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Mixing processes at the boundary of clouds often include typical length-scales of several
metres. Such length-scales are too large for current Lagrangian models but they are
also poorly resolved by typical Eulerian-based large-eddy simulations. Here, a bulk
formulation is introduced for direct numerical simulations. Two main assumptions sustain
this approach: the continuum approximation and the liquid-phase diffusion approximation.
The formulation includes the small-scale features that originate from microscopic droplet
dynamics: sedimentation, finite-time condensation/evaporation, inertial effects and the low
diffusion of liquid droplets with respect to vapour. The methodology is applied to the
study of the buoyancy reversal instability that occurs at the top of stratocumulus clouds
as a consequence of evaporative cooling. The inclusion of sedimentation, low liquid-phase
diffusion and finite-time evaporation have a negative impact on instability when compared
with the equilibrium formulation. The combined effect of all these small-scale features
reduces mixing at the cloud top by at least 90%. This strong reduction is explained by a
condensate-free middle layer, which emerges when droplets leave the cloud interface due
to sedimentation.
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1. Introduction

The rate at which a cloud entrains dry air determines the cloud
lifetime and is thus a key parameter for modelling clouds.
However, estimations of entrainment are difficult because the
mixing is turbulent and involves a wide range of length-scales,
from the cloud size down to the Kolmogorov length. Additionally,
short time-scale processes related to the microscopic droplet
dynamics are usually ignored in large-scale models but might
also play an important role for the mixing. For example,
thermodynamic equilibrium is usually assumed, but in reality
droplets require a finite time to reach this equilibrium, allowing
for small supersaturated and subsaturated regions (Vaillancourt
et al., 2001). Also, droplets are not equally distributed and tend
to concentrate preferentially in regions of low vorticity (Shaw,
2003). Although the liquid water content in a cloud is small
(∼ 1% of the total mass), the combined effect of these small-scale
processes is believed to be important not only for mixing but also
for rain formation, radiation and the interaction of the cloud with
aerosols (Bodenschatz et al., 2010; Grabowski and Wang, 2013).
However, quantitative predictions are not yet accurate enough.
This is partly due to the wide separation between the scales at
which these microphysical processes take place and the largest
mixing scales (Devenish et al., 2012). Most of the current models
aim at either a faithful representation of small-scale processes at

the centimetre scale (Andrejczuk et al., 2009; Kumar et al., 2012)
or a good representation of the cloud scales at the kilometre scale
(Ackerman et al., 2009). In this article, we propose a formulation
for warm clouds that combines the exactitude of direct numerical
simulations (DNS) of turbulent flows with the simplicity of
bulk formulations of cloud droplets. The goal is to provide a
good description of small-scale processes while still allowing for
domains of several metres, supposedly the scale at which cloud
mixing occurs (Bodenschatz et al., 2010).

In bulk models (also called two-fluid formulations in some
literature), the collection of droplets inside a control volume is
characterized by the mass density of liquid and the velocity of
the centre of mass of the droplets. When the number of droplets
in the control volume is high enough, the density and veloc-
ity are well described by continuous functions, allowing for an
Eulerian description of the flow (Marble, 1970). Due to their
simplicity, bulk models are very efficient and allow for simula-
tions of large domains. One important limitation is that details
of the droplet size spectrum are not considered in the model.
This is a big source of uncertainty for radiation schemes because
they rely on knowledge of the droplet radius across the cloud
(Chosson et al., 2007). Further limitations are as follows: collision
schemes are coarse (but efficient) (Seifert and Beheng, 2006);
the assumption of equilibrium thermodynamics may be inappro-
priate (Grabowski and Smolarkiewicz, 1990); and preferential
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concentration effects and sedimentation are often ignored
(Shaw, 2003).

In a Lagrangian formulation, the equations of motion are
solved for each cloud droplet (Vaillancourt et al., 2001, 2002;
Lanotte et al., 2009; Kumar et al., 2013). The main advantage of
this methodology is that it allows for a faithful representation
of small-scale cloud features. The main drawback is that the
domain size is severely limited by the number of droplets that
computer clusters can handle. Current simulations include ∼ 108

droplets, which corresponds to a ∼ 30 cm3 domain for typical
cloud-number densities (∼ 100 cm−3). Communication between
computer cores seems to be the bottleneck because droplets move
across the whole domain, making efficient parallelization difficult.

An alternative to the formulations introduced above is to use
a statistical approach in which the description of the droplets
is given by a probability distribution function (pdf: Williams,
1985). As with the bulk formulation, the statistical description is
applicable when the number of droplets in each control volume
is high. Such a formulation allows for an Eulerian description of
the liquid phase while retaining droplet size spectra. However, an
accurate statistical formulation is computationally very expensive
because the distribution function has to be calculated at each
grid box. Two main simplifying strategies are used. In the
first approach, the distribution function is assumed to have a
particular functional form, derived from previous observations or
experiments (Seifert and Beheng, 2006). In general, the functional
form depends on only a few parameters or moments for which
evolution equations are provided (Ziemer and Wacker, 2012). In
the second approach, the distribution function is discretized in
a set of discrete bins (Andrejczuk et al., 2004). This approach is
generally more expensive but has the advantage that it is more
flexible and does not depend on any hypothesis for the functional
form.

The advantage of a statistical formulation is that it provides
some freedom to choose the ratio of efficiency to accuracy. On
the one hand, a simulation using the Lagrangian formulation is
equivalent to a simulation using a pdf formulation where the pdf
is perfectly parametrized (using an infinite number of bins for
example) if the number of droplets is high enough for a statistical
approach. On the other hand, the bulk formulation is recovered
when the equation for the distribution function is integrated to
an equation for a single scalar, typically the total mass of liquid.
Therefore, varying the parametrization of the pdf allows us to
move between different formulations.

Apart from the different strategies to describe the droplets,
models also differ in how they solve the turbulent field.
The most exact method is DNS. In DNS, the Navier–Stokes
equations are solved without any parametrization so that even
the smallest eddies are resolved (Moin and Mahesh, 1998).
Therefore, no assumptions about the turbulent field are necessary.
The main drawback is the limitation that DNS imposes on
domain size. In clouds, the Kolmogorov scale is of the order
of 1–5 mm (Vaillancourt and Yau, 2000), which implies that
simulation domains can only reach an order of 10 m with current
computational capabilities. This limitation can be overcome
using turbulent models like large-eddy simulations (LES). In
LES models, eddies are resolved up to the grid-box scale (circa
10 m) while turbulence at the subgrid scale is parametrized using
different subgrid models (Smagorinsky, 1963; Deardorff, 1973).
However, it is uncertain how the parametrization of subgrid
turbulence and other subgrid processes might influence the final
results.

In general, there is a tendency to use LES with bulk models
and DNS with Lagrangian models. Following this trend, there
are also some studies that use the pdf formulation together
with an intermediate DNS/LES model (Andrejczuk et al., 2004).
This is justified because coarse models attempt to solve large-scale
problems, whereas the more exact formulations aim at the smaller
scales. Nonetheless, other combinations are also possible. At one
end of the scale, Lagrangian models can be implemented in LES to

model the droplet dynamics (Andrejczuk et al., 2008). At the other
end, Mellado et al. (2010b) combined a pure bulk formulation
with a DNS approach in order to simulate domains larger than
in any Lagrangian calculation, while still resolving all scales of
the flow. Using this formulation, Mellado (2010) investigated the
buoyancy reversal instability (BRI) and found that the turbulence
generated by evaporative cooling alone is too weak to break the
stratocumulus deck and therefore cannot alone explain cloud-top
entrainment instability (Randall, 1980; Deardorff, 1980; Wood,
2012). That study was aimed at providing an upper limit for BRI
and did not consider any small-scale features from the droplet
dynamics, under the assumption that one would just reduce the
mixing and therefore the turbulence intensity at the cloud-top
(Mellado et al., 2010a).

