions:

@ A mechanism to deal with both virtual and physical
addresses in randomized cache designs while retaining cache
coherency.

@ A performance/security balanced solution in which the best
randomization strategies are employed at different cache levels
to improve performance vs security trade-offs.

® An FPGA implementation of our proposal in a RISC-V
processor that is able to successfully boot the Linux operating
system (OS) including randomization in the whole cache
hierarchy.

@ An evaluation of the security and performance overheads of
the proposed solution showing for the first time the feasibility
of applying randomization across the whole cache hierarchy.

II. RANDOMIZED CACHE DESIGNS FOR SECURITY
A. Cache Side-Channel Attacks

Cache-based side channel attacks have become a serious
concern in many computing domains [13]], [16]]. These at-
tacks are able to bypass existing virtualization and software
isolation mechanisms as they infer confidential information
from cache conflicts between the victim and the attacker.

CACHE

CACHE CACHE

TAGS

Y
Y

Decryption
Addressi

DATA

Encryption
Randomizer

Address i

Encrypted
Address Y
Random

Index

DATA | TAGS

DATA | TAGS

mizer

Rando

Y
Extended bits
Random Index

Address i metadata

“Extended bits

Random
Index

(a) CEASER

(b) Time-Randomized

(c) Randomize Once

Fig. 1: Existing randomization schemes versus our proposal

Contention-based attacks work in private caches (same-core)
or shared-caches (cross-cores) and exploit cache evictions to
learn the access patterns of victim applications. Same-core side
channel attacks require the victim and the attacker to be co-
located on the same core by exploiting hyperthreading [[16]]
or OS scheduling [[13]]. While cross-core attacks impose less
restrictions to the victim’s and the attacker’s co-location, they
encounter more obstacles, as timing measurements suffer from
interference noise coming from multiple cores.

B. Randomization Countermeasures

Cache-layout randomization schemes use a parametric func-
tion that combines the address with a key-value to randomize
the mapping from the cache line tothe cache-set. Proposed
functions rely on hashing schemes [12]], random permutations
of the set index [8]], or whole address encryptors [14].

Single vs multiple security domains. Currently, two alter-
native schemes exist, that offer different levels of protection.
In the single domain scheme [14], all processes share the same
key-value to access cache contents. Protection is provided by
ensuring that the value of the key is modified frequently.
The frequency at which the key is changed, determines the
maximum amount of time, that the attackers have in order
to build a successful attack (e.g. discover an eviction set).
In the second scheme [18f], [21], different security domains
are defined such that every domain uses a different and
independent key-value. With this latter approach and assuming
that the victim and the attacker belong to different security
domains, cache conflicts cannot be directly associated to a
specific address. As a result, an additional profiling process is
required to determine the actual relationship between victim
and attacker congruent addresses. Moreover, using security
domains, provides additional protection against unauthorized
control-information-tampering attacks [10].

C. Current Limitations

A typical memory hierarchy of a high-performance proces-
sor targeting data-center or embedded systems domains in-
cludes several levels of caches and support for virtual memory.
In multicore designs, the first cache level is private. The second
level of the cache can be shared across different cores or can
remain private when a third level of cache is present. Typically,
L1 caches are VIPT, whereas upper cache levels are Physically
Indexed Physically Tagged (PIPT). The coherence protocol is
in charge of invalidating cache lines in the different cache
levels using physical and/or virtual addresses.

Private caches are weaker against a powerfull side-channel
attack due to their small size. Nevertheless, current ran-
domization approaches have only been shown suitable for
LLCs [[14], [21]] or cache hierarchies with limited virtualization
support [9]. Consequently, there is an imminent need for
solutions that deal with randomized VIPT cache designs.

III. ENABLING RANDOMIZATION ACROSS THE
ENTIRE CACHE HIERARCHY

In this section we propose a novel mechanism that supports
virtual memory in randomized caches. We also discuss the
complexity and performance of existing schemes.

