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Abstract. In this paper, linear and quadratic modal approximations of elastodynamic
solid deformation in FSI problems are considered. Firstly, the theory of quadratic exten-
sion of modal analysis presented in [1] is laid out. The quadratic and linear approximations
are then benchmarked against full FEM analysis in various test cases. These are chosen
to be representative of flutter considerations in the aerospace field. The quadratic ap-
proximation is shown to produce a markedly better prediciton of solid deformation for
small to medium deflections.

1 INTRODUCTION

Accurately predicting the onset of flutter is an important consideration when designing
and certifying aircraft for an intended flight envelope. It is by now common practice
in computational aeroelasticity to approximate the structural deformation using normal
linear modal analysis [2, 3]. Linear modal analysis provides an efficient approximation
for aeroelastic applications, and has been shown to provide credible flutter predictions
[4]. The structural response is described by the system mode shapes and associated
natural frequencies, which can either be obtained from experimental ground vibration
tests (GVTs) or be approximated numerically using techniques such as the finite element
method.

Linear modal dynamic systems are however limited to very small deflections, and are
incapable of providing accurate representations for large rotations (for example when
performing T-tail flutter analysis [5]). To improve the accuracy of modal analysis for
rotating reference frames, Segelman et al. [6] introduced the method of quadratic mode
shape components.
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We aim to demonstrate via examples that these quadratic mode shape components
provide an approximation of the geometric non-linearity present within the full elasto-
dynamic structural equations, albeit for relatively small deflections. The addition of the
quadratic mode shape terms remain a linearised expansion, and therefore retains much of
the numerical efficiency offered by normal modal analysis.

Following the work presented in [1], we will outline the procedure for approximating
the quadratic mode shape components using a number of static, small strain finite element
analyses. The improved accuracy offered by including the quadratic terms will be shown
on a number of fluid-structure interactions (FSI) benchmark problems, and compared to
high-fidelity FSI simulations.

2 Modal Dynamics

2.1 Linear Modal Dynamics

Using standard FEM analysis software (and to a lesser extent FVM), it is possible to
compute the eigenvectors or mode shapes φi along with the natural frequencies ωi of a
given linear elastic structure. The real space displacement u can then be approximated
by the linear expansion of the mode shapes such that

u =
n∑

i=1

qiφi (1)

where qi are the modal expansion coefficients or modal variables, and n is the number
of retained mode shapes. The generalised equation for aeroelastic structural deformation
rewritten in terms of the of the modal variables can be expressed as

M q̈ +C q̇ +Kq = Q (2)

where M , K and C represents the reduced mass, stiffness and damping matrices. Q
represents the generalised force vector given by

Qi =

∫

Ω

dFφi, (3)

where dF = pnfdA−σ·nfdA is the nodal forces along the FSI interface. Here p represents
the interface pressure, and σf the fluid viscous stress tensor and nfdA the outward
pointing surface area normal vector. Typically φi is interpolated from the structural
mesh to the fluid domain interface mesh, where dF then represents the nodal forces
acting along the fluid domain’s interface. This allows for the generalised forces, Q, and
the general elastic equation (2) to be directly computed along the fluid interface.

When computed using the FEM, the mode shapes and elastic equation (2) are typically
normalised such that the reduced stiffness and damping matrices become

M = I and K = diag
[
ω2
n

]
. (4)
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2.2 Quadratic mode shape components

For small displacements, van Zyl et al. [1] demonstrated that the linearised expansion
in equation (1) can be improved by including coupled quadratic mode shape components
φij such that

u =
n∑

i=1

qiφi +
n∑

i=1

n∑
j=1

qiqjφij. (5)

Given the quadratic mode shape components, the generalised force Qi is now defined as

Qi =

∫

Ω

dF ·

(
φi +

n∑
j=1

qjφij

)
. (6)

The generalised structural equation (2) can be rewritten as

Mij q̈j + Cij q̇j + K̃ijqj = Q̃i, (7)

where K̃ij = Kij −
∫
Ω
dF · φij and Q̃i =

∫
Ω
dF · φi. The linear system (7) is solved at

every time step using fourth-order Runge-Kutta integration.

