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Abstract. Modeling the separation flows at the entrance to suction ducts is necessary to 
determine the efficient intake area, jet contraction coefficient and the velocity fields in their 
radius of action. The simplest and the most thoroughly researched one is the separation flow 
at the entrance to the round thin-walled suction pipe, which is a part of many process 
facilities; simulation of flows in its range of action is considered in many scientific works. For 
the numerical modeling of such flows the boundary element method [1], the numerical 
solution of Navier-Stokes equations for viscous incompressible fluid [2] and the discrete 
vortex method were used. In the paper [3] there was developed a method of mathematical 
modeling of flow separation at the entrance to suction ducts with the use of stationary discrete 
vortexes. On the free surface of the flow the free vortexes circulation was set, after which the 
average velocity in the suction duct and the velocity field were approximately determined. 
The approach flow should be taken into account only if its velocity is lower than the intake 
velocity in the pipe. Modernization of this method seems to be of interest, as it would allow 
calculating the separation flow characteristics for both high-velocity and low-velocity 
approach flows. This can be obviously achieved if the intake velocity in the pipe is set, and 
the circulation on the free vortex sheet is determined in the process of the problem solution. 
The purpose of this work is developing the method of mathematical modeling of separation 
flow at the entrance to round thin-walled suction pipe at the presence of an approach flow 
using stationary discrete vortexes, as well as its verification. 
The developed method of mathematical modeling of separation flow at the entrance to suction 
pipe at the presence of an approach flow allows building the appropriate velocity field of an 
air flow, the limit trajectories of dust particles and determining the aspiration coefficient.  
 
 
1 INTRODUCTION 

The modeling of separation flows at the entrance to suction ducts is necessary for 
determining the efficient suction area, the jet constriction coefficient and velocity fields in 
their range of action. The simplest and the best researched is the separation flow at the 
entrance to round thin-walled suction pipe, which is a part of many technological facilities; a 
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lot of scientific research works are devoted to modeling flows in its range of action. For the 
numerical modeling of such flows the boundary-element method [4], the numerical solution 
of Navier-Stokes equations for viscous incompressible liquid [2,4] and discrete vortex method 
[5-7] were used. In this paper [7] there was developed a method of mathematical modeling of 
flow breakdown at the entrance to suction ducts with the use of stationary discrete vortexes. 
The free vortexes circulation was set on the free stream surface, after which the average 
velocity at the suction pipe and the velocity field were calculated approximately. The 
approach flow is taken into account only if its velocity is lower than the suction velocity in 
the pipe. Modernization of this method is of great interest, which would allow calculating the 
properties of separation flow, both for the low-velocity and the high-velocity approach flow. 
This can be obviously done, if we define the suction velocity in the pipe, and the circulation 
on the free vortex sheet is determined in the process of numerical calculation. 

The purpose of this work is to develop a method of mathematical modeling of the 
separation flow at the entrance to round thin-walled suction pipe in conditions of the approach 
flow with the use of stationary discrete vortexes, and its verification. 

 

2 THE MAIN CALCULATION RATIOS AND THE COMPUTING ALGORITHM 
CONSTRUCTION 

The discrete mathematical model (fig.1) is built in the following way. At the flow 
boundary there are infinitely thin vortex rings (black circles in fig.1) and control points 
(crosses in fig.1) – the arbitrary points on the circle, embracing the pipe, or on the suction 
section. Let us point out, that in the suction section on the symmetry axis the zero radius 
vortex is located, so it’s not taken into account. The number of discrete vortex rings is equal 
to the number of control points. In the control points on the pipe walls the impermeability 
condition is performed – the velocity along the normal direction amounts to zero. In the 
suction section the velocity along the outward normal direction is similar and amounts to 0v . 
The division to discrete vortex rings and control points is uniform, the control points are in 
the centre among the vortex rings. The distance between two neighbouring vortex rings is 
equal to discrete pitch size hr . The free stream surface consists of free vortex rings (hollow 
circles in fig.1) and is formed on the sharp edge А of the pipe. It is determined by iterational 
method, as further described. Parallely to the pipe axis the flow approaches with the velocity 
v . 