A. Cache Layout Randomization

First, we analyze the suitability of different randomization
schemes to implement cache randomization in the whole cache
hierarchy. The CEASER approach [14] (see Figure [I] (a))
uses an encryption/decryption scheme for the addresses ac-
cessing/stemming from the cache. The main advantage of
this approach is that the cache structure remains unaltered.
However, its main drawback is the increased access latency
due to the encryption and decryption process. The latter
are being handled by a Low-Latency Block Cipher (LLBC)
which utilizes a Feistel network [?] to produce the necessary
encrypted/decrypted bits. As shown by Bodduna et al. [5]]
this LLBC is vulnerable to key and bits invariance attacks
and therefore is deemed futile at thwarting cache side-channel
attacks against a powerfull adversary.

An alternative scheme consists of using a randomization
function to produce the cache set’s index [S8], [12]], [21] (see
Figure [I] (b)). This scheme requires extending cache tags to
include all bits in the address, except the offset bits, to avoid
colisions between blocks with the same tag in the same set.
Moreover, the latency of the randomization process can be
partially hidden, as it occurs in parallel with the cache access.
Nevertheless, this may have an impact on the timing of the
cache provided that the randomization delay does not fit in
the available timing slack. Finally, set-index randomization is
only applied when cache contents are accessed and therefore
no decryption process is required. In this paper, we opt for
cache-set randomization as the baseline randomization scheme
to avoid the latency overheads of CEASER.

B. Dealing with Virtual Memory in Randomized Caches

Randomized cache designs employ upper address bits to
determine the cache set index. Thus, physical and virtual
addresses pointing to the same cache line will very likely
produce different cache set indexes, thus creating a coherency

L1 Data Cache

|
rnd_idx1 E:

L2 Private

Meta & Data
coh|tag| rnd_idx1

L3 Shared LLC

Meta & Data
coh|tag| rnd_idx2

rnd_idx
generator & ' l Trnd_idx2 l Trnd_idxs
coherency coh_msg | rnd_idx rnd_idx ;
:. generator & |) | generator & :
vaddr ' coherency i coherency :
paddr 4 vl A ,

[Jreqcore - =S [e

Fig. 2: Overview of a randomized cache hierarchy with three
levels of cache.

problem. To overcome this limitation, we propose a new set-
index randomization scheme (see Figure |1 (c)).

Initially, we apply randomization when the data petition
arrives at the cache from the core. This is the only case that
data request is happening with the virtual address. Thus, all
core requests go through the randomizer module to determine
the cache set. In case of a cache hit, data is served to the
CPU. In case of a miss, a request including the randomized
index is propagated to the L2 cache. This index is stored in
the metadata of the corresponding cache line in the L2 cache.
When the L1 miss is served, the incoming requested cache
line incorporates the randomized index to access the L1 cache
without using the randomizer module, since the randomized
index has already been produced.

The same solution can be also applied in the other levels of
the cache hierarchy. Incoming physical addresses go through
the randomizer module, thus generating a randomized index
and accessing the L2 cache. This randomized index will be
stored in the metadata of the L3 cache. Therefore, all memory
requests to the different cache levels are modified in order to
propagate the corresponding randomized index. In the case of
the LLC, the randomized index does not need to be propagated
to main memory but only to its Miss Status Holding Register
(MSHR) in order to serve LLC misses.

Apart from storing the randomized index at the upper
cache level, we also need to augment the tags inside the
metadata structure with the original (not-randomized) index
of the address. The reason for this extension is twofold. First
of all, we may have collisions of different blocks having the
same tag in the same set due to the randomization. Moreover,
these extra bits of information are also needed to generate the
block address in case of eviction because the (random) set
index and the (original) address index are different.

Finally, all the petitions from the coherence protocol will use
the randomized index stored in the metadata of the different
cache levels, apart from that of the L1. Note that this modi-
fication does not alter the behavior of the regular randomized
cache. Figure [2]illustrates how the proposed randomized cache
hierarchy works.