Based on that previous work, we develop a formulation
for warm, non-precipitating clouds where finite-time thermo-
dynamics (supersaturation), particle inertia and settling velocity
are included. Chemical reactions, radiation and collisions are
outside the scope of this article. In section 2 we write the pdf and
transport evolution equations, including the physical processes
just mentioned. Next we simplify the non-dimensional equations
by assuming a given shape of the pdf with a single parameter, as
discussed in section 3. The resulting approach is equivalent to a
bulk formulation. This procedure allows us to examine our sim-
plifying hypothesis and establish the limits of the methodology.
As an example, in section 4 we apply the formulation to test the
hypothesis that small-scale processes have a negative impact on
the BRI in stratocumuli. To this end, we investigate a cloud-top
configuration driven solely by evaporative cooling. The properties
of the investigated configuration are based on the stratocumulus
measurements obtained in the DYCOMS-II campaign (Stevens
et al., 2003). Readers that are only interested in the impact of
small-scale processes on the BRI can read section 4 directly and
avoid the sections that describe the bulk formulation.

2. General formulation

Let us consider a small reference volume dV at a position x in
the cloud. The total mass of the volume, dM, is divided into the
different species that form a warm cloud: dry air, dMD, vapour,
dMV, and liquid water, dMl. This allows us to define the mass
fraction of each component as

ql = dMl

dM
, qv = dMV

dM
, qd = dMD

dM
, (1)

such that ql + qv + qd = 1. It is also useful to define the mass
fraction of the gas phase, qg = qv + qd, and the mass fraction
of total water, qt = qv + ql. The density of each component is
calculated from the total density, ρ = dM/dV , as ρqi.

In this section we first discuss the two main hypotheses
that sustain our framework: the continuum approximation for
description of the droplets and diffusion of the liquid phase.
Next, the transport equations are summarized and the limitations
of the existing equilibrium model are presented, motivating the
non-equilibrium formulation described in this article.

2.1. Continuum formulation

We consider only cloud droplets of spherical shape (diameter
D < 20 μm). Each cloud droplet is thus solely characterized by
its radius r and velocity v. This allows us to define the following
probability distribution functions:

• P(x, r, v)dv dr dx: the probable number of droplets with
radius between r and r + dr and velocity between v and
v + dv in volume dV ≡ ||dx|| at a position x;

• f (x, r) dr dx = ∫
P(x, r, v) dv: the probable number of

droplets with radius between r and r + dr and any velocity
in volume dV at a position x; and
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• n(x) dx = ∫
f (r, v) dr: the probable number of droplets in

volume dV at a position x.

We use a continuum formulation for the disperse liquid phase
and therefore we assume that the pdfs vary smoothly in space.
A continuum formulation is valid when the number of droplets
in each reference volume, dV , is large enough. Therefore the
validity of the continuum assumption depends on the size of
the chosen reference volume. The reference volume is defined
by the length-scale of the smallest variations that are resolved in
the model. For example, typical volumes in LES of the order of
103 m3 contain around 109 droplets (assuming droplet densities
in clouds of the order of 100 cm−3), which is clearly enough for
the continuum hypothesis. In DNS, we aim to resolve variations
of the flow of the order of the Kolmogorov scale. In clouds, the
Kolmogorov scale is of the order of η ∼ 1–5 mm (Vaillancourt
and Yau, 2000) and the corresponding droplet concentration in
each reference volume is of the order of ∼ 0.1–10 droplets per
reference volume. This low number density casts some doubts
over the validity of the formulation, because the continuum
hypothesis effectively averages the action of every droplet over
several reference volumes. In this sense the continuum scheme
is similar, although probably less accurate, than Lagrangian
formulations where the action of each droplet is averaged over
the neighbouring grid points of the Eulerian field (Kumar et al.,
2013). We expect that the continuum formulation provides a
good approximation only when there is not a strong nonlinear
response of small scales of flow to the fluctuations in droplet
concentration. A definitive answer regarding the validity of the
formulation will only be given in the event of a direct comparison
with experiments or with different Lagrangian schemes.

In a continuum formulation, the conservation law of the
number of droplets reads (Vincenti and Kruger, 1967)

∂P

∂t
= − ∇x(vP) − ∇v

(
P

dv

dt

)

− ∂

∂r

(
P

dr

dt

)
+ η̂(x, v, r) + K, (2)

where η̂ and K account for the nucleation and collision
rates, respectively, and dr/dt accounts for the condensa-
tion/evaporation rate of each droplet. For simplicity, we assume
dilute conditions and do not consider any collision in this article
(K = 0).

In this article, we consider properties that depend only on
the radius of the droplets and are therefore independent of their
velocity. Assuming that P decays rapidly for high velocities, Eq. (2)
can be integrated for all velocities (Shaw, 2003):

∂ f

∂t
= −∇x(f vr) − ∂

∂r

(
f

dr

dt

)
+ η(x, r), (3)

where vr is the mean velocity of droplets with radius r and η(x, r)
is the number of particles of radius r nucleated or destroyed
per unit of time. The probability distribution function, f , relates
the microphysical properties of the droplets to the mean bulk
properties of the flow. For example, we can integrate the mass of
all the droplets to obtain the density of liquid of the flow:

ρql =
∫ ∞

0
mDf dr = 4

3
ρlnπr3, (4)

where we have used that all droplets are spherical with mass
mD = (4/3)πρlr

3. Note that we have reserved ρl for the density
of the liquid phase and that the density of liquid water in the
cloud is defined as ρql. The overbar denotes the mean value of a
property, defined as

A(x) = 1

n

∫ ∞

0
A(x, r)f (x, r) dr. (5)

2.2. Relative velocities

One of the main difficulties of the cloud problem is that the
different species in a cloud typically move with different velocities.
In general, we refer to the velocity of a species as the velocity of
the centre of mass of all its molecules or droplets contained in the
reference volume. We refer to the velocity of the dry, vapour and
liquid phase as Vd, Vv and Vl, respectively. The mean velocity is
thus

u = qdVd + qvVv + qlVl. (6)

Consistently, we define the velocity of the gas phase as
qgVg = qdVd + qvVv. The liquid-phase velocity can be expressed
as a function of the mean velocities of the individual droplets
using the probability distribution functions described above:

qlVl = 4πρl

3ρ

∫
r3f (r)vr(r) dr. (7)

We assume that the drift velocities of the vapour and dry air
are of diffusive nature, caused by the Brownian motion of the
molecules. We model diffusion using Fick’s law (Williams, 1985),
which allows us to write the drift velocities of the vapour and the
dry air as

qi/qg(Vi − Vg) = −κv∇(qi/qg), (8)

where the index i refers to the vapour and dry air phases and
κv is the diffusion coefficient of the binary mixture formed by
vapour and dry air. The hypothesis underlying Eq. (8) is that the
diffusion of dry air and vapour behaves as if the droplets were not
present. This hypothesis is justified by the small volume occupied
by the droplets. From Eq. (8), we calculate the relative velocity of
the vapour phase over the dry air phase:

Vv − Vd = −κv∇ ln(qv/qd). (9)

The calculation of the drift velocity of the liquid phase is more
complex due to inertia and gravitational effects. We divide the
total drift velocity into two components: one due to diffusion and
a second one that encompasses all other possible sources for the
droplet drift, like inertia or sedimentation. This allows us to write
the liquid-phase drift velocity with respect to the gas phase as

Vl − Vg = −κl∇ ln(ql/qg) + D, (10)

where D is the non-diffusional drift velocity:

ρqlD = 4

3
πρl

∫
r3f (r)(vD

r (r) − Vg) dr, (11)

and vD
r is the mean velocity of droplets of radius r once diffusion

is removed.
In general, thermal fluctuations for particles of the size of

droplets (which imply κl = 10−12m2 s−1 in Mellado et al., 2010b)
are much smaller than thermal fluctuations in the gaseous phase
(which imply κv = 10−5m2 s−1). Therefore, the thermal diffusion
of the liquid phase can be safely neglected when compared with
the molecular diffusion of the vapour. We retain the liquid-
phase diffusion term in the formulation because simulations
with a realistic value of κl require an extremely high numerical
resolution. A higher, unphysical, liquid-phase diffusion allows us
to study a much wider range of problems, which would otherwise
be too expensive computationally. In order to check the effect of
the unphysical diffusion on each problem, it is then necessary to
compare cases with different values of κl.

