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Abstract. The efficient numerical simulation of Fluid-Structure Interaction (FSI) prob-
lems is of growing interest in many engineering fields. Staggered approaches are partic-
ularly interesting because they allow for the reuse of existing softwares. In this work we
propose a staggered scheme based on the weakly compressible PFEM for the fluid domain
and SIMULIA Abaqus/Explicit for the solid domain. The coupling is treated with a do-
main decomposition approach based on the Gravouil-Combescure algorithm. The main
goal is to show the possibility of a fully explicit coupling with different time step size on
the two phases (fluid and solid) and incompatible mesh at the interfaces. 2D test-cases
will be presented to validate the proposed coupling technique. The explicit time integra-
tion scheme for both the fluid and solid subdomains, together with the explicit treatment
of the coupling, makes this method appealing for applications in a variety of engineering
problems with fast dynamics and/or a high degree of non-linearity.

1 INTRODUCTION

In the present work, a staggered approach for the solution of the FSI problem is pro-
posed. The fluid domain is discretized with a Particle Finite Element Method (PFEM) [1],
while the solid domain with a standard Finite Element Method. The weakly compressible
formulation of the fluid flow, originally proposed in [2] for an explicit PFEM, is here used
for the fluid domain. The PFEM has shown its capability in simulation of free surface
flows in many applications (e.g. [3, 4, 5, 6]). Thanks to the Lagrangian formulation, the
free surface is directly defined by the current position of the particles, while the governing
equations are imposed like in standard FEM. When the mesh becomes too distorted, a fast
remeshing algorithm is used to redefine the connectivities. SIMULIA Abaqus/Explicit has
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been used for the solution of the structural domain. This allows to perform simulations
with a complete and advanced description on the structural domain, including advanced
structural material models and contact. The GC Domain Decomposition method [7] is
here used for the coupling: the problem is solved independently on each subdomain and
then linked at the interface using a Lagrange multiplier technique. The proposed method
allows for different time-steps in the two subdomains and for non-conforming meshes at
the interfaces between the solid and fluid domains. Moreover, this approach guarantees
an explicit coupling at the interfaces.

2 GOVERNING EQUATIONS

The fluid domain Ωt
f has been modeled through the weakly compressible Navier-Stokes

equations:

dρf
dt

+ ρf (∇x · vf ) = 0 in Ωt
f × [0, T ] (1)

ρf
dvf

dt
= ∇x · σσσf + ρfbf in Ωt

f × [0, T ] (2)

where x are the coordinates in the current configuration, ρf is the fluid density, vf the fluid
velocity and bf the external forces. The Cauchy stress tensor σσσf can be decomposed in its
deviatoric and isotropic parts: σσσf = −pfI + τττ f . In the weakly compressible framework,
the pressure field pf can be directly related to the density ρf through the Tait equation:

pf (ρf ) = p0,f +Kf

[(
ρf
ρ0,f

)γ

− 1

]
(3)

where p0,f is the reference pressure, ρ0,f the reference density, γ = 7 the specific heat ratio
and Kf the bulk modulus.

The solid domain Ωt
s is governed by the momentum conservation equation:

ρs
dvs

dt
= ∇x · σσσs + ρsbs in Ωt

s × [0, T ] (4)

where ρs is the solid density, vs the solid velocity, bs the external forces on the solid
domain and σσσs represents the stress tensor on Ωt

s. Standard Dirichlet and Neumann
boundary conditions are applied on both the domains.

3 SPACE AND TIME DISCRETIZATION

Following a standard Galerkin finite element approach the semidiscretized equations
of motion appear:

Mf
dVf

dt
= Fext,f − Fint,f = Ff in Ωt

f × [0, T ] (5)

Ms
dVs

dt
= Fext,s − Fint,s = Fs in Ωt

s × [0, T ] (6)
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where M are the mass matrices, V the vector of nodal velocities and Fint and Fext the
vectors of internal and external nodal forces, respectively.

The discretized form of fluid mass conservation (2) can be obtained starting from the
Lagrangian strong form, leading to:

MρRf = R0 (7)

where Rf contains the nodal values of the density field (details can be found in [2]).
Equations (5-6) are integrated in time by means of the Central Difference Scheme

[8]. It is important to recall that performing a mass lumping in the mass matrices, a
fully decoupled system of equations can be obtained and fluid and solid velocities can be
computed explicitly node by node.

4 THE COUPLING SOLUTION SCHEME

A staggered approach is here proposed for the solution of the coupled fluid-solid
problem. The fluid sub-problem is solved numerically through the weakly compress-
ible PFEM (see [2]). The solid sub-problem is analyzed using the commercial software
Abaqus/Explicit [9].