The proposed mechanism supports the in-flight change of
the mapping function of the randomizer module. When the
randomized index for a given address is changed, then a
cache miss may happen even if the data is already in the
cache (coupled with the previous randomized index). Since

the previous randomized index is stored in the metadata of
the upper cache level, the old line can be invalidated and
the up-to-date version of the data can be recovered. All
necessary modifications with respect to the coherence protocol
functionality are explained in detail in section

Summing up, the proposed mechanism, enables cache ran-
domization across the entire cache hierarchy, not only for
virtually indexed cache designs but also for the physically
indexed ones.

C. Cost-effective Randomization Functions

Applying randomization to small caches is challenging as
timing and area margins are really tight in these memory struc-
tures. Secure randomization functions proposed for LLCs [14],
[21] are too complex to be applied without increasing cache
access latency. As an alternative, simple randomization func-
tions can be used to index small caches. In that case, it is criti-
cal that such functions uniformly distribute addresses to cache
sets to preserve security properties [[19]]. Time-randomized
caches offer a solution to this challenge as they implement
cache randomization with uniform set distribution at very low
implementation cost. The current proposal, which is agnostic
to the underlying randomization function, implements a hash
function [12f] and a random modulo [8] solution that incur
low overheads and preserve the uniform distribution of the
input. However, since L1/L2 caches are smaller than the LLC,
the complexity required to find eviction sets, thus building an
attack, is significantly reduced for these caches. To achieve
the highest protection in these caches, we also integrate an
explicit, per-way randomization function, which significantly
increases the robustness of the system against cache side-
channel attacks [[15]], [21]].

IV. IMPLEMENTATION IN THE LOWRISC SoC

We have implemented our proposal on top of lowRISC [3]],
a RISCV System-on-Chip (SoC) with a memory hierarchy of
two cache levels based on the Rocket-chip generator [[7]. In the
first level, we have private, per-core, and separate instruction
and data caches. In the second level, there is a shared L2
cache, which is also the LLC in this SoC.

In order to deal with physical and virtual addresses, we
randomize the cache index once per L1 data cache request,
storing also the original index at the L1 cache metadata
(explained in . As described in the same section, we
also propagate the generated random index to the L2 cache
which stores it in its metadata in order to maintain coherency
in the system.

A. Modifications to the L1 Data Cache

The Rocket core L1 data cache is composed of four stages
and includes a MSHR, a prober and a writeback module. The
stages of a successful access are: 1) accessing the metadata and
data structures at the same time as the TLB; 2) comparing the
N-way tags stored at the corresponding set with the Physical
Page Number (PPN) tag from the TLB; 3) if the request is a
load, respond to the CPU with the required data; 4) if it is a
store, update the respective structures.

mem.finish mem.req mem.resp mem.probe

1
y mem.release

Coherence Modules

T

1

1

md_idx :

. 1

_g Meta |~ 1

£ & 1

'§ ”| Data !

5 Read !

cpu.req o 1

1 1

1 1

N < 1

normal_idx rnd_idx

—— oo eeeeiied cpu.resp

Fig. 3: Simplified diagram showing the different types of
indexes on the L1 randomized data cache implementation.

First of all, we need to place the randomizer module
between the CPU request port of the cache and the metadata
(tags) and data arrays. The randomized index generation
occurs only once per request and takes place in the first stage.
This module generates the random index used to access the
metadata and data structures only if the address introduced
lacks a randomized index (i.e is accessed for the first time).
If the address has already a randomized index, this module is
bypassed. Our proposal supports using different randomization
functions to generate the random index. Figure |3| depicts a
schematic of the L1 randomized data cache. As shown in
the diagram, the randomized index is present at the output
of the metadata and data reading. Then, it is propagated with
the request to later stages such as the writing stage or the
coherence modules.

Another module that has to be slightly modified is the
metadata array in the cache. Since two different cache lines
with the same tag can be placed in the same set due to the
randomization function, we need to deal with that issue. A
simple solution consists of extending the tag residing in the
metadata with the original index of the address. As we already
mentioned these extra bits are also used to generate the
address in the case of an eviction.