Combining Eqs (6), (9) and (10), we obtain the following
expressions for the velocities of each species:

Vd = u − κv∇ ln(qd/qg) − κl∇ ln(qg) − qlD,

Vv = u − κv∇ ln(qv/qg) − κl∇ ln(qg) − qlD,

Vl = u − κl∇ ln(ql) + qgD. (12)
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2.3. Transport equations

So far, we have introduced a continuum description of a disperse
and dilute two-phase flow. The next set of equations reflects
the conservation of mass of the different constituents, as well as
momentum and energy for the total mixture:

∂ρ/∂t(ρ) + ∇·(ρu) = 0,

∂/∂t
(
ρqt

) + ∇·(ρqtu
) = −∇·jt,

∂/∂t
(
ρql

) + ∇·(ρqlu
) = −∇·jl + C + N,

∂/∂t (ρu) + ∇·(ρuu) = −∇p + ∇ · τ + Ri
ρ

�ρ/ρ0
eg,

∂/∂t (ρe) + ∇·(ρeu) = −(γ0 − 1)M2p∇·u

+ (γ0 − 1)M2τ :∇u − ∇·jq, (13)

where C and N represent the condensation/evaporation and
nucleation terms, respectively. In Appendix A, we summarize
how to obtain the drift transport terms on the right-hand sides of
Eq. (13) from the drift velocities presented in Eq. (12). The result
of these calculations read

−jt = μ

Re Sc

[∇qt

+
(

Sc

Scl
− 1

)
qd

qg
∇ql

]
− (1 − qt)ρqld,

−jl = μ

ReScl
∇ql − ρqlqgd,

τ/μ = 1

Re

[
∇u + (∇u)T − 2

3
(∇·u)I

]
,

−jq = μ

Re Pr

[
∇h +

(
Pr

Sc
− 1

)
(hd∇qd + hv∇qv

+ hl∇ql) +
(

Pr

Scl
− Pr

Sc

)
(hl − hg)∇ql

]

− (hl − h)ρqld. (14)

For generality, the equations have been non-dimensionalized
with reference values for velocity, U0, length, L0, temperature,
T0, density, ρ0, heat capacity, cp,0, and dynamic viscosity,
μ0. Accordingly, the pressure is scaled by ρ0U2

0 , the time by
t0 = L0/U0 and the enthalpy h and internal energy e by cp,0T0.
The non-dimensional drift velocity is defined as d = D/U0.

The reference non-dimensional numbers that appear in the
equations are

Re = U0L0

μ0/ρ0
, Ri = �ρgL0

ρ0U2
0

,

M = U0√
γ0RdT0

, Q = �e0
lv

cp,0T0
, �ρ/ρ0, (15)

where �ρ is a typical density difference of the problem, �e0
lv is

the latent heat of vaporization at 0 K, Re is the Reynolds number,
Ri is the Richardson number, M is the Mach number and Q is a
non-dimensional latent heat parameter. Three non-dimensional
numbers describe the ratio of molecular diffusion of momentum
to the diffusion of the different mass species and heat: two Schmidt
numbers for the molecular transport of vapour and liquid and a
Prandtl number for the transport of heat,

Sc = μ/(ρκv), Scl = μ/(ρκl), Pr = μ/(λ/cp). (16)

In addition, the non-dimensional equation of state and
thermodynamics relations for the internal energy and enthalpy
are

γ0M2p/ρ = T[1 + qt(Rv/Rd − 1) − qlRv/Rd],

e = [(qt− ql)cv,v + (1− qt)cv,d + qlcl]T − qlQ,

hi = ei + (γ0 − 1)M2pi/ρi, (17)

where the reference ratio of specific heats is defined by
γ0 − 1 = 1/(cp,0/Rd − 1) and Rd/cp,0 and Rv/cp,0 are the non-
dimensional dry air and vapour gas constants. This form of the
equation of state is obtained when taking the next assumptions:
Dalton’s law, both the vapour and dry air phases obey the ideal gas
equation and the volume fraction of liquid is negligible. Notice
that in the case of the fully compressible formulation the pressure
in the equation of state is the same as the dynamical pressure in
the Navier–Stokes equations (Eq. (13)).

Details about the derivation of the previous governing
equations and the assumptions needed in the process can be
found in Mellado et al. (2010b). First, thermal equilibrium has
been assumed in order to define one single temperature of the
fluid mixture and be able to use the thermodynamical relations
in Eq. (17). This simplification is quite exact due to the low
liquid concentrations in clouds (ql ∼ 10−3). Even during phase
transitions, when the temperature difference between a droplet
and the surrounding air can be as large as 5 K (Rogers and
Yau, 1989), the differences of the air temperature from thermal
equilibrium remain below 0.02 K. Equally, dilute conditions have
been used in order to simplify additional terms in the transport
equations. Hence, the major effect of the droplets on the flow
dynamics that is retained in this formulation is the latent heat
effect and the heterogeneity associated with it due to the relative
motion of the liquid phase with respect to the gas phase.

2.4. Liquid water in equilibrium

In addition, the equilibrium formulation further developed in
Mellado et al. (2010b) invokes mechanical and phase equilibrium.
The former corresponds to the limit of vanishing drift velocity
(d = 0), greatly simplifying the transport equations. The latter
implies that the change of phase from liquid water to vapour and
the reverse transition are infinitely fast. The liquid water ql is then
uniquely given by the state variables as

ql = ql,eq(ρ, e, qt) (18)

and there is no need to retain a prognostic equation for ql, nor to
model the nucleation and condensation terms.

In the case in which liquid water is present (ql > 0), Eq. (18)
is solved using the condition that water at the vapour phase
is at the vapour pressure: qv = qsat

v = pS(T)/(ρRVT), where the
saturation pressure, pS(T), is obtained from an empirical formula.
This is a well known approach (Emanuel, 1994) and is not repeated
here. As in Mellado et al. (2010b), we smooth discontinuous
gradients in Eq. (18) over a distance δs in thermodynamic space.
It was also shown that, when this distance is small (δs � 1/100),
the flow statistics of interest are independent of this factor.

3. Non-equilibrium formulation

The assumption of equilibrium is very useful to close the system
and therefore it is often employed. However, droplets in clouds
require several seconds to evaporate or grow (∼ 10 s for r =
5 μm), making the phase equilibrium hypothesis questionable in
certain situations. For instance, if droplets at the cloud interface
move fast enough then big regions out of equilibrium might be
the norm, alternating liquid water in undersaturated parcels
with supersaturated regions (Shaw, 2003; Andrejczuk et al.,
2004; Burnet and Brenguier, 2007). The mechanical equilibrium
assumption might be also questionable in certain situations
because it neglects sedimentation. In many stratocumulus clouds,
the settling velocity (∼ 3 mm s−1 for r = 5 μm) is comparable to
the scales representative of the mixing, such as the entrainment
velocity, and the settling can significantly change the mixing
behaviour (Ackerman et al., 2004; Bretherton et al., 2007).

If thermodynamics and mechanical equilibrium are not a valid
approximation, then it is necessary to model the small-scale
processes that come from the microscopic droplet dynamics, in
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particular condensation/evaporation, inertial drift, settling and
nucleation. The condensation/evaporation and nucleation terms
are calculated by taking the time derivative of Eq. (4) and then
using Eqs (3) and (12):

C = 3q0
l nr2

dr

dt
, (19)

N = q0
l

∫
r3η(r) dr, (20)

where the radius of the droplets has been normalized by a
typical radius r0, the concentration of particles by a typical
concentration n0, the nucleation term by n0/t0, all other quantities
by the references defined above and ρ0q0

l = 4/3πρlr
3
0n0 is the

liquid water density for n0 particles per unit volume, all of
radius r0. η(r) is the droplet nucleation function as defined
in Eq. (3).

The calculation of the condensation and nucleation terms
requires application of the laws that describe such processes at
the microscopic level. Equally, the calculation of the liquid drift
(given by Eq. (11)) requires knowledge of the physical laws that
govern microscopic droplet motion. These microscopic laws are
connected to the bulk equations via the probability distribution
function, f (r). These are the topics of this section.