3 APPROXIMATING QUADRATICMODE SHAPE COMPONENTS FROM
FEM

Following the work presented in [1], the quadratic mode shape components can be
approximated using a number of static, small strain, linear elastic FEM analyses. This
as opposed to [6, 7, 8] which require multiple non-linear static analyses. The method was
first proposed using energy arguments derived using truss elements, and later extended
to general elastic finite elements.

For the discussion to follow, assume we have available two linear mode shapes, namely
φi and φj. A linearised approximation for the displacement of node l, of a general elastic
element, can then be given as

ul = qiφ
l
i + qjφ

l
j + uR (8)

where uR represents an additional rotational displacement term not accounted for by
linear modal analysis. The aim of the additional higher order quadratic mode shape
components is to counteract the effect of neglecting uR. Given two mode shapes, the
additional rotational components can be approximated following [1] as

uR = uii
R + ujj

R + uij
R.

=
1

2
q2iRi×

(
Ri × pl

)
+

1

2
q2jRj ×

(
Rj × pl

)
+

1

4
qiqj

[
Ri ×

(
Rj × pl

)
+Rj ×

(
Ri × pl

)]

(9)
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Here pl is a position vector from some point within the element to node l. The exact
location of point p is insignificant and can be taken to be element centroid or the average
of the nodal co-ordinates. Vectors Ri and Rj are the rigid body rotations associated with
mode shapes φi and φj respectively for a given element.

In equation (9), the first term, 1
2
q2iRi×

(
Ri × pl

)
, relates to the quadratic component

to be cancelled by φii, the second with φjj and the third with the coupled quadratic
mode shape component φij = φji. In general, because of the symmetry φij = φji, for n
linear mode shapes, there will be (n+ 3)n/2 − n quadratic mode shape components to
be computed for, i.e.

φii = {φ11, φ12, φ1N , φ22, φ23, ...φ2n, ..., φnn} .

Computation of the various components of uR requires isolating the various rigid body
rotation vectors, Ri,j, associated with each of the linear mode shapes φi,j. Consider
Figure 1, where each mode shape is expressed as a displacement vector represented by
the summation of rigid body translation and rigid body rotation

{φi}el = T el +Ri,el × p, (10)

where T el = {tx, ty, tz} represents the linear translation components andRi,el = {rx, ry, rz}
the rigid body rotation (angles of rotation) for the given element. The system described
by (10) is however over determined, since there are only 6 unknowns to be solved for but
3m known components of φi = {φ1,x, φ1,y, φ1,z, ..., φm,z}T , where m is the number of nodes
within the element. The least squares problem to approximate the rigid body rotation
vector Ri associated with mode shape φi for an m noded element can be expressed in
matrix form as




I P 1

I P 2
...

...
I Pm







tx
ty
tz
rx
ry
rz




=




φ1,x

φ1,y

φ1,z
...

φm,x

φm,y

φm,z




, (11)

where P l is a matrix representative of the cross product between the reference vector
associated with node l and the to be computed rotation vector, pT

l ×Ri, i.e.

P l =




0 pl,z −pl,y
−pl,z 0 pl,x
pl,y −pl,x 0


 , and I =




1 0 0
0 1 0
0 0 1


 . (12)

There will be a rotation vector for each element within the structural mesh, for each of
the linear mode shapes.
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Figure 1: An exaggerated illustration of the translation, T , and rotation, R, of a two-
dimensional 4-noded element.

The quadratic mode shape components
∑N

i=1

∑N
j=1 qiqjφij need to cancel out the addi-

tional rotational displacement term uR. From a kinetic energy perspective, as explained
in [1], in order to minimise spurious contributions to the kinetic energy, the quadratic
mode shape components should be orthogonal to the corresponding linear mode shapes.
A convenient means is to orthogonalise the linear and quadratic mode shapes with respect
to the system stiffness matrix

φT
i [K]φii = 0, (13)

where [K] here represents the full FEM, static, small strain stiffness matrix, and not the
reduced modal stiffness matrix.