Next, we elaborate on the required changes of the coherence
modules. As we explained before, we need to send the
randomized index to the upper-level cache, the L2 cache in
this case, to be stored in the metadata. To do that, we send
this index to the L2 in every data request produced by a L1
miss. The L1 MSHR is in charge of that. Finally, in every
coherence petition, the randomized index present in the 1.2
cache metadata is sent along with the petition to access the
L1 cache structures. As a result, it is possible to deal with the
virtual and physical addresses seamlessly.

B. Modifications to the Shared L2 Cache

In the L2 cache, we include a randomizer module to
randomize the access to the cache contents. Also, we have
modified the directory structure to support interfacing with
the VIPT L1 caches. In particular, we add a new field to the
directory metadata to store the randomized index of L1 in

each valid line. The random index of a cache line is updated
in every request affecting this line. Thus, the directory always
has the updated reference of the data stored in the lower level
cache. Such a mechanism allows the coherence protocol to
make correct petitions to the randomized cache.

C. Modifications to the Coherence Protocol

The Rocket core uses a MESI protocol to maintain data
coherence in the whole memory hierarchy. The coherence
protocol relies on a directory placed in the L2 cache. With the
proposed modifications, there can be specific cases for which
the protocol malfunctions (as it will be explained later). The
original MESI protocol along with the randomized cache, can
result in multiple instances of the same data valid in the same
core. This may create ghost copies that could no longer be
invalidated.

Ghost copies can appear when there is a modification on the
key of the randomizer module or a modification in the page
table. If a new CPU request from a data that is already in the
cache comes after any event mentioned before, this request
will have a new randomized index assigned by the randomize
module. Then a miss will be produced. At this point, if the
original data in the L1 data cache is in the shared state and
the petition comes from a load, the L2 cache sends the data
without invalidating the old instance. At this moment, the new
randomized index is stored in the L2 cache and replaces the
old one. This action makes the other line (the one valid before
the key/page table change) remain valid and untracked without
the possibility to be invalidated.

To solve this issue, we alter the MESI protocol. Now the
cache that makes a petition is bound to receive coherency re-
quests from the upper-level cache in order to remove potential
ghost copies. If the state is shared, and the core that is making
the petition has already the data, the coherency protocol sends
an invalidation message to this cache before sending the data.
All other protocol’s mechanisms remain unchanged.

D. Implementation of the Skewed Cache

To increase the security of randomized caches, a different
randomization module per way can be used. To implement this
functionality, we only need to increase the number of functions
inside the randomizer module to get one function per way.
The propagation and storage of the randomized index are still
necessary. Now we need to choose the correct randomized
index out of the N-way indexes. The index selected in the
case of a hit is the index of the way that produced the hit, and
in the case of a miss, we choose the index of the cache line
that will be evicted.

E. Interface with the Operating System

To allow the OS to handle the randomized-cache-hierarchy
keys which affect the random module address hashing (e.g.
random index generation), we use some custom Control and
Status Registers (CSR). We use a dedicated CSR per cache
only accessible in privileged mode (N-way CSR in the case
of the skewed cache) to store the active keys used by the

TABLE I: Microarchitectural configuration of the target SoC.

TABLE II: Accesses required to find an eviction set.

SoC Configuration & System parameters Processor | L1 L1 (skewed) | L2 L2(skewed)
Component Description Rocket 4288 68608 35456 2269184
Core details 200 MHz, in-order, 5-stage pipeline, 64-bit Neoverse 17152 | 274432 2269184 18153472
RISCV IMA extensions, 32 integer registers Skylake 17728 | 1134592 67584 1081344

Private L1 data cache 16KB 4-way set assoc, 64B line size, random
replacement, 3-cycle latency, VIPT

8 entries

16KB 4-way set assoc, 64B line size, random
replacement, 2-cycle latency, VIPT

8 entries

64KB 8-way set assoc, 64B line size, random
replacement, 8-cycle latency

2 entries

Data TLB
Private L1 instr. cache

Instruction TLB
Shared L2 cache

MSHR Size

randomizer module. Using that, the OS can easily change
the key for each process and achieve the desired isolation
level. Finally, these CSRs are initialized at a random value on
every reboot. Using that property, the mapping of the caches
changes every time the machine is rebooted, thus preventing
an adversary from knowing the initial seed in advance. This
feature is also present in other solutions [14].