Let us define N – the number of the attached vortex rings; sN  - the number of free vortex 
rings; px - control point, 1,2, ,p N . 

The velocity in the arbitrary point x along the n  direction is calculated by the formula: 

1
1 1

( ) ( ) ( , ) ( , )
sNN

q q q
n

q q
v x G x G x n v

 

         ,    (1) 

where q  - the location point of the q-th attached vortex ring with circulation ( )q  , const   
- circulation of a free vortex ring, q  - the location point of the q-th free vortex ring. 
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The function  ,G x   expresses the influence on point 1 2( , )x x x  of the vortex ring with 
singular circulation, located in point 1 2( , )   . 
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,i ic d  are taken from tables [8]. 

 
Figure 1: The discrete mathematical model of separation flow at the entrance to round suction duct (pipe) in 

meridional plane 

If the distance from point x to point ξ  is smaller than the discrete pitch size hr , this 
function is calculated according to formula:   2

1 1 2 2 2 1( , ) ( ) ( ) / (2 )hG x x n x n r      . In the 
case of x    the function is ( , ) 0G x   . 

The computing algorithm is constructed in the following way. After defining the location 
points of attached vortexes and the control points a two-dimensional array is formed 

( , ); 1,2, , ; 1,2, ,pq p kG G x p N q N    . The initial coefficients at the first unknown vortex 
circulation on the sharp edge А: 1( , ) ( ), 1,p pG x P x p N   . The vortexes are numbered 
from this point. Then the iteration procedure starts.  

1. A one-dimension array of absolute terms is formed 

1
1

( , ), 1,2, ,
N

p p q

q
v n v G x p N



     . 

2. The initial coefficients are altered: 
1

1
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At the first iteration 0sN   and coefficients ( ,1)pG x  don’t alter. 
3. A system of linear algebraic equations in the unknowns ( )q  is solved: 

1
( ) ( , ) ( ), 1,2,3,

N
q p q p

q
G x v x p N



      

The vortex ring circulation on the sharp edge is memorized: 1   . 
4. The free stream surface, beginning from the sharp edge А, is constructed. 
Using the formula (1), at {1,0}n   the velocity component xv , is calculated at {0,1}n   ˗ 

velocity component rv . The following point ( , )x r   is determined from the previous one ( , )x r  

using the formulas: 2 2 2 2/ , / ,x x r r x rx x tv v v r r tv v v         where t  - is a pitch, which 
is chosen to be rather small. The free stream surface will consist of free vortex rings, located a 
discrete pitch size away from each other hr . So, in the process of calculation, the distance to 
the previous free vortex ring is checked at each stage. As soon as this distance becomes equal, 
within the accuracy of insignificant error, to discrete pitch size at a certain point, the next 
vortex ring is placed into this point. This construction goes on to the exhaust section,  after 
which the iteration procedure begins from 1 and continues, until the absolute difference 
between the old circulation value   on the free stream surface and the new one is higher than 
the given accuracy  . 

3 VERIFICATION OF MATHEMATICAL MODELING METHOD 

The calculation was carried out at 810  , 0,000625hr  m, the pipe radius R = 0,1m, the 
suction velocity 0 1v  m/s; the distance from exhaust section to the pipe entrance 6R; the pipe 
wall length 11R, the pitch of stream-line construction 75 10 m. The calculation results are 
presented in nondimensional form. The length scale ˗R, the velocity scale ˗ 0v . 

The results of building a stagnation stream-line at the velocity v of the approach flow of 
the greater suction velocity are shown 0v in fig.2. The following notations are introduced here: 
I – calculations at 0/ 2v v v  ;  II  – at 10v  ;   III – at 50v  ; line 1 – calculations by 
А.К. Gilfanov, Sh.H. Zaripov [4] in a potential model by the boundary-element method, line 2 
– calculations by discrete vortex method without accounting the flow breakdown according to 
the algorithms, designed in this work; line 3 – calculation in the model of viscous 
incompressible liquid (numerical solution of Navier-Stokes equations) [4]; line 4 - 
calculations according to the designed method; 5 – free stream surfaces, constructed by the 
designed algorithms. The comparison of the calculation data demonstrates that the 
computation of the stagnation stream-line is correct, and the calculations within the 
framework of this paper are close to calculations with the account of viscosity. 