3.1. Condensation and evaporation

The condensation/evaporation from a single droplet is calculated
assuming diffusive transfer of vapour and heat from the droplet
to the surrounding air. The diffusive equations are coupled to the
energy conservation and Claussius–Claperion equations (Rogers
and Yau, 1989), resulting in the following expression for the
condensation rate:

dr

dt
= γ

qv/qsat
v − 1

r
, (21)

where γ is a function of the pressure and temperature and qsat
v

is the fraction of vapour at the saturation pressure. Since the
γ dependence on the temperature is quite mild (Rogers and
Yau, 1989), it is common practice to assume γ as constant. In
clouds, typically γ ∼ 10−10 m2 s−1. Using this expression, the
evaporation/condensation term of Eq. (19) in non-dimensional
units is

r2
dr

dt
= Da(qv/qsat

v − 1)r, (22)

where the non-dimensional number

Da = γ t0/r2
0 (23)

describes the ratio of the typical time of the flow, t0 = L0/U0,
to the condensation/evaporation time, r2

0/γ . This number
is called the Damköhler number due to the analogy with
reactive flows (Shaw, 2003). A high Damköhler number
indicates a very fast change of phase, suggesting that the
thermodynamic equilibrium approximation should be used.
On the other hand, low Damköhler numbers suggests use of
a more complex formulation than the equilibrium assumption.
Using Eq. (22) in Eq. (19), the condensation/evaporation term
reads

C = 3q0
l nDa(qv/qsat

v − 1)r. (24)

This expression is equivalent to the condensation function
used in Lagrangian calculations (e.g. Kumar et al., 2013), with the
difference that Lagrangian models typically account for variability
in the vapour field within the grid volume (Clag ∝ (qv/qsat

v − 1)r ).

3.2. Inertia and settling

The equation of motion for a single droplet in a cloud is written
in the Stokes limit (Maxey and Riley, 1983):

dvD
r /dt = (1/τd)(u − vD

r ) + g, (25)

where τd = 2πr2ρl/(9μg) is the particle response time and
μg is the viscosity of the surrounding air. For typical cloud
temperatures, droplets of 10 μm diameter have a typical response
time τd ∼ 2.8 × 10−4 s. Equation (25) has a simplified solution
when τd is small compared with the typical time of the flow. The
simplified solution in non-dimensional form reads

vd
r = u + Svr eg − Str du/dt + O(St2), (26)

where eg is the unit vector in the direction of gravity. This equation
defines two non-dimensional numbers. The settling number

Svr = gτd/U0 (27)

is the ratio of the sedimentation velocity, us = gτd, to the typical
flow velocity scale and the Stokes number

Str = τd/t0 (28)

is the ratio between the particle response time and the typical
time of the flow. In Eq. (26), it is easy to see how small droplets,
with correspondingly small settling and Stokes number, follow
the trajectory of the air, whereas bigger particles can escape these
trajectories, which in turn translates into a drift flux. Boffetta et al.
(2007) showed that the Eulerian treatment of this drift flux (as in
this article) agrees with fully Lagrangian calculations in the limit
St < 1 (defining the Stokes number with the Kolmogorov time
scale).

The mean inertial drift velocity, d, which appears in the Eulerian
transport equations (Eq. (13)), is calculated from Eqs (11) and
(26), neglecting terms of O(St2). In non-dimensional units, it
reads

ρqld = q0
l n(Sveg − St du/dt)r5, (29)

which depends on the fifth moment of the droplet radius
probability density function. The non-dimensional numbers Sv
and St in Eq. (29) are defined for reference radius r0.

3.3. Nucleation and the equation for number density

The calculation of the condensation and drift terms in Eqs (24)
and (29) requires the number density n. The non-dimensional
transport equation for the number density is calculated by
integrating Eq. (3) and using the expression for the drift velocities
given by Eq. (10):

∂n

∂t
+ ∇ · (nu) = −∇ · jn +

∫
η(r) dr,

−jn = n vr − Vg − nql(Vl − Vg), (30)

where the drift flux consists of two different drift velocities, one
weighted by the mass of the particles and another one weighted
by the number of particles.

The number density has a clear definition inside the cloud,
but there is some ambiguity about its definition in dry air. Some
authors (Andrejczuk et al., 2004) assume that n only represents
droplets and therefore n vanishes outside the cloud. Droplets
are destroyed when they exit the cloud, while new droplets are
nucleated for some given thermodynamical conditions. In this
case, the nucleation or destruction of droplets in the cloud has to
be modelled by the nucleation function η(r).

c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 140: 1493–1504 (2014)



1498 A. de Lozar and J. P. Mellado

An alternative view (for example Heus et al., 2010) considers
that n represents the number of droplets plus the number of
aerosols able to nucleate droplets once the vapour pressure
surpasses the equilibrium level. This means that the dry air
includes droplets of zero radius that do not carry any liquid
water. One advantage of this approach becomes apparent in the
case in which aerosols cannot be nucleated or destroyed because
the nucleation term vanishes:

η(r) = N = 0. (31)

The formulation developed in this article is valid for both
interpretations of n, which differ only in the initial and boundary
conditions for n and the form of the nucleation term. Due to
its simplicity, we decided to use the approach in which n is the
number of droplets plus aerosols and to neglect the nucleation
term.

The droplets-plus-aerosol view also presents a clear advantage
in the case in which droplets and aerosols are well mixed, so that
n does not present large variations around its mean n. In this case,
only the inertial drift in Eq. (30) is able to change the initial state,
creating preferential concentrations. In clouds this drift is very
slow compared with other typical cloud processes and therefore
it will take relatively long to create appreciable deviations from
n. In this case, it is a good approximation to consider n = n so
that Eq. (30) does not need to be solved. Another justification
for this approximation is that n only appears in the inertial drift
and condensation terms of the transport equations (Eqs (11)
and (19)). These terms have been presented as corrections to
the original bulk equations. The small variations around n then
appear as second-order corrections in the bulk equations and are
therefore negligible.

3.4. The log-normal probability distribution function

The probability density function f can generally be calculated
by solving Eq. (3) (Williams, 1985). However, this operation is
computationally very costly because Eq. (3) has to be solved in
a five-dimensional space {x, r, t} (see for example Pantano and
Shotorban, 2007). On the other hand, in DNS of clouds it is also
desirable to increase the Reynolds numbers (or the size of the
domain) as much as possible, which is also computationally very
expensive. A good compromise is to assume a given form of the
pdf.

In this article, we consider only single-mode probability
distribution functions, as observed in warm clouds with no
rain formation (Shaw, 2003). In particular, we focus on the log-
normal distribution, which is commonly used to describe small
droplets in clouds, due to its simplicity and ability to reproduce
observations (Pruppacher and Klett, 1997). The general form of
this distribution reads

f (r) = n

rσ
√

2π
exp

(−(ln r − μ)2

2σ 2

)
, (32)

where μ is a parameter related to the mean radius and σ is
related to the broadening of the distribution. In the atmospheric
context, it is common to use the geometric standard deviation,
σgc = exp(σ ), instead of σ . In LES of clouds, σgc is assumed to
be constant for the whole simulation domain and its value is
estimated from field measurements. Typical values of σgc range
from 1.2 to 1.5 (Bretherton et al., 2007; Ackerman et al., 2009). It
is, however, arguable that the same values of σgc are applicable to
a DNS simulation. Field measurements typically provide averages
over large domains, which enclose different regions with large
and small droplets. In a DNS we aim to resolve those smaller
regions which, if measured independently, should show narrower
pdfs. Therefore, we think that the appropriate value of σgc for a
DNS is below the LES value (σ DNS

gc < 1.2), probably close to the
Dirac delta distribution limit (σgc = 1). The exact determination

of σgc is another aspect of the problem that would benefit from
more detailed field measurements or Lagrangian studies.