V. EVALUATION

This section explains the results obtained with the exper-
imental campaign of our proposal. We discuss performance,
security properties and area overhead separately.

A. Experimental Setup

As explained in Section we have implemented all the
modules required for the hardware randomization in the cache
hierarchy of the Rocket core [7]. The RISC-V core, as well
as the rest of the SoC, was synthesized and emulated at a
Kintex-7 FPGA development board. The SoC contains all the
required peripherals to function (i.e memory controller) and
to communicate with a host machine (i.e UART). The testbed
used, comprises of the FPGA development board and a host
machine which collects and interprets accordingly the data sent
over the UART from the FPGA. The configuration parameters
of the SoC and core modules are summarized in Table [l We
perform the experimental evaluation of our Soc using the non-
floating point benchmarks from the EEMBC suite [2]].

B. Functional Verification

To validate the modifications introduced in the processor’s
RTL, we have executed the RISC-V ISA tests [4]], a battery of
more than 105 unit tests. In particular, the executed tests have
been wrapped with the virtual environment code. With this
environment, the tests use a virtual-to-physical address trans-
lation, thus forcing the core to utilize all the virtual memory
mechanisms it supports. We validated that our modifications
do not alter the functional behavior of the system. Also, we
proved that the EEMBC tests are producing the correct results
using a cyclic redundancy check (CRC) validation.

Additionally, we have been able to successfully load the
version 3.14.41 of the Linux kernel on top of our randomized
platform. The kernel booted provides the user with the basic
shell environment functionality. Note that booting Linux was
not possible without including the support to deal with virtual
memory in the caches.

C. Security Assessment

We assess the security properties of our randomized cache
hierarchy using the formulation provided in [21]]. In particular,
we use the number of accesses required to build a profiled
eviction set for a prime-probe attack [22] as a security vul-
nerability indicator. Having the ability to build an eviction set
(i.e. determine congruent set of addresses required to evict a
particular cache set) is a necessary step to many cache side-
channel attacks [21]. Assuming that the eviction set consists
of addresses colliding with the victim in exactly one way
each, the eviction probability (F.) for a skewed cache is

A _
determined by 1 — (1 — —L—)7wass where A represents the
Nways

number of colliding addresses. Finally, the expected number
of accesses (IV,) in a cache with n,., number of sets is
No =120y * Nets * A.

Table Lshows the estimated number of accesses required to
build an eviction set in the different cache modules assuming a
success probability P, equal to 99%. We report values for the
cache configuration used in our RISC-V prototype and for the
cache configurations included in the ARM Neoverse [1]] and
the Intel Skylake [6]]. The Neoverse CPU includes 4-way 64KB
L1 caches and 8-way 512KB L2 caches both with 64 bytes
cache lines. The skylake has 8-way 32KB L1 caches and 4-
way 256KB L2 with 64byte cache lines. Results show that for
small caches the number of accesses required to build an evic-
tion set is rather small. Thus, including skewed randomizers
becomes fundamental to have meaningful security properties.
For the Skylake and Neoverse setups with skewed caches the
computed number of accesses shows that randomization is an
effective way to protect the system especially for the Skylake
due to its higher associativity in the L.1. Note that as explained
in Section [[V| our randomization scheme allows re-keying the
cache without flush and independently for each way.