The comparison of the calculated flow patterns at 50v   is shown in fig.3. The stagnation 
stream-line is denoted with a dashed line. The stream-lines are identical except for the 
separation area. In the model of viscous incompressible medium the separation area size is 
smaller. 
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Figure 2: Stagnation and free stream-lines at the entrance to round thin-walled suction duct 

The calculations at 0,02v   are virtually identical, too (fig.4). A slight deviation is 
observed at the separation area boundary. In the model of viscous incompressible liquid it 
shrinks at the removal in the suction duct, unlike the calculations within the framework of this 
paper. 

Fig. 5 shows the flow patterns at the entrance to a slot-like and round suction ducts, 
constructed within the framework of potential flow model with the use of conformal mapping 
[9], viscous incompressible liquid with the use of Navier-Stokes equations' numerical solution 
[9] and the model, presented in this work. The calculations were carried out at various 
velocities of the approach flow, but not higher than the suction velocity. The stagnation 
stream-line is shown with a dashed line. Though the flow patterns are similar enough, at the 
entrance to the a slot-like suction duct the separation area, constructed with conformal 
mapping method, is narrower than the separation area, constructed with the designed 
calculation procedure. In the viscous incompressible liquid model the calculated width of 
separation area is considerably wider, but of the finite length, as compared to calculations 
within the framework of other models. 

Among the aspiration objectives there is studying the dust particle dynamics in the 
round thin-walled duct’s range of action, determining the extreme trajectories of dust particles 
and the aspiration coefficient. 

So, in this work the extreme trajectories of dust particles were constructed, with the use 
of differential equations system of their movement: 

, , , ,x x x r r r
x r

dv u v dv u vdx drv v
dt dt dt dt

 
   

 
 

where 2 St/R v   - relaxation time, St - Stokes number; ,x ru u  - medium velocity 
components; ,x rv v  - particles velocity components, t – time. 
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Figure 3: Stream-lines at 50v  : а – calculations in the model of viscous incompressible liquid [4],  b –

  calculations according to the designed computational procedure 

 
Figure 4: Stream-lines at 0.02v  : а – calculations according to the designed method; b – calculations in the 

model of viscous incompressible liquid [4] 

The extreme trajectory was determined by means of bisection method. The Stokes 
number and the initial position of a dust particle were denoted, the relaxation time was 
determined. The initial velocities were assumed as equal to the approach flow velocity. To the 
variable lU  the ordinate of a particle, caught by the pipe, was placed, and in the variable pU  - 
the ordinate of a deposited particle. In the initial approximation there was set lU R , 

40pU R . The variable ( ) / 2r p lS U U  . Then a cycle was organized, which performed until 

the condition 0,00000001p lU U  . In the internal cycle the particles’ trajectories were built. 
At the exit from the internal cycle the particle’s getting into the pipe was checked. If yes, then 
the variable is l rU S , otherwise p rU S , the particle escape coordinates assumed the value 
(100 , )R Sr . 

The aspiration coefficient was determined from the formula: 2( / )cA R R v , where cR  - 
the initial distance to the symmetry axis of the found extreme trajectory of the dust particle. 
The withdrawal from the entrance to the suction duct was equal to 100R. 
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Figure 5: The comparison of stream-lines, constructed: а) for a slot-like suction duct by method of conformal 
mapping [9]; b) for a slot-like suction duct in the viscous liquid model [9]; в) for a round pipe according to the 

designed method 
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The comparison of the aspiration coefficient alteration depending on the dimensionless 
velocity of the approach flow and various Stokes numbers is presented in Fig.6, where there is 
a good congruence of calculations with the use of the designed computation procedure and the 
calculations, performed in [4], in the viscous incompressible liquid model. The maximum 
difference is observed at St=0,1 and 0,02v  , but it doesn’t exceed 7%. 

