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Abstract—Recent advances in Deep Reinforcement Learning
(DRL) techniques are providing a dramatic improvement in
decision-making and automated control problems. As a result,
we are witnessing a growing number of research works that are
proposing ways of applying DRL techniques to network-related
problems such as routing. However, such proposals failed to
achieve good results, often under-performing traditional routing
techniques. We argue that successfully applying DRL-based
techniques to networking requires finding good representations of
the network parameters: feature engineering. DRL agents need to
represent both the state (e.g., link utilization) and the action space
(e.g., changes to the routing policy). In this paper, we show that
existing approaches use straightforward representations that lead
to poor performance. We propose a novel representation of the
state and action that outperforms existing ones and that is flexible
enough to be applied to many networking use-cases. We test our
representation in two different scenarios: (i) routing in optical
transport networks and (ii) QoS-aware routing in IP networks.
Our results show that the DRL agent achieves significantly better
performance compared to existing state/action representations.

I. INTRODUCTION

Recent advances in the field of Deep Reinforcement Learn-
ing (DRL) are showing a dramatic improvement in decision-
making and automated control problems [1]. As a result,
the networking community has recently started to investigate
the potential of such techniques to solve network-related
problems, such as IP routing [2], optical routing [3] or QoS
provisioning [4]. These recent proposals aim to build self-
driving networks [5] by designing ML-based agents that
operate the network autonomously.

Network routing is a particularly interesting problem for
the application of DRL techniques. Indeed, the configuration
of optimal routes in a network is arguably one of the most
fundamental and well studied problems in the field of net-
working. This problem has been addressed using traditional
traffic engineering techniques [6], which rely on complex
optimization algorithms with simple delay models. In contrast,
DRL and modern ML techniques enable to operate under
complex and non-linear models. However, at the time of this
writing, existing DRL-based proposals still fail to achieve good
results and often under-perform traditional routing techniques
based on simple heuristics. In this paper, we argue that
the main reason behind this poor performance is that these
proposals apply DRL as a black-box using straightforward
representations for both the observation and the action space.

The representation of the observation space describes the
state of the environment, the network in our case. This is
typically achieved by representing it as a matrix containing
the per-link utilization. The action space, on the other hand,
describes the modifications that the DRL agent performs
on the environment. In our context, the action corresponds
to changes to be applied to the routing configuration of a
network. Given the high dimensionality of the output, existing
proposals usually limit the action space to straightforward
representations, such as the per-link weights for link state
routing algorithms [2], [7].

We argue that networking problems are fundamentally dif-
ferent from other recent problems where DRL techniques have
been successfully applied (e.g., [8]). We show that, in order to
outperform traditional algorithms in the networking context, it
is not enough to leverage recent advances in DRL algorithms
as done in previous works, but it is even more important to
carefully design good representations of the state and action
spaces that can better represent the singularities of network
topologies and simplify the learning process to the DRL agent.
We refer to this design process as feature engineering.

An important limitation of existing representations is that
they do not achieve a good generalization. The power of
modern DRL techniques relies on their ability to make good
decisions in scenarios where they may have not been trained
in advance. A good representation is crucial to simplify the
learning process by reducing the level of abstraction required
by the ML model. In other words, the more advanced the
representation is, the easier and faster is the learning process.

In this paper, we propose a novel representation for the
network state (observations) that captures both the overall
utilization of the network and the critical inter-dependencies
among the paths resulting from the network topology in a way
that is simple and that can be more easily exploited by the
agent to learn better and faster. In addition, one of the main
advantages of this representation is that it is flexible enough
to be applied to a wide set of networking use-cases.

We experimentally test our representation against state-of-
the-art DRL techniques in two separate use-cases to show its
flexibility. First, we evaluate the performance of the DRL agent
routing traffic demands in Optical Transport Networks (OTN).
And second, we perform QoS-aware routing in IP networks
including traffic with different delay requirements.
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II. DEEP REINFORCEMENT LEARNING IN ROUTING

The objective of Deep Reinforcement Learning is to learn
the policy that leads to a maximum cumulative reward. The
learning is achieved by iteratively exploring the state and
action spaces. In this paper, we focus on optimizing the
routing policy in a network. In particular, we define the routing
problem as choosing a certain strategy to route new source-
destination flows with the aim of making the best of the
network resources in the long-term.