There are therefore two conditions to be satisfied. The quadratic modes shapes need
to be orthogonal to the linear mode shapes and need to cancel out the effects of the
additional rotational term uR.

The rotational terms are cancelled by computing the reaction forces resulting from the
displacement uR, and subsequently computing the equivalent displacement which would
cancel out the the reaction forces. Given the rotational displacement uR, the reaction can
be computed for a given element as

f i
el = [K]el u

i
R,el, (14)

where [K]el represents the local element stiffness matrix. Using the appropriate global
degrees of freedom, the forces should be appropriately summed into the global force vector
f i

global. φii can then be computed by solving the general FEM linear system of

[K]φii = f i
global. (15)

In order to satisfy both the orthogonality constraint (13) along with (15) a Lagrange
multiplier system of equations can be constructed and solved for

[
[K] [K]ui

R

uiT

R [K] 0

]{
φii

λ

}
=

{
f i

0

}
. (16)

Similarly, the coupled quadratic modes φij have two orthogonality conditions which have
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to be satisfied




[K] [K]ui
R [K]uj

R

uiT

R [K] 0 0

ujT

R [K] 0 0







φij

λ1

λ2



 =





f ij

0
0



 . (17)

The procedure to approximate the quadratic mode shape components can be sum-
marised as follows:

1. Using a standard FEM package solve for the set of linear mode shapes φ = {φ1, ..., φN}.

2. For each element compute a reference point p, and compute the corresponding ref-
erence vector pl for each node l.

3. For each of the retained mode shapes φi, compute the associated element solid body
rotation vector Ri

el by solving the least squares problem (11).

4. Using (9), compute each component of uij
el,R.

5. Compute the nodal reaction forces f ij
el = [K]el u

ij
el,R.

6. Sum up f ij
el into the appropriate global force vector f i

global.

7. Solve for the approximate φii and φij components using either (16) or (17) de-
pending on whether there are one or two orthogonality conditions that need to be
satisfied.

4 VALIDATING MODAL FSI AGAINST FULL HIGH-FIDELITY FSI

In this section we aim to compare the approximations obtained using linear and
quadratic mode shapes and compare these to results obtained using full, high-fidelity
FSI simulations. The same spatial and temporal discretisation will be used for both the
high-fidelity and modal based ROM. This in turn allows for a direct comparison of the
methods, as both sets of simulations will have the same numerical errors.

The normal linear mode shapes and natural frequencies are computed using Cal-
culiX [9]. The fluid flow is computed using OpenFOAM [10], and the fluid and structural
domains are implicitly coupled using Aitken’s method. The full, high-fidelity FSI simula-
tions are performed using an implicit, partitioned coupling of OpenFOAM and CalculiX
[11].

In all test cases, we retain the first 4 linear mode shapes, which corresponds to 10
additional quadratic mode shape components.
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Figure 2: Dam break with elastic structure problem description.

4.1 Dam Break VOF validation

We consider here a simple dam break problem, where a collapsing column of water
strikes a flexible elastic structure, which has previously been analysed in [12, 13, 14]. The
problem setup is shown in Figure 2, and consists of a 29.2cm column of water which
collapses under gravity, striking an 8cm tall, 1.2cm wide, elastic obstacle. The tank is
open at the top, and surface tension effects are ignored due to the large length scales.

The problem is solved here using 3672 linear FVM elements and 14 quadratic, full
integration solid elements. The time step size is chosen as ∆t =0.001s. In Figure 3, the
advancing front along with the elastic deformation is shown for various time steps.

A comparison of the tip displacement of the flexible baffle is shown in Figure 4. The
improvement in solution accuracy offered by the inclusion of the quadratic mode shape
components is directly evident.