 
Figure 6: The dependence of aspiration coefficient А 
on the dimensionless velocity of the approach flow v  

4 THE BELL VENT IN CONDITIONS OF THE APPROACH FLOW 

The air flow approaches a bell vent with velocity u  (fig.7 а). In the suction section of the 
bell there is a parabolic distribution of velocity, which corresponds to the viscous flow in a 
round duct with the average velocity 0u : 2 2

02 (1 / )v u r R  , where R – is the radius of a 
suction duct. There should be found the regularities of the aspiration coefficient’s alteration 
depending on the slope angle , the bell length l and the approach flow velocity  u - 

2( / )cA R R v , where cR  - the initial distance to the symmetry axis of the found extreme 
trajectory of the dust particle, 0/v u u .  Let us point out, that the gravitation acceleration is 
directed oppositely to the velocity in the vent 0u , i.е. the bell vent is located vertically, but for 
the convenience of presentation it is shown in the horizontal position. 

The discrete mathematical model (fig.7b) is built in the following way At the flow 
boundary there are infinitely thin attached vortex rings (black circles in fig.7b) and control 
points between them (crosses in fig.7b) - on the circle, embracing the pipe, or on the suction 
section. Let us point out, that in the suction section on the symmetry axis the zero radius 
vortex is located, so it’s not taken into account. The number of discrete vortex rings is equal 
to the number of control points. In the control points on the pipe walls the impermeability 
condition is performed – the velocity along the normal direction amounts to zero. In the 
suction section the velocity along the outward normal direction is similar and amounts to 0v . 
The division to discrete vortex rings and control points is uniform, the control points are in 

388



A.K. Logachev [etc.] 

 9 

the centre among the vortex rings. The distance between two neighbouring vortex rings is 
equal to discrete pitch size hr . The free stream surface consists of free vortex rings hollow 
circles in fig.7b) and is formed on the sharp edge А of the bell. It is determined by iterational 
method, as further described. Parallely to the pipe axis the flow approaches with the velocity 
v , which can be directed oppositely to the axis Ox, or can coincide with it. It must be 
pointed out, that the free stream surface can also descend into the bell at the low velocities of 
the approach flow. 

  
а)        b) 

Figure 7: The bell vent at the approach flow: а) general flow pattern; b) discrete mathematical model in 
meridional plane 

The dust particles trajectories were built with the use of differential equation of its dynamics: 

( )
2 St

p
p a

d u
dt R


  

 

v
g v v ,     (2) 

which corresponds to a system of standard differential equations: 

   , , , ,
2 St 2 St

px py
px ax px pr ar pr

dv dvu udx dyv v v g v v v
dt R dt dt R dt

  
        

   
  (3) 

where Re /a p a ed   v v ,  air dynamic viscosity coefficient, 2St / (36 ),p ed u R   av  air 
velocity; a  air density; pv  particle velocity;  p  particle density; dе   equivalent 

diameter of a particle; g  free fall acceleration; 2π 4m eS d  middle section area of a 
particle;  dynamic mode coefficient of a particle;  

   1.52/3 3 2/3 31, if Re 1; 1 1/ 6 Re , if 1 Re 10 ; 1 0,065Re , if Re 10 .              
The equation (2) is not dimensionless, but the Stokes criterion is singled out, on the base of 

which a number of computational experiments will be carried out. 
Here are some results of calculating velocity in the vent 0 1u   m/s and the approach flow 

velocity 0,6u  m/s. The following parameters were used in the calculations: discrete pitch 
size 0,000625hr   m; pipe radius 0,1R   m; pipe length 20R; the suction opening is located 
in the centre of the pipe; stream surface construction pitch 0,0000025m; differential equation 
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integration pitch of dust particle dynamics 0,001 – 0,005; accuracy of free stream surface 
construction 610  . 

The extreme trajectories of dust particles with numbers St 0,01  and St 0,001  almost 
overlap. The flow breakdown boundary is denoted with a continuous line (fig.8). With the 
increase of Stokes number St the aspiration area grows. The calculation was carried out at 

0 1u   m/s. 
The initial conditions for constructing the dust particles trajectories were set in the 

following way: , 0, 30px prv u v x R    . The extreme trajectory was determined with the 
use of bisection method. The Stokes number and the initial position of a dust particle were 
denoted, the relaxation time was determined. The initial velocities were assumed as equal to 
the approach flow velocity. To the variable lU  the ordinate of a particle, caught by the pipe, 
was placed, and in the variable pU  - the ordinate of a deposited particle. In the initial 
approximation there was set lU R , 40pU R . The variable ( ) / 2r p lS U U  . The initial 
position of the particle’s withdrawal from the axis rr S .  Then a cycle was organized, which 
performed until the condition 0,00000001p lU U  . In the internal cycle the particles’ 
trajectories were built. At the exit from the internal cycle the particle’s getting into the pipe 
was checked. If it was caught with a suction opening, then the variable is l rU S , otherwise 

p rU S . 
In Fig.9 we can see that the extreme trajectories not necessarily finish at the bell boundary. 