This problem can be modeled as a Markov Decision Process
(MDP). A MDP is defined by the tuple {S,A, T,R, γ, s0}.
The State (S) must represent the environment unambiguously
regarding the nature of the action space. In our scenario,
it must represent the state of the network and the infor-
mation of the flow(s) to be routed. The Action (A) stands
for the set of actions that the agent can take and can be
either continuous or discrete (i.e., the changes to the routing
configuration). The Transition distribution (T (s, a, s′)) defines
how the environment, the network in our case, evolves after
taking an action. In our scenario, the transition distribution
models the stochastic behavior of changes in the network state
as well as the generation of new traffic flows to be routed.
The Reward (R) is the incentive that the agent obtains after
making decisions. Its purpose is to steer the learning process
of the agent towards the achievement of its final objective.
The discount factor (γ ∈ [0, 1)) represents the importance of
future states. In our scenario, it must be considerably high,
since the objective represents a long-term planning strategy.
Finally, the initial state (s0) represents an empty network with
a first traffic demand to be routed.

Solving the MDP directly is typically computationally very
expensive given the high dimensionality of the problem state
and the uncertainty in the transitions. The number of possible
network states is proportional to the number of links, their
capacity and the granularity considered for the link utilization.
For standard networks, this is typically an extremely high num-
ber of states. For example, in the experiments we perform in
Section IV-A, the number of possible network states is close to
10100. An alternative to solve the MDP is using Reinforcement
Learning together with generalization techniques. This makes
it possible to extract knowledge from visited states that can
be used for unexplored states. In order to achieve this level
of generalization, recent DRL algorithms propose the use of
deep neural networks. Thus, with a proper training, such neural
networks are able to model how to act successfully in regions
not explored before.

Fig. 1 represents the basic operation of the DRL agent in
a network routing scenario. When there is a new flow to be
routed, this is communicated to a network controller (1). Then,
the controller generates a new state representation that will
be the input of the DRL agent (2). This state representation
includes information about the state of the network and the
new traffic request. With this input, the DRL agent selects an
action that involves making a routing decision (3). Lastly, the
controller translates the resulting action to a particular set of
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Fig. 1. Schematic representation of the DRL operation.

network rules that are installed into some network devices (4).
This way, during the training phase, the DRL agent learns how
to properly act over the network by iteratively exploring dif-
ferent routing strategies and considering the reward obtained.

III. PROPOSED REPRESENTATION

In this section, we propose a novel representation for DRL
to specifically tackle optimization problems in networking
scenarios, such as network routing. The design of this rep-
resentation involves both how to define the network state (i.e.,
the observation space) of the DRL agent and the set of actions
that the agent can apply (i.e., the action space).

A. State-of-the-art representations

Before describing our representation, we review the brief
related work addressing network routing based on Deep Learn-
ing techniques and the representations they proposed. Some
works, like [2], [7], [5], opt for using directly the traffic matrix
(i.e., the traffic demand between each source-destination pair)
as the representation of the network state. This information
allows the agent to define a global routing policy considering
the overall traffic demand in the network. Then, the action
of the agent is to select the link weights of an external
algorithm (e.g., softmin routing [2], OSPF-like [7]) that defines
the final routing policy. Although these representations obtain
reasonable performance in simple routing problems (e.g., link-
weight selection), they exhibited poor results when applied to
more complex problems, such as flow-based routing, even in
some cases falling behind more classical routing algorithms.

Other approaches propose making routing decisions for
every new traffic demand considering the current state of
the network. Thus, in [9] the network state is represented
as a matrix that contains the traffic demand aggregated in
every router for a number of time intervals. Alternatively,
[3] represents the network state with the links’ utilization.
Particularly, they model links as arrays with a number of
slots that can be full or empty. Both proposals, [9] and [3],
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Fig. 2. Scheme of the state representation proposed.

define a discrete action space for the agent where each option
represents the selection of a path among a number of candidate
paths. The main drawback of these representations is that
the DRL agent must abstract knowledge from the link-level
features represented in the observation space to the path-level
options present in the action space.

We claim that, in networking scenarios, it is not feasible to
achieve good performance by using only straightforward rep-
resentations of the network state, such as the links’ utilization
or the traffic matrix. For example, these representations do
not include information about the network topology and the
interdependencies between the links that form an end-to-end
path, which is critical to routing. Note that the alternative of
including this information as an adjacency matrix would not
solve the problem, as it would be very difficult for the DRL
agent to learn these relationships from a raw matrix (e.g., the
network paths and the links they share).