One advantage of the log-normal distribution is that the
moments of the distribution can be calculated analytically:

rs = exp(sμ + s2σ 2/2). (33)

Using this equation, we calculate the expressions for the drift
velocity, condensation/evaporation and flux term for the droplets
number density:

ρqld = (ρql)
5/3(nq0

l )−2/3 exp(5σ 2)(Sv eg − St du/dt), (34)

C = 3Da exp(σ 2)(qv/qsat
v − 1)

(
ρql

)1/3
(q0

l n)2/3, (35)

− jn = μ

ReScl
∇n − n

[
exp(−9σ 2/2) − ql

]
d, (36)

where all quantities have been normalized as described above. In
Eq. (36), the diffusion term (μ/(ReScl)∇n) is a simplification,
under the assumptions that ql/Scl 	 1 and that the liquid-phase
diffusion coefficient based on the number density is equal to the
liquid-phase diffusion coefficient based on the mass density κl.
The main reason to write this approximation is that the droplet
diffusion term is in principle negligible in the limit Scl → ∞ and
its main function is to avoid strong gradients in the ql and n
fields. We emphasize again that the properties of interest in the
solutions of the equations should be independent of the liquid-
phase diffusion and extra simulations should be performed in
order to test how the results vary for different values of Scl.

The broadening of the pdf, σ , appears only in an exponential
factor that multiplies the Stokes, settling and Damköhler numbers
in the drift and condensation terms (Eqs (34) and (35)). For a
narrow distribution (σgc = 1.2), the Stokes and settling numbers
increase by 18% and the Damköhler number increases by only
3% when compared with the Dirac distribution (σgc = 1). In
the broader distribution (σgc = 1.5), the Stokes and settling
numbers increase by 220% whereas the Damköhler number
is increased by 18%, again when compared with the Dirac
distribution. The non-diffusional drift and settling are therefore
much more sensitive to the broadening of the distribution than
the condensation/evaporation term. Note also that the drift in the
number density equation (36) is a factor exp(−9σ 2/2) smaller
than the drift in the liquid equation (34). This difference is due to
the largest droplets. These droplets feel stronger inertia and carry
more liquid than average, so that their contribution is larger in
the liquid equation than in the droplet density equation.

4. Evaporatively driven cloud-top mixing layer

4.1. The buoyancy reversal instability

We apply the above presented formulation for study of the
buoyancy reversal instability (BRI) in stratocumulus clouds. At
the stratocumulus top, a turbulent mixing layer forms between
the cloud (cool and moist) and the free atmosphere on top (warm
and dry). The BRI is triggered by evaporative cooling when some
proportions of the mixture of dry and cloudy air are colder than
the cloud bulk, as shown in Figure 1. As those parcels fall into
the cloud bulk, they induce a turbulent motion that enhances the
turbulent mixing at the cloud top and feeds back the instability.
In the last years, it has been long debated to what extent the BRI is
able to promote a large-scale flow in stratocumuli (Wood, 2012)
and some authors have proposed that the BRI is crucial for cloud-
top entrainment instability (CTEI), which leads to cloud breaking
(Randall, 1980; Deardorff, 1980). However, measurements in the
DYCOMS-II field campaign (Faloona et al., 2005) did not show
any correlation between cloud mixing and the strength of the BRI
and tank experiments suggest that the strength of the instability
in stratocumuli is too weak to break the cloud interface (Shy and
Breidenthal, 1990; Siems and Bretherton, 1992).
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Figure 1. Vertical structure of the cloud top in terms of the mixture fraction
χ and buoyancy b. The condition for the buoyancy reversal instability is that
mixtures characterized by intermediate values of χ are less buoyant than the cloud
bulk.

The strength of the BRI is typically measured by the non-
dimensional ratio D = −bs/b1 between the saturation buoyancy
bs and the buoyancy difference across the inversion b1. The
saturation buoyancy bs is the minimum buoyancy that results
from linearly mixing cloudy air with dry air. Typical values of
D in stratocumuli are modest, around D = 0.03. However, the
positive feedback in the BRI makes it difficult to predict the
importance of this instability, even at such small values of D.

Mellado et al. (2009) and Mellado (2010) investigated the BRI
in a mixing-layer configuration theoretically and numerically,
using DNS with the equilibrium formulation. These studies
were focused on the role of small-scale turbulence but neglected
radiation and all small-scale processes resulting from the droplet
dynamics, except for latent heat effects. The main findings of
those investigations were as follows: (1) the BRI indeed leads
to turbulence and enhances the mixing at the cloud top, but
this turbulence is much weaker than that observed in clouds
and the induced mixing is not strong enough to break the
cloud deck; and (2) the typical length-scales characteristic of
the mixing and the BRI are small, of the order of centimetres.
The first conclusion is in accordance with the experiments and
measurements cited above, suggesting that the BRI is not a
main source of turbulence in stratocumulus clouds. The second
conclusion suggests that the problem initially posed might not
capture all aspects of the mixing, because the neglected small-scale
processes might play an important role. However, all small-
scale processes (except maybe for preferential concentration) are
expected to work against the BRI (Mellado et al., 2010a). It is
therefore expected that those equilibrium simulations provide a
solid upper bound for the turbulent intensity generated by the
BRI alone. This is in agreement with Bretherton et al. (2007), who
showed a 7% reduction in entrainment by adding sedimentation
to a stratocumulus LES.

In this section we assess quantitatively the role of the small-scale
processes for BRI in a cloud-top mixing layer. We investigate the
basic configuration presented in Mellado et al. (2010b) but use
the extended formulation described in the previous section. In
particular, we focus on finite-rate phase change, sedimentation,
inertial effects and low liquid-phase diffusion.

4.2. Set-up

The cloud-top mixing layer consists of two infinite (unbounded)
horizontal layers: one layer of warm and unsaturated fluid on top
of a second layer of cooler and saturated (condensate laden) fluid,
the gravity force acting downward. A sketch of such a mixing
layer is shown in Figure 1.

Our investigation aims to provide an upper limit for the
turbulent intensity solely generated by the BRI. The properties
of the mixed layer are chosen to mimic the cloud-top properties
measured in the reference flight RF01 of the DYCOMS-
II campaign (Stevens et al., 2003), but with an increased
buoyancy reversal parameter. As measured in that flight, the free-
atmosphere top layer has a vapour concentration qd

t = 1.5 g kg−1

and a temperature Td = 19.1 ◦C at a pressure p = 940 hPa.
The properties of the cloud bottom layer have been adjusted to

increase the buoyancy reversal parameter to D = 0.133, four times
larger than found in the cited flight: total water qc

t = 12 g kg−1

and temperature Tc = 11.3 ◦C, instead of the measured qc
t =

9 g kg−1 and Tc = 10.6◦C. In thermodynamic equilibrium, this
corresponds to a liquid water concentration qc

l = 3.1 g kg−1, well
above the typical concentrations in stratocumuli. For simplicity,
we set the Prandtl number equal to 1, Pr = 1.0, which is close
enough to the atmospheric value. We also define the reference
values Cp,0 = 1.007 kJ kg−1 K−1 and T0 = 300 K.

The microphysical properties at the cloud bulk are calculated
for droplets of diameter 10 μm, as typical of stratocumi
(Stevens et al., 2003). Following Rogers and Yau (1989),
the condensation/evaporation time is r2

0/γ = 1 s, the particle
response time is τd = 2.8 × 10−4s and the settling velocity
is us = 2.74 mm s−1. When studying differential diffusion, we
investigate two cases in which the liquid-phase diffusion is reduced
by factors of five and ten. The corresponding Schmidt numbers
Scl = 5, 10 are still far from atmospheric values (Scl ∼ 107), but
the main purpose of these simulations is to evaluate the impact
of a reduced liquid-phase diffusion on the flow.

