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Abstract:
We illustrate how some of the Similitude Based Learning (SBL) paradigms can be

reformulated using some logical formalisms as circumscription, predicate completion and
the close world assumption. Our approach shows that is possible to use these logical
tools in order to obtain a formal unified vision of SBL paradigms, and it also suggests
some kind of improvements on the current implementations. We introduce a hitherto
unmentioned direct link between machine learning and circumscription. We believe that

this new framework and the obtained results are of practical interest.

Resumen: Se ilustra como algunos de los paradigmas de Aprendizaje Basado en Simili-
tudes (SBL), pueden reformularse usando los formalismos logicos de Circumscripcién, Com-
pletacién de predicados y la Hipotesis del mundo cerrado. Esta aproximacién muestra que es
posible usar estas herramientas logicas para obtener una visién formal unificada de paradigmas
de SBL) y sugiere la posibilidad de algunas mejoras en las implementaciones existentes. Este
trabajo establece una notable relacion directa, que no habia sido notada anteriormente, entre
Aprendizaje y Circumscripcién. Nosotros creemos que este es un nuevo framework y que

los resultados obtenidos son de interes practico.
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Abstract

We illustrate how some of the Similitude Based Learning (SBL) paradigms
can be reformulated using some logical formalisms as circumscription, pred-
icate completion and the close world assumption. Qur approach shows that
is possible to use these logical tools in order to obtain a formal unified vi-
sion of SBL paradigms, and it also suggests some kind of improvements on
the current implementations. We introduce a hitherto unmentioned direct
link between machine learning and circumscription. We believe that this new
framework and the obtained results are of practical interest.

1. Motivation

La beauté est un vice, merveilleuz, de la forme.
César Moro
One of the defining features of intelligence is the ability to learn. Thus, machine
learning is a central concern of Al. Learning concepts from examples is the most
widely studied problem in machine learning. One of the two major learning tech-
niques the Similitude Based Learning (SBL), involves comparing several exam-
ples of a concept, searching for common features in order to define the concept to be
learned. In this area, however, only a few formal approaches have been proposed (e. g.
[VALI84],[AMST88],[NATAS8S], etc.). These approaches prove to be fruitful and result
in several learning algorithms, but they only work for fairly small sets of concepts. Qur
alm is to show how some of the learning paradigms can be reformulated using the logical
formalism of circumscription which has been proposed by McCarthy to deal with the
problems related with non-monotonic reasoning [McCA80]. Our approach shows that
is possible to use these logical tools in order to obtain a formal unified vision of SBL
paradigms, and it also suggests some kind of improvements on the current implementa-
tions. We introduce a hitherto unmentioned direct link between machine learning and
circumscription. We believe that this new framework and the obtained results are of
practical interest. In particular, we study Winston’s well-known algorithm for learning
structural descriptions [WINS75 and Vere’s inductive learning of concepts algorithm
[VERE78], and show how our approach allows an unified formal vision of both meth-
ods. We use a typical example of each method and reformulate them in terms of our
approach to show its central ideas. From this it is easy to see that our method subsumes
both approaches and could be applied to others learning paradigms.

2. Introduction

The Closed World Assumption (CWA) [REIT78], the Predicate completion
Theory (PCT) [CLAR78] and the Circumscription Theory (CT) [McCAS80]

* Partially supported by scholarships from UABCS, BANXICO & Instituto Tec-
nolégico de la Paz,B.C.S. MEXICO



have been proposed as different approaches to the formalization of non-monotonic rea-
soning. Although these formalisms were presented independently, Reiter had showed
that sometimes it is possible to consider the predicate completion as a special case of
circumscription [REIT82]. Lifschitz also derived general conditions relating these two
augmenting conventions, and had showed that when the CWA can be applied consis-
tently to fixed domain theories, it produces the same result than parallel circumscription
of all predicates in the theory [LIFS85b]. Those classes of theories have been also stud-
ied by Reiter in [REIT84]. On other hand, Gelfond have suggested that some versions
of the CWA are equivalent to some particular forms of circumscription [GELF89].

In sections 2.1, 2.2 and, 2.3 we introduce the main results of these formalisms to
help in the comprehension of the examples of section 3.