4.2 T-Tail

A T-tail like structure is analysed here under fluid cross-flow for 3 different inlet veloci-
ties of 1m/s, 3m/s and 5m/s. The problem is selected to illustrate the improved accuracy
offered by the quadratic mode shape components when considering larger structural defor-
mations, and problems with rotating reference frames. The geometry along with material
properties is outlined in Figure 5. The aim is to provide a preliminary indication of the
modal FSI solver using quadratic mode shapes for different deformation magnitudes.

In Figure 6 the T-tail deformations along with pressure contours is shown for the
different inlet velocities (computed using the high-fidelity FSI solver) with a comparison
of the tip displacements shown in Figure 7. The improvement offered by the inclusion
of the additional quadratic mode shape components are once again visible at higher flow
rates. The problem clearly highlights, that while the quadratic modes do provide improved
accuracy, the applicability remains limited to comparatively small displacements.
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(a) t=0.14s (b) t=0.18s (c) t=0.23s

(d) t=0.38s (e) t=0.46s (f) t=0.8s

Figure 3: Wave interaction with elastic obstruction at various time steps.

(a) (b)

Figure 4: Comparison of the displacement using linear and quadratic modal dynamics
with full high-fidelity FSI. A total of 4 modes are used for the modal dynamics analysis.
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Figure 5: T-Tail material properties and problem description.

(a) (b) (c)

Figure 6: Pressure contours along with structural deformation at t = 1.5s for inlet veloc-
ities of (a) 1m/s, (b) 3m/s and (c) 5m/s.

(a) (b) (c)

Figure 7: Comparison of tip y-displacement for inlet velocities of (a) 1m/s, (b) 3m/s and
(c) 5m/s. 4 mode shapes are retained for the modal analysis.
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Table 1: Comparison of the beam tip frequency of oscillations, compared to the results
obtained in [15].

Frequency [Hz] Linear Modal Quadratic Modal Full FSI Results from [15]
ux 0.0 3.0 3.72 3.8
uy 1.85 1.88 1.9 2.0

5 2D flexible beam

In this test problem, flow around a fixed cylinder with an attached flexible beam is
analysed. The beam undergoes large deformations induced by oscillating vortices formed
by flow around the circular bluff body.

The problem was first proposed by Turek et al. [15], and has received substantial
numerical verification. The problem layout and material properties are provided in Fig-
ure 8(a).

The FSI problem consists of a 0.02m thick, 0.35m long flexible beam, attached to a fixed
cylinder with diameter of 0.1m. The cylinder centre is by design constructed to be non-
symmetric to remove dependence on numerical errors to induce the onset of deformations.
A parabolic inlet boundary condition, with mean flow velocity of Ū = 1m/s is slowly
ramped up for t < 0.5s via (1− cos (πt/2)) /2. The top, bottom and fixed cylinder walls
are defined as non-slip boundaries. The problem is solved here using 3800 finite-volume
fluid cells, and 72 full integration, bi-quadratic finite elements, with a time step size of
∆t = 0.001s.

A snapshot of the beam deformation based on the full FSI simulation is shown in
Figure 8(b) with a comparison of the beam tip displacements in Figures 8(c) and 8(d).
Both the linear and quadratic modal analysis correctly predicts the state of flutter, but are
incapable of correctly computing the magnitudes of the oscillating beam. The computed
oscillation frequencies is summarised in Table 1. The frequencies computed using both
the linear and quadratic mode shapes compare favourably.

6 CONCLUSION

In this study we set out to directly compare linear and quadratic modal analysis on
a set of FSI benchmark problems. The procedure to compute the quadratic components
using a number of small strain FEM analysis was outlined. Approximating the structural
deformation using the quadratic mode shape components adds only a mild additional
complexity, retains the numerical efficiency offered by normal linear modal analysis, all
the while offering noticeably improved accuracy (albeit still limited to comparatively small
structural deformations).
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(a) (b)

(c) (d)

Figure 8: (a) Flexible beam problem description, (b) with a snapshot of the beam dis-
placement and pressure using full, high-fidelity FSI, with a comparison of the beam tip
(c) x-displacement and (d) y-displacement.
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