We have also analyzed the randomization properties of the
randomization functions implemented. Having a randomiza-
tion function with almost ideal properties avoids the possibility
of reducing the time required to build a sucessful side channel
attack. Additionally, having ideal randomization properties
is very useful to protect the system from software imple-
mentation vulnerabilities [10]. We run the NIST randomness
test suiteworks [17] using 108 different keys and the same
number of random addresses to prove that the randomizers
implemented can be used safely in our design. This is an
interesting observation since the complexity of such functions
is much lower than the complexity of the functions proposed
in other works [14], [21].

D. Performance Evaluation

Each benchmark has been executed 1000 times with 1000
different random keys for each underlying randomization
mode in our RISC-V FPGA prototype. Note that for the

[Baseline [HF N RM

B Sk_HF

EE Sk_RM

o) @\ea“

0P R
o 2! N“‘“’

s gac\"eb o pf‘“d\ ‘Speed O

0
Fig. 4: Mean L1 data cache MPKI for the EEMBC benchmarks
with the baseline design, cache randomization based on ran-
dom modulo (RM) and on hash function (HF), and the com-
bination with skewed cache (Skewed_RM and Skewed_HF).

TABLE III: FPGA resources utilization for the baseline, hash
function (HF) and random modulo (RM) configurations.

LUTs FF CLAs
Baseline 3249 2514 82
L1 HF 4587 (+41.2%) 2598 (+3.3%) 87 (+6.1%)
RM 3553 (+6.0%) 2598 (+3.3%) 87 (+6.1%)
HF Skewed 7862 (+142.0%) | 2676 (+6.4%) 87 (+6.1%)
RM Skewed 3718 (+14.4%) 2676 (+6.4%) 87 (+6.1%)
Baseline 11047 3778 85
L2 Others 13607 (23.2%) 3999 (+5.8%) 93 (+9.4%)
Baseline 15301 7636 199
Total | HF 19199 (+25.5%) | 7941 (+4.0%) | 212 (+6.5%)
RM 18055 (+18.0%) | 7941 (+4.0%) | 212 (+6.5%)
HF Skewed 22474 (+46.9%) | 8019 (+5.0%) | 212 (+6.5%)
RM Skewed | 18330 (+25.5%) | 8019 (+5.0%) | 212 (+6.5%)

tested benchmarks, 1000 runs suffice to produce a distri-
bution of cache misses that is independent and identically
distributed (i.i.d). The randomization functions we chose are,
as stated before, random modulo [8|] and hash-based random
placement [12]]. For each randomization function we have
also implemented its skewed variant. For the baseline setup
we have also performed several runs to capture the inherent
platform variability which was shown to be lower than 1%.

Figure [] shows the average as well as the 5% and 95%
percentiles for Misses per Kilo Instruction (MPKI) values over
1000 runs with different random keys. Initially we observe that
not all of the benchmarks show a significant MPKI value since
EEMBC benchmarks do not have a big memory footprint. The
ones that do exhibit more misses are (ttsprk, cacheb,canrdr
and pntrch). For most of the benchmarks the skewed cache
architecture (both with Random Modulo and with Hash Func-
tion) configuration is the one providing better results. On
the other hand, the benchmarks being executed on top of
the hash function randomization module yield the highest
value of MPKI since this randomization scheme has worse
spatial locality properties than modulo or random modulo.
Interestingly, when hash randomizer is deployed in a skewed
scheme the behavior of this scheme improves significantly due
to the elimination of the spatial locality pathological situations
produced by the hash [8]].

E. Area Utilization

Table reports the resource utilization of the FPGA
implementation. The impact on resource utilization of RM
solution is very low in the L1 caches. This solution needs 6.0%
more LUTs and 3.3% more flip-flops (FF) compared with the
baseline. In contrast, the HF solution is using 41.2% more

LUTs and 3.3% more FFs than the baseline. Both solutions
have some impact on the L2 cache design. The majority of the
LUTs increase in the L2 cache is produced by the added hash
function. As the number of BRAM used in the different con-
figurations is the same, the increase of 5.8% in FF is due to the
storage of the randomized index at L1 data cache. As expected,
the integration of the skewed caches uses more resources to
implement multiple randomization functions. Nevertheless, L2
remains identical because, as mentioned in Section [[V-D| we
propagate only one randomized index.