B. Description of our proposed representation

In contrast to state-of-the-art proposals, our approach is
to perform feature engineering to achieve a more elaborated
state/action representation that facilitates the agent to learn
how to efficiently route the traffic. In other words, our repre-
sentation should help the DRL agent to achieve generalization.

A key aspect to consider in the design of such a represen-
tation is that, in network scenarios, we can provide a simple
estimate of how the network state will change after routing
a new traffic demand. For instance, if we assume that we
know the bandwidth request of an incoming demand, it is easy
to estimate the resulting link utilization after allocating that
demand to a specific end-to-end path. This means that we can
leverage this information and provide this knowledge directly
to the agent. This considerably simplifies the problem, because
otherwise the agent would have to learn these relationships
from exploration. However, there is still the challenge of how
to choose the best routing policy considering the uncertainty

of future traffic requests, which are stochastic. In this context,
after proper training, the agent should acquire some knowledge
from the network and learn routing strategies that effectively
deal with such uncertainty in the traffic. For instance, it
may detect potentially critical links/paths and try to prevent
bottlenecking them.

In the light of the above, we propose the following rep-
resentation for the DRL agent. Instead of considering link
statistics, as in previous works, we propose the use of statistics
at the path level. This way, the agent does not need to infer
knowledge from the link-level to the path-level. Regarding
the action space, we propose a set of discrete actions where
each action corresponds to the selection of a specific end-to-
end path. Particularly, we consider that, for each new traffic
demand {source, destination, bandwidth demand, . . .},
the agent can select one path among a list of “k” candidate
paths (e.g., “k” shortest paths) that connect the source and
the desination of such demand. With respect to the state
representation, the agent is provided with relevant statistics
of the “k” candidate paths of all the source-destination pairs
in the network. In Fig. 2, the top matrix represents a scheme of
the current network state maintained in the network controller.
This matrix contains the current statistics of the “k” end-to-
end paths (e.g., available capacity) for each source-destination
pair. With this representation, the controller can compute all
the next states that can be reached after applying every possible
action in the current action set and provide them to the DRL
agent. That is, in each epoch the input of the DRL agent will
be “k” matrices (as shown in the bottom of Fig. 2), where each
matrix represents the estimated path statistics after allocating
the current traffic request to each of the “k” candidate paths.
In other words, the proposed representation provides the agent
with a set of matrices that describe relevant statistics for the
consequences of applying every possible action. Note that
limiting the actions to “k” paths allows us to control the
dimensionality of the state representation.



This representation assumes that the DRL agent has access
to telemetry information of the network, which is aligned
with current architectural trends, such as Software-Defined
Networking or Overlay Networking. Also note that, depending
on the particular problem to address, the path-level statistics
present in the state representation may vary (e.g., available
capacity, end-to-end delay). Additionally, it may be required
to include some information about the current traffic request
(e.g., bandwidth demand, delay constraints).

IV. RESULTS

In this section we show that our proposal can be successfully
applied to different networking use-cases. To this end, we
evaluate its performance in two different routing scenarios:
(i) traffic routing in Optical Transport Networks (OTN), and
(ii) QoS-aware routing in IP networks.

A. Routing in Optical Transport Networks

In this use-case, the objective of the agent is to efficiently
route new service requests in OTNs. Each service request
is defined by the tuple {source, destination, bandwidth}
and must be allocated in the OTN, i.e., it has to be routed
through a concatenation of lightpaths to reach the destination.
We assume that the DRL agent manages the routing over
the logical topology. That is, we consider that all the nodes
in the logical topology are reconfigurable optical add-drop
multiplexer (ROADM) devices, which have enough flexibility
to route the traffic over any of the lightpaths connected to
them. Additionally, we consider that the agent operates at
the electrical domain to allocate traffic demands to end-to-
end paths. Thus, we consider there are only 5 types of traffic
requests (from ODU0 to ODU4) with different bandwidth
demands that can be expressed as multiples of ODU0 signals1.

We assume that these service requests do not expire, hence
the objective is to postpone the event that a request cannot
be allocated. We consider that a request is properly allocated
to an end-to-end path if there was enough available capacity
in all the lightpaths included in it. Consequently, we define
the immediate reward as the bandwidth of the current service
request if it was properly allocated, otherwise it is 0. Likewise,
an episode ends when a service request cannot be allocated.