Mellado (2010) showed that a relatively small simulation
domain (L ∼ 3 m in the vertical) is enough to capture buoyancy
reversal effects on the turbulence. In such a small vertical domain,
the Boussinesq formulation provides a valid approximation
which greatly simplifies the evolution equations (13). Using
this approximation and substituting the equation for the energy
e with the equation for the enthalpy h, we obtain

∇ · u = 0,

∂/∂t (u) + u · ∇u = −∇p + 1

Re
∇2u + Ri

ρ − ρ0

�ρ
eg,

∂/∂t
(
qt

) + u · ∇qt = −∇·jt,

∂/∂t
(
ql

) + u · ∇ql = −∇·jl + C,

∂/∂t (h) + u · ∇h = −∇·jq, (37)

with the flux terms given by Eq. (14). In the non-equilibrium
cases we assume the aerosols-plus-droplets interpretation and
that the number density n is homogeneous and constant. In this
approximation, the equation for the number density does not
need to be solved. In section 3.3, we saw that this approximation
holds when the pure inertial forces and sedimentation are small.
We also assume that the droplet radius probability distribution
function is a Dirac function (σgc = 1). Under these conditions,
the condensation/evaporation term C and inertial drift d are given
by Eqs (35) and (34), respectively. The equation for liquid water
in Eq. (37) is used just in the cases with finite Damköhler number.
In cases of infinitely fast change of phase, we calculated ql from
h and qt using the equilibrium concentrations, as explained in
Mellado et al. (2010b).

We use the DNS code previously described in Mellado (2010),
which has been modified to include the new formulation. The
physical horizontal size of the domain is Lx × Ly = 3 × 3 m2.
All simulations use a cubic grid with 10243 points. The grid
was stretched in the vertical dimension to separate the region
where the flow develops from the top and bottom boundaries,
minimizing the effect of the boundary conditions. The grid is
isotropic in the region where the flow develops, with spacing
dx = dy = dz = 2.9 mm. The time step has been adjusted using
a Courant constraint and it is of the order of dt = 20 ms for the
equilibrium case. In the cases of finite-time evaporation, an even
shorter time step was employed to resolve the thermodynamic
change of phase (dt = 8.5 ms). In those cases, we also set to zero
the negative liquid water concentrations (of order ql ∼ 5 × 10−5)
that might arise due to numerical error before each time step.
Otherwise the condensation/evaporation term, C in Eq. (35), is
not properly defined. Sensitivity studies have been performed to
ascertain that this clipping does not affect the results discussed
here.
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4.3. Initialization using the equilibrium formulation

When including sedimentation in the non-equilibrium formula-
tion, the problem becomes very sensitive to the initial conditions.
If the initial turbulence is too weak then the sedimentation has
enough time to evacuate the droplets from the inversion before
any appreciable mixing occurs. The BRI, and therefore any source
of turbulence, is suppressed and the flow becomes laminar. If the
turbulence at the initial condition is too strong, then the spin-up
period can be very long, of the order of the integral time-scale. It
is then difficult to distinguish which flow properties are just an
effect of the initial condition. In this article, the initial conditions
are generated from a simulation with the equilibrium formulation
under the assumption that the flow dynamics are similar in the
equilibrium and non-equilibrium cases.

We start with a simulation of the mixed layer described in
the previous section using the equilibrium formulation, therefore
neglecting all small-scale processes. The flow in this simulation
evolves as described in Mellado (2010): after a short transient, a
self-preserving convective boundary layer (CBL) grows into the
cloud bulk, while mixing at the cloud top is described by a constant
entrainment velocity. In this simulation there is no sedimentation
and therefore the initial conditions are quickly forgotten. We stop
the simulation after the CBL reaches the self-preserving state,
when the CBL fills one third of the horizontal domain size. The
last stage of this equilibrium simulation is the reference case,
which is used as initial condition for all the simulations presented
in the next section.

The reference case corresponds to a CBL of depth 2z∗ = 1 m
with a turbulent dissipation rate ε0 = 5 × 10−5 m2 s−3. The
cloud-top inversion is characterized by an entrainment velocity
we = dzi/dt = 1.12 mm s−1 and by an inversion thickness
δi = �qt/< ∂qt/∂z >zi = 42 mm. These quantities define the
typical inversion time ti = δi/we = 37.5 s. The inversion point,
zi, is here defined as the height of the maximum gradient
of the horizontally averaged total water profile. The CBL is
characterized by a convective Reynolds Re∗ = w∗z∗/ν  103 and
by a convective Richardson number Ri∗ = b1z∗/(w∗)2  150,
where w∗ is an integral velocity scale. The convective scales z∗
and w∗ were defined using the expressions presented in Mellado
(2010). Due to the small size of the domain, the convective
Reynolds number is much lower than typical values in clouds.
However, the Richardson number and dissipation rate are still
in the range that can be found in stratocumuli (Vaillancourt
and Yau, 2000). We note that the dissipation rate and inversion
thickness are independent of the size of the CBL and therefore
these would be the same if we run the equilibrium simulation
much longer. This is important because those scales determine
the smallest flow scales that are supposed to interact the most with
the droplet dynamics, once the non-equilibrium formulation is
included. Therefore the interaction of the droplet dynamics with
the flow in our simulations should be similar to that found
in larger domains, except for the effect of turbulent internal
intermittency, which increases with Re∗ (Shaw, 2003).

Before discussing the non-equilibrium simulations, we
estimate which small-scale features are relevant for the cloud-
top dynamics by looking at the non-dimensional numbers
that relate the flow properties of the reference case to the
microphysical properties. The turbulent flow length-scales in
the CBL span several orders of magnitude, from the Komogorov
scale, η = (ν3/ε)1/4, to the integral scale, commensurable with
z∗. In principle the whole range of non-dimensional numbers
bounded by those scales has to be considered. In addition, the
cloud-top mixing introduces new velocity and length-scales that
are relevant to the entrainment process. For a strongly stratified
case, those scales are identified as the inversion thickness and the
entrainment velocity (Mellado, 2010) and they are of diffusive
nature. In Table 1, we present the typical integral, Kolmogorov and
diffusion scales for the reference case. Using these three different
scales, we can construct three different Damkhöler, settling and

Table 1. Scales and non-dimensional numbers that describe the problem in the
reference equilibrium case (the initial condition for the other non-equilibrium
simulations). The two first rows indicate the time- and length-scales corresponding
to the integral, Kolmogorov and diffusive scales. The following rows show the
Damköhler, settling and Stokes numbers based on each of those scales. These
non-dimensional numbers were calculated using Eqs (23), (27) and (28) for

droplets of 10 m diameter.

Integral Kolmogorov Diffusion

Time 17.1 s 0.45 s 37.5 s
Length 490 mm 2.7 mm 42 mm
Da 17.1 0.45 37.5
Sv 0.096 0.46 2.4
St 1.7 × 10−5 6.4 × 10−4 7.7 × 10−6

Stokes numbers as presented in Table 1. The liquid Schmidt
number is not shown in the table because it is independent of the
flow properties.

All Stokes numbers are much smaller than one, indicating that
pure inertial effects should not be significant. The Damköhler
number is close to one only for lengths comparable to the
Kolmogorov scale, so that we expect to see variations due to
finite-time thermodynamics only at the smallest scales of the
flow. The settling parameter is close to one for the Kolmogorov
scale and larger than two for the diffusion scale. We can then
expect that the settling will play an important role for the mixing
process across the inversion.

It is worth noting that the size of the domain achieved in
this simulation (1 m) is large enough to neglect all microphysical
effects based on the integral scale, as indicated by the non-
dimensional numbers in Table 1. Small-scale effects are therefore
not expected to interact directly with the large-scale flow, which
serves as a justification for the small size of the simulations.
This does not mean that small-scale processes are negligible.
Small-scale processes can indirectly alter the large-scale flow
by modifying mixing at the inversion, because the amount of
dry air mixed into the cloud determines the buoyancy flux
into the CBL. The non-dimensional numbers indicate that the
inversion dynamics, which depends on molecular diffusion and
small eddies, might be modified by small-scale processes and
therefore the indirect impact of small-scale features on the flow
dynamics cannot be neglected.

4.4. Dynamics using the non-equilibrium formulation

We explore the effect of the small-scale processes on the BRI
using seven simulations (see Table 2). All simulations start from
the reference case described in the previous section and differ in
which small-scale processes are active. In brief: we perform
one simulation in which we continue with the equilibrium
formulation, five simulations in which sedimentation, differential
diffusion (two cases), supersaturation and pure inertial effects are
independently included and one simulation that combines all the
small-scale processes described above.

Table 2. This table indicates which small-scale features have been included
in each simulation and the Schmidt number associated with the liquid-phase
diffusion. ‘No’ indicates that the equilibrium formulation was used for this
particular feature. ‘Yes’ means that the small-scale features were modelled for

10 m diameter droplets, as described in the text.