VI. RELATED WORK

The earliest cache randomization approaches aimed at
improving the security of caches by relying on hardware
mapping tables to find the location of cache lines [20].
This approaches suffer from scalability limitations and require
having the ability to classify applications as protected or
unprotected. More recent randomization schemes propose an
encryption and/or randomization of the address to index cache
contents [14], [18]]. Authors in [18] suggested the use of a
parametric function to randomize the cache line mapping,
reusing cache designs already proposed for probabilistic real-
time systems [8]], [12]. The work in [18]] recommended in-
cluding the process id to the randomization function to create
independent cache layouts for different processes. Later, this
approach has been generalized in [21] introducing the concept
of security domains. The security properties of randomization
schemes has been analysed in several recent works [[14]], [[15]],
[21]. [[14] introduced an encryption mechanism coupled with
a remapping process for LLCs showing that for contemporary
attacks the performance impact caused by remapping can
be neglected.However, the simplicity of the LLBC used in
[14] creates a major vulnerability against some cryptanalysis
attacks. Recent works [15], [19] have shown that the cost
of finding eviction sets can be reduced which makes initial
randomization schemes vulnerable. To solve this issue the
latest randomization schemes have proposed skewed mecha-
nisms implementing independent per-way randomization func-
tions [15]], [21]. With skewed randomization the complexity
of building side-channel attacks is significantly increased
making performance cost of key remapping negligible for
LLCs. Unfortunately, existing randomization schemes are only
useful for LLCs in which randomization only deals with
physical addresses [14], [15], [21] or in simpler processor
configurations [[18].

VII. CONCLUSIONS

In this paper, we have introduced a novel randomization
mechanism for high performance cache designs that makes
use of virtual and physical addresses while retaining cache
coherency. The proposed approach can be successfully applied
to a RISC-V processor capable to boot Linux, significantly im-
proving its security against cache-based side-channel attacks.

ACKNOWLEDGMENTS

This work has been supported by the European HiPEAC
Network of Excellence, by the Spanish Ministry of Economy

and Competitiveness (contract TIN2015-65316-P), and by
Generalitat de Catalunya (contracts 2017-SGR-1414 and 2017-
SGR-1328). The DRAC project is co-financed by the European
Union Regional Development Fund within the framework of
the ERDF Operational Program of Catalonia 2014-2020 with a
grant of 50% of total cost eligible. We also thank Red-RISCV
for the efforts to promote activities around open hardware.

This work has received funding from the EU Horizon2020
programme under grant agreement no. 871467 (SELENE).

M. Doblas has been partially supported by the Agency for
Management of University and Research Grants (AGAUR) of
the Government of Catalonia under Beques de Col-laboracié
d’estudiants en departaments universitaris per al curs 2019-
2020. V. Kostalabros has been partially supported by the
Agency for Management of University and Research Grants
(AGAUR) of the Government of Catalonia under Ajuts per
a la contractaci6 de personal investigador novell fellowship
number 2019FI_B01274. M. Moret6 has been partially sup-
ported by the Spanish Ministry of Economy, Industry and
Competitiveness under Raén y Cajal fellowship number RYC-
2016-21104.

REFERENCES

[1] Arm neoverse nl cpu.
neoverse/neoverse-nl.

[2] EEMBC. embedded microprocessor benchmark consortium.
/Iwww.eembc.org/techlit/.

[3] 1owRISC. Open to the core-enabling open source silicon through col-
laborative engineering. https://www.lowrisc.org/.

[4] RISC-V Tools. RISC-V tools including ISA simulator and tests. https:
//github.com/riscv/riscv-tools.