It’s explained by the presence of the branch point of dust particles, as shown in Fig.4, where 
there are presented dust particle’s trajectories slightly lower and slightly higher than the 
extreme trajectory. The extreme trajectories of dust particles constrict to the bell’s symmetry 
axis as compared to Fig.8.  

The aspiration coefficient was determined from a formula: 2( / )cA R R v , where cR  - the 
initial distance to the symmetry axis of the found extreme trajectory of the dust particle, 

0/u u u . The withdrawal from the entrance to the suction duct was equal to 30R. The 
dependence of aspiration coefficient on the length of the bell, located 90 degrees to the vent 
axis is shown in Fig.11. If the Stokes numbers tend to zero, the aspiration coefficient virtually 
doesn’t change and tends to one at any bell length. Indeed, in the supposition of the 
uniformity of concentrations and velocities of dust particles in the air flow at the considerable 
distance from the suction duct, the aspiration coefficient is equal to the ratio of the cross-
section area of dust particles extreme trajectories to the cross-section area of the aspirated air 
stream in the same section. If the Stokes number tends to zero, the extreme trajectories of dust 
particles coincide with stagnation stream-lines. So, the above mentioned areas coincide. To 
this case the Stokes number St = 0,001 corresponds. Here there is the right line 1A  . At the 
growth of the Stokes number, the aspiration coefficient decreases with the increase of the bell 
length. At the Stokes number St = 0.2 there is a sharp drop of aspiration coefficient in the 
range of bell length alteration from 0 to 1 calibre. It’s interesting, that all the curves intersect 
in one point, which corresponds to the bell length equal to 0.5 of the caliber (caliber is the 
pipe radius R). 
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Figure 8: The extreme trajectories of dust particles at: 

/ 0,1l R  0,6u  . 
Figure 9: The extreme trajectories of dust particles at 

/ 0,25l R  , 0,6u   

           

Figure 10: The trajectory of a dust particle at: St = 0.2, 
/ 0,25l R  , 0,6u   

Figure 11: The dependence of aspiration coefficient 
on the bell length at 90  , 0,6u   

At the twofold increase of the approach flow velocity the dependence of aspiration 
coefficient on the dimensionless bell length alters considerably (fig.12). At the Stokes 
numbers lower than 0.1 the aspiration coefficient tends to one in the whole range of bell 
length variations. The character of the aspiration coefficient alteration remains the same – it 
decreases at the bell length increase, but doesn’t exceed 1. As the approach flow velocity has 
increased, it’s possible to plot the graphs of the aspiration coefficients alteration at the 
increase of Stokes numbers to one. In the latter case, it was done in a narrow range of bell 
lengths alteration. 

The determining of regulations in the dependence of aspiration coefficient on the slope 
angle of the bell to its axis at the fixed bell length is also of interest (fig.13). 

As before, at the low Stokes numbers (less than 0.01) the aspiration coefficient tends to 
one. The graphs of variance are not steady; there is a low at the range of 45-60 degrees. 
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Figure 12: The dependence of aspiration coefficient 

on the bell length at 90  , 1,2u   
Figure 13: The dependence of aspiration coefficient 
on the bell length at / 1l R  , 1,2u   on the slope 

angle of the bell 

CONCLUSIONS 
- The developed method of mathematical modeling of the separation flow at the 

entrance to the suction pipe at the approach flow allows constructing an accurate 
velocity field of the air flow, extreme trajectories of dust particles and determining 
the aspiration coefficient.  

- The work has been carried out with the financial support of the Grant Council of the 
President of the Russian Federation (project MD-95.2017.8). 
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