# Sedimentation Inertia Scl Finite-rate therm.

I No No 1 No
II No Yes 1 No
III No No 1 Yes
IV No No 5 No
V No No 10 No
VI Yes No 1 No
VII Yes Yes 10 Yes
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Figure 2. Rate of liquid water mixed out of the cloud into the dry atmosphere.
The top line (red in the online article) corresponds to a simulation using the
equilibrium formulation (case I). The state at ti = 1.1 in this simulation is
used as the initial condition for all other simulations. In these we investigate
independently the small-scale features coming from the droplet dynamics using
the non-equilibrium formulation. All simulations are summarized in Table 2. The
black dashed line (case II) corresponds to pure inertia. The black solid line (case
III) corresponds to finite-time phase change. The next lines (blue in the online
article) correspond to reduced liquid-phase diffusion, the dashed line (case IV)
for Scl = 5 and the solid line (case V) for Scl = 10. The black dash–dotted line
(case VI) corresponds to settling. The bottom line (case VII, magenta in the online
article) corresponds to a case in which all small-scale effects were introduced.

We compare the different cases by quantifying the rate at which
cloud water evaporates in the mixing process. This quantity is
calculated by integrating Eq. (13) in a control volume, the top
and bottom boundaries of which are placed far away from the
cloud top:

um = − 1

qc
l S

∫
C dx = − 1

qc
l S

d
∫

qldx

∂t
− us(1 − qc

l ), (38)

where S is the horizontal cross-section of the control volume, qc
l

is the cloud-bulk liquid water, us is the settling velocity and um

is the integrated evaporation rate, scaled to be a positive velocity.
It is useful to scale the evaporation rate in this way because
its magnitude is then comparable to the entrainment velocity.
The exact relationship between both velocities is, however, non-
trivial. Using um instead of the entrainment velocity has some
advantages. First, um is proportional to the integrated evaporative
cooling of the mixing layer, the only source of turbulence of the
BRI. Second, its definition is independent of the inversion-point
choice. This second property of um becomes very useful in the
non-equilibrium formulation, when the different cloud species
have their own dynamics, allowing for several definitions of the
reference inversion point zi.

In Figure 2, we show the time evolution of um. At early times
only the case with the equilibrium formulation is shown (case
I). Notice that this equilibrium case tends to an asymptotic state
after a short transient (t > 0.5ti). All other simulations start from
this reference case at t = 1.1ti.

When only pure inertial effects are included (case II), there
is no variation in the mixing with respect to the equilibrium
case, as shown in Figure 2. This behaviour was anticipated from
the estimate of small Stokes numbers in the previous section.
Visual inspection shows short-lived regions with liquid water
concentrations slightly higher than in the cloud bulk, but these
are too small to have any impact on the flow dynamics. It
has been proposed that high Reynolds number intermittency
might enhance the inertial effects (Shaw, 2003), but the Reynolds
numbers achieved here are too low to address this question.

Finite-time thermodynamics (case III) has a stronger impact
on the mixing and reduces um by 25%. We can explain
this tendency qualitatively by looking at the inversion balance
proposed by Mellado (2010) for the equilibrium formulation.
This balance is based on a Rayleigh number analysis and as
such it can be understood by looking at the competition of
diffusion and buoyancy when a perturbation is introduced.

While molecular diffusion smooths out this perturbation, the
destabilizing buoyancy generated by evaporative cooling drives
the perturbation out of the inversion. According to this criterion,
the inversion thickness adjusts so that the times required for both
processes (diffusion and free fall) are comparable. When a finite-
time change of phase is included both times have to be adjusted.
While the diffusion time is independent of the condensation
time (for Scl = 1), the time that the perturbation requires to
destabilize the inversion increases with evaporation time. The
reason is that the perturbation now needs some extra time to
cool down before the buoyancy can be effective. When adding
this extra evaporation time to the escape time in the Rayleigh
number analysis, the resulting inversion thickness broadens and
the mixing rate decreases.

Many bulk models of clouds include the implicit assumption
that the liquid-phase diffusion is equal to the vapour diffusion
(Scl = 1). The accuracy of this assumption remains to be
investigated when the diffusion is of turbulent nature (as in
LES), but the assumption is probably too coarse when the liquid-
phase diffusion characterizes the thermal fluctuations of the
droplets (as in our highly resolved DNS). We observe here that
when more realistic values of the liquid diffusion are used the
strength of the BRI reduces considerably. Our simulations predict
a 40% reduction of the BRI when decreasing the liquid diffusion
(increasing Scl) by a factor of five (case IV) and a 50% reduction
when decreasing the diffusion by a factor of ten (case V). From
this tendency, we speculate that a further decrease of the liquid
diffusion should not reduce the mixing much more beyond
these values, although Lagrangian studies should provide a more
definitive answer to this question.

The strongest reduction of the evaporation rate um (between
50% and 60%) occurs when settling is included (case VI). This
behaviour was anticipated by looking at the high settling numbers
in Table 1 and a more physical explanation is revealed below.
When all the small-scale processes are put together (case VII), the
negative effects on the entrainment add in a nonlinear way and
the mixing is reduced by 90% at the end of the simulation. At
this stage, um still shows a negative tendency, suggesting that the
BRI might be completely suppressed. If this limit is reached, all
turbulence would eventually die out and the cloud would reach a
state with just molecular mixing.

We explain the strong mixing reduction induced by the small-
scale processes first by looking at flow visualizations. In Figure 3,
we compare the total water field of the simulation with all small-
scale processes (case VII) to the same field in the fully equilibrium
case (case I). Notice that in the CBL the equilibrium simulation
presents a more a diffusive field due to the lower Scl but otherwise
the flow there looks quite similar. The most important differences
arise in the inversion layer. In the case with all small-scale features,
a new layer appears between the cloud bulk and the inversion
(green in Figure 3). This intermediate layer contains no liquid
water but has a vapour concentration similar to that inside
the cloud bulk. We observe that the addition of sedimentation
evacuates the droplets from this middle layer, while reducing
the liquid-phase diffusion hinders droplet diffusion back into the
middle layer.

The middle layer described above is conceptually similar to the
entrainment interface layer (EIL) observed in clouds by Gerber
et al. (2005) and Haman et al. (2007), in the sense that it provides a
cloud-free smooth transition between cloud and free atmosphere.
The main difference between the middle layer and the EIL is that
the middle layer in our simulations is much thinner, of the
order of centimetres, and that its composition is much closer to
the cloud bulk. It remains to be explored in larger simulations,
with other turbulent sources, whether the middle layer in our
simulations eventually grows and mixes with the free atmosphere,
evolving into a EIL as observed in clouds.

The emergence of the middle layer modifies the mixing
behaviour between the dry air and the cloud bulk. In Figure 4(a),
we show the joint probability density function (jpdf) of total water
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(b)(a)

1 m

Figure 3. Total water cross-section at the final stage of the simulation for the cases with (a) pure equilibrium formulation (t = 1.9ti) and (b) all small-scale processes
included (t = 2.1ti). The horizontal domain size is 3 m. The colour scale varies from red, qt = 0.0015, to blue, qt = 0.012. The saturated vapour content in the
cloud is qsat

v (Tc) = 0.0089. The green area indicates the area for total water where 0.85 < qt/qsat
v (Tc) < 1, which corresponds to regions empty of liquid water but

still containing a large amount of vapour. Notice how in the case with all small-scale processes a layer depleted of liquid is formed between the cloud and the free
atmosphere, while keeping the vapour interface (and also temperature) rather flat.
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Figure 4. (a) Joint pdf of total water qt and enthalpy h/(Cp,0T0). (b) Joint pdf of

buoyancy b/b1 and scaled total water (qt − qc
t )/(qd

t − qc
t ). The scaled total water

is equivalent to the mixed fraction in the equilibrium formulation. Both colour
plots represent the last stage (t = 2.1ti) of the simulation with all small-scale
effects (case VII). The continuous line represents a linear mixing process. The
point M corresponds to a middle layer with the same vapour and temperature as
the cloud but no liquid water. The dashed line represents the mixing of the cloud
and the free atmosphere with the middle layer.

and enthalpy for the simulation with all small-scale processes (case
VII). Those results do not follow the linear mixing characteristic
of the equilibrium formulation indicated by the solid line. In
order to explain the observed jpdf, we introduce an idealized
mixing process, the middle-layer mixing, similar to the EIL
mixing described by Kurowski et al. (2009). We describe the
middle-layer mixing as a process in which the cloudy air and the
free atmosphere do not mix directly with each other and only
mix with an idealized middle layer that is generated by droplet
sedimentation. This middle layer contains saturated vapour at the
cloud-bulk temperature but no liquid water and is represented
by point M in Figure 4(a). For the middle-layer mixing, we also

assume linear mixing between the middle layer and the cloud
bulk and between the middle layer and the free atmosphere, as
shown by the dashed line in Figure 4(a). The jpdf in Figure 4(a)
falls in the interval between linear mixing and middle-layer
mixing, but the latter seems to capture better the tendencies of
the data.