[5] R.Bodduna, V. Ganesan, P. Slpsk, C. Rebeiro, and V. Kamakoti. Brutus:
Refuting the security claims of the cache timing randomization coun-
termeasure proposed in ceaser. IEEE Computer Architecture Letters,
2020.

[6] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen. Prime+abort:
A timer-free high-precision 13 cache attack using intel TSX. In 26th
USENIX Security 17, pages 51-67, Vancouver, BC, Aug. 2017.

[71 K. A. et. al. The rocket chip generator. Technical Report UCB/EECS-
2016-17, University of California, Berkeley, Apr 2016.

[8] C. Herndndez, J. Abella, A. Gianarro, J. Andersson, and F. J. Cazorla.
Random modulo: a new processor cache design for real-time critical
systems. In DAC, pages 29:1-29:6, 2016.

[9] C. Herndndez and et. al. Design and implementation of a time
predictable processor: Evaluation with a space case study. In ECRTS,
pages 16:1-16:23, 2017.

[10] Jun Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime random-
ization for security. In SRDS, pages 260-269, 2003.

[11] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom.
Spectre attacks: Exploiting speculative execution. In /IEEE SSP, 2019.

[12] L. Kosmidis, J. Abella, E. Quifiones, and F. J. Cazorla. Efficient cache
designs for probabilistically analysable real-time systems. /IEEE Trans.
Computers, 63(12):2998-3011, 2014.

[13] M. Neve and J. Seifert. Advances on access-driven cache attacks on
AES. In SAC, pages 147-162, 2006.

[14] M. K. Qureshi. CEASER: Mitigating conflict-based cache attacks via
encrypted-address and remapping. In MICRO, pages 775-787, 2018.

[15] M. K. Qureshi. New attacks and defense for encrypted-address cache.
In ISCA, pages 360-371, 2019.

[16] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get
off of my cloud: Exploring information leakage in third-party compute
clouds. In CCS, pages 199-212, 2009.

[17] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker. A statistical
test suite for random and pseudorandom number generators for cryp-
tographic applications. Technical report, Booz-allen and hamilton inc
mclean va, 2001.

https://www.arm.com/products/silicon-ip-cpu/

https:

[18] D. Trilla, C. Herndndez, J. Abella, and F. J. Cazorla. Cache side-channel
attacks and time-predictability in high-performance critical real-time
systems. In DAC, pages 98:1-98:6, 2018.

[19] P. Vila, B. Kopf, and J. F. Morales. Theory and practice of finding
eviction sets. In JEEE SSP, pages 39-54, 2019.

[20] Z. Wang and R. B. Lee. New cache designs for thwarting software
cache-based side channel attacks. In ISCA, pages 494-505, 2007.

[21] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard. ScatterCache: Thwarting cache attacks via cache set
randomization. In USENIX Security, pages 675-692, 2019.

[22] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and
J. Torrellas. Attack directories, not caches: Side channel attacks in a
non-inclusive world. In IEEE SSP, 2019.

https://www.arm.com/products/silicon-ip-cpu/neoverse/neoverse-n1
https://www.arm.com/products/silicon-ip-cpu/neoverse/neoverse-n1
https://www.eembc.org/techlit/
https://www.eembc.org/techlit/
https://www.lowrisc.org/
https://github.com/riscv/riscv-tools
https://github.com/riscv/riscv-tools

	Introduction
	Randomized Cache Designs for Security
	Cache Side-Channel Attacks
	Randomization Countermeasures
	Current Limitations

	Enabling Randomization across the Entire Cache Hierarchy
	Cache Layout Randomization
	Dealing with Virtual Memory in Randomized Caches
	Cost-effective Randomization Functions

	Implementation in the lowRISC SoC
	Modifications to the L1 Data Cache
	Modifications to the Shared L2 Cache
	Modifications to the Coherence Protocol
	Implementation of the Skewed Cache
	Interface with the Operating System

	Evaluation
	Experimental Setup
	Functional Verification
	Security Assessment
	Performance Evaluation
	Area Utilization

	Related Work
	Conclusions
	References