2.1 The Closed World Assumption

The CWA is an important convention, usually implicit on data base design, that
was studied by Reiter [REIT78] and appears to be a powerful logic tool for commonsense
reasoning. Suppose that we have in a data base the list of people that have to paid
their income tax. For such a data base, to be able to answer queries such as:

Did Ton Sales pay his income tax?

it would be useful to adopt the following convention: Persons whose name does not
appear on the database did not pay their income tax this year. Without such convention,
we would have to list explicitly all persons who have not yet paid every time we want
to find out whether someone had paid his tax. This assumption, that seems to be — and
is — fairly natural is an example of the CWA, and is used each time that we address
these kind of queries to a conventional data base.

The CWA augments a theory T[A], which is the closure of a database A (or a
set of beliefs expressed as a finite set of first-order formulas) under logical entailment,
adding to A a set of assumed beliefs A 4o comprising the negation of any ground atom
(i.e. a formula without bound or free variables) that cannot be logically entailed from
A. This is the naive form of the negation as failure rule (NF-rule). The augmented
theory, CWA[A], can be stated succintly as follows:

CWA[A]| = {p | AU Aagsm F ¢}

The CWA does not always result in a consistent augmented theory CWA[A] as shown
in the following example:

Example 2.1
Assume that:
A=PVQ.

Then neither P nor Q is in T[A], so by the CWA their negations are both in
CWA[A] and therefore:

CWA[A]={PVQ,~P, -Q, P, Q}

which is not a consistent theory.

Minker was the first who note that the source of difficulties in example 2.1 is
the fact that A contains a disjunction of positive ground literals and no one of them
could be deduced from A[MINKS82]. To guarantee closure consistence he introduces
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a more restrictive assumption, called the Generalized Closed-World Assumption
(GCWA) which applied to A derives the following set of assumed beliefs:

Aism ={ ~P | P is a ground atom and there is no ground disjunction B of

atoms such that A+ PV B and A If B}

defining in this case the closure GCWA[A] of A as the logic closure of the set AUA!_ .
Minker, in this work, proves the consistence of the augmented theory GCWA[A], in
the case of a consistent data base A.

Shepherdson proves the following consistency theorem for the CWA[A] from which
it is easy to show the consistency of GCWA[A] in the cases where A is consistent
[SHEP84]:

Theorem 2.1

CWAJA] is consistent iff, for every positive ground-literal clause Ly V...V L,
that follows from A, there is at least one ground literal L; also entailed by
A that subsumes it. Equivalently, the CWA[A] augmentation of a consistent
data base A, is inconsistent iff there are positive ground literals Li,...,L,
such that

AFLyv...VL,
but, for: =1,...,n, Al L;

It is easy to show that if A only contains Horn clauses (i.e. clauses with at most
one positive literal) then the conditions of the theorem hold, and the augmented the-
ory is consistent for this important special case. On other hand, the consistency of
CWA[A] is strongly dependent on the domain of the language terms. For example, by

the application of the previous theorem,it is easy to show that the CWA augmention
of

A = {Vz(P(z) V Q(z),) P(a), Q(b)}
is consistent in the case that A and B are the only objects in the language, but if there
is any other object then it is inconsistent. This problem has been treated by restricting
the CWA[A] to the so called fixed-domain theories. In these kind of theories, the con-
stant objects of language are restricted to a finite number of terms (Domain Closure
Assumption), each one of them represents an unique object (Unique Names As-

sumption). When there are no constant functions in the language, these assumptions
might be formally stated as:

~ The Domain Closure Assumption (DCA)
Ve(z=H V...Vz =1t,)
~ The Unique Names Assumption (UNA)
LAt ViVi i)

where the t; are all the constants objects of the language

The CWA is too strong for many applications. You do not always want to assume
that any ground atom not provable from A is false.



2.2 The Predicate Completion Theory

Another research direction motivated by non-monotonic reasoning and related
problems, particularly those of taxonomic hierarchies, was the predicate completion
of a set of clauses, described by Clark [CLAR78]. This approach consists of a kind of
minimization principle which permits us to express, plainly, the assumption that the
only objects that satisfy a property, or a set of properties in the case of parallel com-
pletion, are those that must be so deduced from our beliefs. It could be interpreted as
special case of CWA which express that the only positive information of predicate P is
that available in the theory (i.e. the information about P in the theory is complete). In
this case, to avoid circular definitions that do not satisfy the mimimality assumption,
the completion on predicate P is limited to the clauses with the following property : if
they have a positive occurrence of P this occurrence is unique (solitary clauses). These
clauses must be expressed in the following normal form:

Ve(Fy(z =t)AQ1 A ... A Qn = P(z))

where z is a tuple of variables not occurring in t, (z = t) is an abbrevation for
(1 = t1 A ... Az, = ), and the variable y occurs only in the antecedent
of the implication.