The joint pdf of total water and buoyancy presented in
Figure 4(b) is also better described by middle-layer mixing
compared with traditional linear mixing. Notice that there is
no evaporation or condensation during middle-layer mixing:
neither when the cloudy air mixes with the middle layer (all
air is saturated) nor when the dry air mixes with the middle
layer (no droplets involved). Therefore, middle layer mixing does
not allow for the BRI. The buoyancy pdf in our simulations is
pushed towards this process, explaining the strong reduction in
BRI observed in Figure 2.

5. Summary and conclusions

We have developed a bulk formulation for direct numerical
simulations of warm clouds that accounts for the small-scale
features originating from the microscopic droplet dynamics:
finite-time phase change, pure inertial effects and settling. These
features are characterized by three non-dimensional parameters:
a Damköhler number, a Stokes number and a settling parameter.
This formulation is aimed at the study of mixing processes at
cloud boundaries in domains of several metres. Those scales
are too large for current Lagrangian models but are still poorly
represented in current LES. We propose that bulk simulations
using this or similar formulations could help to bridge this gap.

Our main approximations are the continuum description of
the liquid droplets and the addition of artificially high diffusion to
the liquid-phase dynamics. The addition of diffusion is necessary
in order to relax the resolution constraints. The formulation
provides a control parameter, the liquid Schmidt number Scl, to
ascertain the validity of this approximation.

The formulation has been developed under the assumption
that the droplet radius pdf follows a log-normal distribution.
The system is then reduced to the evolution equations for the
velocities, total water mass fraction qt, internal energy e, liquid-
water mass fraction ql and particle number density n. These
equations include flux terms, which account for the relative
movement of the droplets with respect to vapour and air. We
investigate the limit in which the particles are well mixed, so that
n is approximately constant. In this well-mixed configuration,
different log-normal distributions differ only by a multiplicative
factor for the non-dimensional parameters introduced above.
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We apply the formulation to investigate buoyancy reversal
instability (BRI) at the cloud top. With this purpose, we perform
simulations of a mixed-layer configuration that mimics a cloud
top driven solely by evaporative cooling. Pure inertia has a
negligible effect, as predicted by the low Stokes numbers associated
with the flow. All the remaining small-scale processes reduce
the mixing rate. Settling and the reduction of the liquid-phase
diffusion have the largest impact on the instability and decrease
the mixing rate of liquid water between 50% and 60% with respect
to the equilibrium formulation.

When all small-scale features are included, mixing with the
free atmosphere is reduced by 90%. We explain this strong
reduction by looking at a middle layer that emerges between
the cloud bulk and the inversion layer. This layer is generated
when sedimentation evacuates the droplets from the cloud
interface and therefore it contains no liquid water but has vapour
concentrations and temperature similar to the cloud bulk. This
middle layer is thus akin to the entrainment interface layer
observed in clouds (Haman et al., 2007). When the middle layer
grows, the cloud-bulk air and the dry air from the free atmosphere
cannot mix directly; they have to mix previously with moist air
from this middle layer. The mixing line and the joint pdf of
total water and buoyancy are consistent with this picture. The
mixing within the middle layer does not include any mixtures
with buoyancy below the cloud-bulk buoyancy, suppressing the
BRI.

In the previous investigation using the bulk formulation
(Mellado, 2010), it was shown that the entrainment velocity
is too low when the BRI is acting alone. We confirm here that
the flow induced by the BRI gets much weaker when a better
description of the droplet dynamics is included, as previously
suggested in Mellado et al. (2010a). We conclude that the BRI
and evaporative cooling can contribute significantly to the mixing
only when other turbulent sources enhance mixing at the cloud
top, e.g. radiation or shear. This is also in agreement with the
experimental studies of Shy and Breidenthal (1990) and Siems
and Bretherton (1992). In contrast to the low turbulence induced
by evaporative cooling, we show in a different study (De Lozar
and Mellado, 2013) that radiation alone can explain between
50% and 100% of the entrainment velocities measured in the
DYCOMS-II campaign (Faloona et al., 2005). Radiation is thus
probably the main source of turbulent energy in stratocumulus
clouds, as originally proposed by Petterssen (1938) and generally
supported by many other studies (see the review of Wood, 2012).

A. Appendix: Summarized derivation of the transport
equations

In this Appendix we summarize the steps and approximations
used to obtain the transport equations (Eq. (13)) from the drift
velocities presented in Eq. (12). More details can be found in
Mellado et al. (2010b).

The general form of the transport equations of property A in
a mixture composed of three species (in this case dry air, vapour
and liquid water) is

∂(
∑

i=v,d,l

Ai)/∂t + ∇ · (
∑

i=v,d,l

ViAi) =
∑

i=v,d,l

ξi, (A1)

where Ai is the density of the quantity that carries each of
the species, ξi accounts for the source term and Vi is the
centre-of-mass velocity of each species discussed in section 2.2.
These conservation equations can be written in terms of the
mean velocity u (defined in Eq. (6)) and the total density
At = ∑

i=v,d,l Ai as

∂At/∂t + ∇ · (uAt) = −∇ · jD + ξt ,

jD =
∑

i=v,d,l

Ai(Vi − u), (A2)

where the transport due to the movement of the different species
with respect to the mean flow, the drift flux jD, appears explicitly.
This drift flux is calculated using the drift velocities presented in
Eq. (12).

As an example, we show the calculation of the transport
equation for the total water At = ρqt. In this case, the mass
density of vapour carried by the vapour is Av = ρqv, the mass
density of liquid carried by the liquid is Al = ρql and the dry air
carries no water, so that Ad = 0. Using Eq. (A2), the transport
equation for the total water reads

∂(ρqt)/∂t + ∇ · (ρuqt) = −∇ · jt,

jt = ρql(Vl − u) + ρqv(Vv − u), (A3)

where we have used the condition that the total water is a
conserved quantity in absence of solidification or precipitation
(ξv + ξl = 0). Using Eq. (12) for the drift velocities, the drift flux
reads

jt/ρ = −κv∇qt − (κl − κv)∇ql + (1 − qt)qlD. (A4)

This equation is equivalent to the first line in Eq. (13), where
the same expression is shown in a non-dimensional form. The
rest of the transport equations are derived in the same way, but
using total mass, total momentum, mass liquid and total energy.
The main advantage of our choice of transport equations over
other possible choices (such as using vapour or temperature)
becomes apparent in the Boussinesq limit, where all production
terms associated with compressibility are neglected in the internal
energy equation, so that source terms only appear in the mass
liquid equation.

The drift fluxes for the total mass, liquid and total water in
Eq. (14) are exact. In the energy and momentum equations, we
keep the leading-order terms that describe the droplet transport
of momentum and mechanical energy and neglect the terms of
order ql‖Vl − Vg‖. It is easy to show that this approximation is
valid in the limits qlSt 	 1 and qlSv 	 1, which are interesting
for simulations of clouds. Notice that, by writing the formulation
in terms of the mean velocity of all components (including the
liquid), the leading-order terms of the transport are naturally
incorporated into the equations and only higher orders terms
enter into the drift flux.
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