To couple the fluid and the solid domains the so-called GCmethod (Gravouil-Combescure)
[7] has been selected. This algorithm, originally conceived for non-overlapping structural
domains, has been recently extended to FSI problems [10]. The proposed approach splits
the kinematic solution of each subdomain into two terms: free and link. The free solution
is related to the free motion of each subdomain without considering the interaction with
each other; the link solutions introduce a correction to account for the coupling. The cor-
rection terms are computed applying boundary tractions at the fluid-solid interface that
play the role of Lagrange multipliers for the imposition of a kinematic constraint. The
GC coupling algorithm allows for different time steps in the two sub-domains. Moreover,
it allows for the use of incompatible meshes at the fluid-solid interface. This algorithm
guarantees a stable strong coupling for the staggered solution of the FSI problem. In the
present case of explicit fluid and structural solvers, the correction step consists in a small
system of decoupled equations, resulting in a fully explicit coupled solver. A detailed
description of the proposed approach can be found in [11].

5 NUMERICAL EXAMPLES

5.1 1D Fluid Structure Interaction

A first validation of the present method is obtained considering the 1D example pre-
sented in [12]. An elastic column, clamped at its bottom edge, is loaded by a column
of water, as shown in Figure 1a. Due to the weight of the water, at the beginning of
the analysis the system starts to oscillate vertically, as the horizontal displacement is
constrained. The material parameters used for the water subdomain are:

• reference density ρ0,f = 1000 kg/m3,
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Figure 1: 1D Fluid Structure Interaction. (a) Geometry of the problem. (b) Vertical Displacement of
the fluid-structure interface: comparison with numerical results presented in [12]

• viscosity µf = 0 Pa · s ,

• bulk modulus Kf = 2.2 · 109 Pa;

while for the structural subdomain, the material parameters are:

• reference density ρs = 1500 kg/m3,

• Young Modulus Es = 2.3 · 105 Pa,

• Poisson ratio νs = 0.4.

Figure 1 shows the evolution in time of the vertical displacement at the fluid-structure
interface. The results obtained with the present approach are compared with the ones
presented in [12], showing a good agreement, both in terms of maximum displacement and
frequency of the oscillations. It is worth noting that the structural parameters correspond
to a very soft material, with a low Young’s Modulus and density close to the fluid one.
These conditions are known to be source of numerical difficulties [13, 12]. Consequently,
despite its apparent simplicity, this example is a good test for the robustness of a FSI
solver.

5.2 Deformable wedge impacting free surface water

In this example, the proposed method is tested on the challenging case of high speed
impact of deformable structures against water at rest. The problem setting, presented in
[14], is depicted in Figure 2. An aluminum wedge, with an inclination of 10◦, is clamped
at both its ends, where a vertical velocity of Vy,s = −30 m/s is imposed. The geometrical
and mechanical parameters of the analysis are listed in table 1. The impact at high speed
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Figure 2: Deformable wedge impacting water free surface. Geometry of the problem

against water causes the deflection of the beam and the creation of lateral water jets.
This is qualitatively shown in Figure 3, which collects some snapshots of the simulation.
For a quantitative validation, Figure 4 shows the time evolution of the beam deflection at
point B, as well as the time evolution of pressure at points A, B, and C, respectively. The
results are compared with the numerical ones obtained with the SPH method presented
in [14], and the semi-analytical solution presented in [15]. Once again, one can observe a
very satisfactory agreement of the comparisons, considering the high level of complexity
of the problem at hand.

Data
L 0.6 m
h 0.04 m
β 10◦

Vy,s −30 m/s
Fluid

Density 1000 kg/m3

Viscosity 0.001 Pa · s
Bulk Modulus 2.2 · 109 Pa

Alluminium Beam
Density 2700 kg/m3

Young Modulus 67.5 GPa
Poisson ratio 0.34

Table 1: Deformable wedge impacting water free surface. Geometry and materials parameters.
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(c) t = 0.0003 s (d) t = 0.0013 s

(e) t = 0.0023 s (f) t = 0.0028 s

Figure 3: Deformable wedge impacting water free surface. Snapshots of the simulation at different time
instants. Contour plot of the pressure field in the fluid subdomain and Mises stress field in the structural
one.

6 CONCLUSIONS

In the present work a fully explicit and fully Lagrangian PFEM-FEM coupling ap-
proach has been proposed for the solution of a fluid-structure interaction problem. The
employment of a commercial software such as Abaqus/Explicit will allow to exploit all
the available features for an advanced modelling of the structural part. The coupling has
been performed through the GC domain decomposition method. This method synchro-
nizes the independent solutions of the two subdomains, ensuring the strong coupling and
the stability of the staggered approach. A fully explicit approach with different time step
sizes and incompatible meshes at the interface has been proposed and validated. Two
numerical examples have been used to assess the potential of the proposed numerical
scheme.
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Figure 4: Deformable wedge impacting water free surface. Comparison with the analytical solution
presented in [13] and the numerical one presented in [14]. (a): Time evolution of the deflection of the
midpoint of the beam. (b)-(c)-(d) Time evolution of pressure at points A, B and C, respectively.
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