If there are exactly n solitary clauses in P, with n > 0, on normal form:

Vz (E; = P(z)) fori=1,...,n (2.1)

(Equivalently, Vz (Ey V...V E, = P(z)))
then the completion COM[A; P] of P in A is defined by adding to A the formula:

Vz (P(z) = E1 V...V Ep)

that is
COMIA;P] = AA(Vz(P(z) < E;V...VE,))

Since all the E; are solitary clauses, the composition E; V...V E, does not contain
P, and therefore it can be considered as the sufficient part of a definition of P. The
completion consists essentially in assuming this composition as necessary for P. By
this process we obtain a complete definition of this predicate in A, therefore, it can
be considered as a formal procedure that leads a data base A to the learning of the
definition of P. This kind of learning is the most conservative that can be realized with
the present information.

The PCT can be used in the formalization of non-monotonic reasoning, particu-
larly for default reasoning. This kind of reasoning assumes as true (by default) all those
typical properties that are not explicitly declared as false. The inheritance of character-
istics from a class to a subclass, widely used in Al in hierarchical taxonomy systems, is
an example of this type of reasoning. In these systems the inheritance class/subclass is
implemented by default, and does not include the case of exceptions (qualifications). At
the design phase the problem is to consider all the possible exceptions of a given rule,
not only by their number but also because could exist a number of unknown exceptions.

McCarthy in [McCA886], proposed a technique to attack this problem, namely the
qualification’s problem, which consists in the consideration of the exceptions as abnor-
malities, that is as instances of an Abnormal predicate (Ab) whose satisfaction by any
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given object cancels the applications of the correspondent rule, namely the inheritance
cancellation rule. The application of this technique gives a monotonic solution to the
qualification’s problem, in the sense that new exceptions are incorporated by means of
additional instances of the Ab instead of having to modificate the previous rules. The
classical ornithological example is introduced to ilustrate this technique.

Example 2.2

Let A a database containing the following clauses:

Vz (Bird(z) A ~Ab(z) = Flies(z))
Vz (Ostrich(z) => Ab(z))
Vz (Penguin(z) = Ab(z))

Expressing these clauses in the normal form (2.1), results:

Vz (Bird(z) A (—~Flies(z)) = Ab(x))
Vz (Ostrich(z) V Penguin(z) => Ab(z))

therefore the completion of Ab in A is:

COMP[A; Ab] = Vz(Ab(x) <= (Bird(z) A (=Flies(z)))V
(Ostrich(z) V Penguin(z)))

(the only abnormal things are ostriches, or penguins, or birds that do not fly).

In the augmentation of a theory with respect to an Ab, used to manage the ex-
ceptions of a rule, the set of objects that satifies Ab is minimized, resulting in the
maximization of the domain of the objects to which the rule applies. If you interpret
this fact from the point of view of the SBL: the completion of the available information
with respect to the negation of the target concept (the concept to be learned) results
on the most general possible definition of it. This is the central idea applied in the
examples of sections 3.1.1 and 3.2.1.

The parallel predicate completion, extends to a set of predicates the idea of consid-
ering the available information about a predicate P as complete. In this case, with the
purpose of avoiding circularity and to assure the consistency of the augmented theory,
it is assumed that the database could be ordered in the set of predicates {P;,...,P,}
with respect to which the completion is made. This means that all clauses must be
solitary for each P;, and those clauses containing the predicates can be expressed as:

Vz (E; = Pi(z)) fori=1,...,n

where, for each i, E; do not have any occurrence of the predicates P;, Piyq, ..., Py,

nor negative occurrences of Py, ..., P;_;. The completion is obtained by the addition
of the n formulas:

Vz (Pi(z) = E;) fori=1,...,n



2.3 The Circumscription Theory

Among the different approaches to handle the problems derived from incomplete
information, specially of those problems on non-monotonic nature, the circumscription
theory, initially proposed by J. McCarthy [McCA80,86] and developed by V. Lifschtiz
[LIFS85a,b,86], is considered by some authors as the most powerful tool to cope with
those problems [PRZY89, GELF89]. One of its more important characteristics is that
it is wholly based on the classical predicate logic.

In the same way as the predicate completion, the CT consists in augmenting a
theory by the addition of a single formula that expresses the idea that the only available
positive information about one predicate is that is present on the database. This formula
is obtained by means of the concept of minimal models. We present a simplified version
of CT in model-theoretic terms, following Genesereth’s notation [GENESS].