In our experiments we trained a DRL agent using an im-
plementation of the Trust Region Policy Optimization (TRPO)
algorithm [10] provided by ChainerRL (v0.3.0) [11]. We
modeled the agent with a neural network with two hidden
layers, each one with 64 neurons. The number of neurons in
the input and the output layers varies in the different scenarios
we tested. We selected a value of 0.995 for the discount factor
(γ) and 0.97 for the exploration parameter (λ), which obtained
the best results.

We evaluated the agent in two real-world topologies: the
14-node NSFNET used in [12] and the 17-node German
Backbone Network (GBN) used in [13], with an ad-hoc
simulator. For the sake of simplicity, we consider that all the

1Note that an ODU0 can carry 1.244 Gbit/s approximately. The largest is
ODU4, which corresponds to the bandwitdth carried by 64 ODU0 signals.

links in both networks have a capacity equal to 200 ODU0
demands. We compared three different representations of the
observation and action spaces. The simplest one uses the
available capacity of the links as network representation and
the selection of one path among 4 candidate shortest paths
for the (discrete) action space. This representation (hereafter
referred to as “Link and k-paths”) is similar to the approach
followed by [3]. The second approach (referred to as “Links
and weights representation”) uses also the available capacity
of the links to represent the network, but the actions consist
of defining weights for the links; then, the path with lowest
weight is selected. This second representation uses the same
action space as in [2]. Finally, we implement the representation
described in Sec. III using only the available capacity per path
as path-level metric. In all the cases, we use vectors with one-
hot encoding to represent the source, destination and ODUk
type (i.e., bandwidth requirement) of the traffic demands.

We trained the agent in two scenarios with different traffic
profiles. In the first scenario, we generated a bimodal synthetic
traffic distribution [14], in which 20% of nodes generate
80% of the traffic. The distribution of the ODUk requests
follows an elephant-mice distribution [15], where there is a
high number of low bandwidth requests and the bulk of the
traffic is generated by a reduced number of big requests. In the
second scenario, we used an uniform distribution for sources,
destinations and ODUk types. This latter scenario represents
the most challenging case for the DRL agent, given that it
cannot exploit particular characteristics of the traffic profile to
efficiently direct the exploration during training.
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Fig. 3. Average score as a function of the training episodes for different
state/action representations in the NSFNET topology.

Fig. 3 shows the score (i.e., the accumulated reward)
achieved by the DRL agent. This represents the average
bandwidth properly allocated w.r.t. the number of training
episodes for the two traffic scenarios in the NSFNET topology.



Each figure shows the performance achieved by the tree
observation/action spaces and by a traditional Shortest Path
(SP) routing policy. In the scenario with synthetic traffic, the
agent achieves a slightly higher score, since there are more low
bandwidth requests, which are easier to be allocated properly.
Likewise, for both traffic distributions, we observe a similar
behavior: (i) the simplest representation (“Link and k-paths”)
achieves a similar score than the SP policy, (ii) the “Links and
weights” representation is able to outperform the SP policy, but
it learns much slower than using the other representations. For
example, in the case with synthetic traffic, the representation
proposed in this paper needs only 8k episodes to achieve
the same score obtained by the weights representation after
500k episodes. Finally, the proposed representation is able to
allocate 30% more bandwidth than using the “Link and k-
paths” representation.

Fig. 4 shows the same experiments for the GBN topology. In
this scenario, we can observe a similar behavior for the three
representations, but also an increase in performance compared
to the score obtained by the SP policy. This may be due to the
different distributions of the node degree in both topologies.
For example, in the GBN topology, we observed there are
more nodes with low degree. This makes the links connected
to these nodes more prone to become congested. Note also
that, for all the evaluations we performed with link-based
state representations, the agent achieves better performance
when it uses link weights in the action space than when it
applies discrete path-level actions. This suggests that, when
representing the state with link-level features, it may be more
beneficial using link-based actions.
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Fig. 4. Average score as a function of the training episodes for different
state/action representations in the GBN topology.

Lastly, we conclude that the DRL agent learns much faster
when using discrete actions to select one of the “k” candidate
paths than when it defines link weights. Moreover, our rep-
resentation using the paths’ available capacity of the possible

next states achieves much higher performance than using only
the utilization of the links (aprox 30% better).