Let M and N be models of a theory T that only differ in the interpretation of a
predicate Pin T. Let M <p N mean that P’s extension in M is a proper subset of its
extension in N (M <p N means that M <p Nand N £p M).

The relation <p is a partial order over the set of all models of the theory. The
minimal models with respect to this order (that does not necessarily exist) are called
P-minimals or minimals in P. So a model M of the theory is P-minimal if a model N
does not exist such that N < p M.

Circumscription consists in obtaining of a single formula ¢p in terms of P and
A, namely the circumscription formula, such that any augmented database’s model
(A Awpp) is a minimal model of A. This is a second-order formula and can be expressed
as:

¢p : VP* = (V2(P*(z) = P(z)) A (~(Vz(P(z) = P*(z)))) A A(P*))

where P* is a predicate of the same arity of P, and A(P*) is obtained substituting P*
by each occurrence of predicate P in A.

By means of the ¢p formula we formally express the fact that no predicate P*
exists that satifies A when substituted by P, and whose extension is a proper subset of
P. This fact, may be, becomes more evident if this formula, is stated as:

VPT((A(P™) A (V2(P*(z) = P(2)))) = Yz (P(z) = P*(x)))

As in the preceding sections CT does not always result in a consistent augmented theory.
For example, an obvious case is when the database A has not P-minimal models. For
a consistent database A, Lifschitz shows the sufficiency of several sets of conditions for
the consistency of CT [LIFS85].

Theorem 2.2

The circumscription of a predicate P in a consistent database A of separable
formulee is consistent.

This theorem will be used in the examples of the following sections. The sep-
arable formule in P are a generalization of the solitary clauses defined in section
2.2. They are a composition of conjuctions and disjunctions of formulee of the type
Vz (E(z) = P(z)), with formulee that do not have positive occurrences of P (here
E is a formula without occurrences of P).

A special case of circumscription, of great interest in SBL, is that where all the
A's formulee could be expressed as:

N(P)A(Vz (E(z) = P(x)))
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where N(P) is a formula without positive occurrences of P and E do not have oc-
currences of P. Under this conditions the following theorem, formulated by Lifschitz
[LIFS85a], holds .

Theorem 2.3
CIRC[A; P] = N(E) A (Vz (E(z) < P(z)))
where N(E) is obtained by substituing F for each occurrence of P.

In this case the augmentation is constructed by the addition of a first-order formula
to A. In these cases the circumscription formula is called collapsable. Theorem 2.3 is an
special instance of a more general result that was recently shown by Rabinov [RABI89)].
There are more general forms of circumscription as the Parallel Circumscription, Pri-
oritized Circumscription and forms of Circumscription allowing varying predicates, etc.
[McCA86] [LIFS85a), that produce stronger results which are also relevant for the
learning paradigms. We now proceed to-explore these lines. An interesting case is that
which allows a larger extension for some others predicates, namely the variable predi-
cates, with the purpose of obtaining a smaller extension for those being minimized. For
these cases the following theorem could be applied [GENESS].

Theorem 2.4
If A is of the form N(Z) A (Vz (E(z) = Z)), where N has no positive

occurrences of Z, and E has no occurrences of Z, then:
CIRC[A; P; Z] = N(Z) A (Vz (E(z) = Z)) A CIRC[N(E); P]
where N(E) is obtained by substituting E for each occurrence of Z and E, P
and Z can be tuples of predicates.
Example 2.3
Using the theorem 2.3, it is easy to see that in the example 2.2 the cir-
cumscription of Ab in A produces the same results than the completion of Ab
in A, that is:
CIRC[A; Ab] = Vz (Ab(z) <= (Bird(z) A (~Flies(z)))V
(Ostrich(z) V Penguin(z)))
On the other hand, as A could be expressed in the form:
N(Flies) A (Vz (E(z) = Flies(z)))
where:
N(Flies) = Yz (Ostrich(z) V Penguin(z) = Ab(z))
E(z) = Bird(z) A (mAb(z))

and N(Flies) has not positive occurrences of Flies, and E(z) has no occur-
rences of Flies. Then if it is allowed the variation of predicate Flies, from
theorem 2.4 we obtain:

CIRC[A; Ab; Flies) = A A CIRC|N(E); Al
= A A CIRC[Vz ((Ostrich(z) V Penguin(z)) = Ab(z)); Ab]
= A A (Vz ((Ostrich(z) V Penguin(z)) < Ab(z)))

so we get, a more restrictive characterization of the abnormal predicate Ab.
(The only abnormal things are either ostriches or penguins).
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3. Two examples of SBL using circumscription.