B. QoS-aware routing

In this use-case, we test the representation proposed in Sec.
III to perform routing in IP networks focusing on Quality of
Service (QoS) provisioning. Here, the objective of the DRL
agent is to efficiently route traffic flows so that their QoS
requirements are met. In this context, we consider a scenario
with 4 different applications that generate flows with different
bandwidth and end-to-end delay requirements (Table I).

TABLE I
APPLICATIONS IN THE QOS-AWARE ROUTING USE-CASE.

Application Bandwidth Maximum tolerable delay
App 1 300 kbps 10 ms
App 2 500 kbps 15 ms
App 3 1.5 Mbps 20 ms
App 4 3 Mbps 30 ms

Note that this scenario is aware of the delays of the network
paths. For this purpose, we extended the simulator used in
Sec. IV-A to model also the path delays apart from the link
utilization. Moreover, each epoch, the simulator randomly
generates a new flow with a particular source, destination and
application type (Table I).

For the DRL agent, we use the same implementation of
TRPO as in the previous use-case (Sec. IV-A), with the same
neural network and the same configuration parameters (γ, λ).

We trained the agent in the 6-node topology depicted in Fig.
5, where all the links have a capacity of 50 Mbps and a base
delay of 5 ms.

Fig. 5. Topology of the QoS-aware routing use-case.

For this use-case, the state representation includes both the
available capacity and the end-to-end delay of paths. Similarly
to the previous use-case, we define new flows using vectors
with one-hot encoding to represent the source, the destination
and the application type. Moreover, the action set consists of
selecting one of the 4 shortest paths for a specific source-
destination pair. We calculate the immediate reward of the
agent as the ratio of flows whose delay requirement is satisfied
w.r.t. the number of flows routed at the current time.

Fig. 6 shows the evaluation results of the agent during
training. Here, the score (y-axis) represents for each episode
the maximum number of flows that the agent was able to route
satisfying the delay requirements. Note that each evaluation
involves the execution of 120 episodes with different flow
sets randomly selected. We compare these results with the



average score achieved by an agent applying a Lowest Delay
Path (LDP) policy. We define the LDP policy as selecting the
current path with lowest delay. As we can observe, after 2k
training episodes the DRL agent beats the LDP policy and, by
episode 25k, it achieves around 14% better performance.
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Fig. 6. Training of the QoS-aware routing use-case.

In order to further analyze the behavior of the DRL agent
with our representation, we show in Fig. 7 a step-by-step
evaluation during an example episode. This figure represents
the number of flows whose delay requirement was satisfied (y-
axis) with respect to the total number of flows already routed
by the agent (x-axis). It is noteworthy that, at the beginning
of the episode, since the network is empty, all the flows can
be satisfied regardless of the path that is selected. However,
there is a point around flow #170 where DRL agent begins
to outperform the baseline LDP policy. This proves that the
DRL agent planned from the beginning a routing strategy that
performs better in the long-term. Likewise, we observe that,
when the network suffers from severe congestion (around flow
#355), the DRL agent is still able to minimize the impact of
such congestion and maintains a higher rate of flows satisfied
than LDP.

0 50 100 150 200 250 300 350 400
Total number of flows

0

100

200

300

Fl
ow

s w
ith

 Q
oS

 sa
tis

fie
d

Proposed representation
Lowest delay path policy

Fig. 7. Step-by-step evaluation during an episode.

V. CONCLUSION

In this paper, we discussed the challenges involved in
the application of Deep Reinforcement Learning (DRL) to
networking. Contrary to the dominant trend in other domains,
where the current approach is to use deeper neural networks
with less elaborated features, we argued that the key to the suc-
cess of DRL in networking is a more careful representation of
the network state (i.e., feature engineering). This is explained
by the complexity of describing link interdependencies and
the stochastic nature of the network traffic. Conversely, recent
efforts in the field of networking went in the direction of

applying DRL as a black-box using rough representations of
the observation/action space.

In this paper, we proposed an alternative representation
of the network state that still has reasonable dimensionality,
but can better capture the crucial relationships among the
links that form the network topology. This more “engineered”
representation allows the agent to learn more easily and faster.
Our results, using different network topologies and traffic
profiles, show that our representation significantly outperforms
previous proposals in two paradigmatic use-cases.
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