3.1 Learning structural descriptions from examples. Winston’s method

The well-known Winston’s learning algorithm [WINS75] has as its starting point a set
of primitive relations to describe the relationships between objects, and a set of basic
objects (the toy world). In this world the events are scenes which are represented by
a labeled graph where objects are represented as the nodes and the arrows represent
the primitive relations. The system learns, with the assistantship of a ”Professor”, by
means of examples and near-miss examples.

We use the classical example of learning the concept of arch, to show how the
circumscriptional approach allows us to obtain a definition of this concept by consid-
ering only the relevant characteristics. This approach makes explicit all the logical
assumptions that are implicit in Winston’s approach.

We will assume implicit universal quantification, and use an abbreviated subset of
relations used by Winston in [WINS75], just to simplify the reading of the resulting
expressions:

SUPPORTED-BY (SPB)  A-KIND-OF (AKO) TOUCH (T)
STANDING (S)  LYING (L)

Also B is used as the abbreviation for BRICK. The learning process begins by
showing the system a picture of a scene (see fig. 3.1) which is a positive example of the
target concept. The system represents this scene as labeled-graph, as shown in figure
3.2, which is the representation of an arch.

Figure 3.1

Figure 3.2

Then, the scene of figure 3.3 is presented to the system as the first near-miss of
arch. By means of a comparison between the graph resulting of this negative example
against the previous one, the systems indentifies as compulsory the fact that the bricks
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X and Y must support Z; marking as necessaries both support relations in the graph
of figure 3.2.

Figure 3.3

If is presented now to the system the scene of the new near-miss showed in figure
3.4, it repeats the comparison procedure between the graph produced from this figure
and the graph obtained in the previous stage. In this case, it marks as necessary the
arrow corresponding to the relation -T(X,Y").

Figure 3.4
If the learning process finishes at this point, the system’s representation of the arch
concept is the graph of the figure 3.2, but with the difference that now, the relationships
that have been marked as necessary could not be eliminated by further near-misses.

3.1.1. Circumscriptional approach

In this section we will show how the conclusions obtained by Winston’s method
can be reformulate using the circumscriptional approach; allowing the formalization of
those conclusions.

The information represented in the graph (see fig. 3.2) could be expressed, under
our approach, as the following first-order expression:

AKO(B,X) AAKO(B,Y) A AKO(B, Z) A (-T(X,Y))
ASPB(Z,X)ASPB(Z,Y)AS(Y)AS(X)AL(Z)
—s ARCH(X,Y, Z) (3.1)

As stated in the previous section Winston’s algorithm concludes from the first near-miss
(see figure 3.3) that both X and Y must support Z, in first order notation, this fact 1s
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represented as:

ARCH(X,Y,Z) = SPB(Z,X) ASPB(Z,Y) (3.2)

or equivalently:
~(SPB(Z,X)ASPB(Z,Y)) = ~ARCH(X,Y, 2) (3.3)

The conclusion obtained by Winston’s method from the second near-miss is expressed
as:

ARCH(X,Y,Z) = -T(X,Y)
which is equivalent to:
T(X,Y)= -ARCH(X,Y, %) (3.4)

Therefore, if we consider that our database A is formed by the formule 3.1, 3.3 and
3.4, then their combination could be expresed in the normal form, N(P) A (E = P),
required by theorem 2.3. Here:

P = (~ARCH(X,Y, 2))
E = ~(SPB(Z,X) ASPB(Z,Y))V T(X,Y)

and N(P) is the clause:

(-AKO(B, X)) V (~AKO(B,Y)) V (~AKO(B, Z)) V T(X,Y) V (-SPB(Z, X))
V(=SPB(Z,Y)) V (=S(Y)) V (=5(X)) V (-L(2)) V (~(~ARCH(X,Y, 2)))

which is equivalent to the formula 3.1. Applying this theorem to obtain the circum-
scription of A with respect to “~ARCH yields:

CIRC[A; ~ARCH) =VXVYVZ (~ARCH(X,Y,Z) +
~(SPB(Z,X) ASPB(Z,Y)) V T(X,Y))

which allows to express the ARCH definition as:
ARCH(X,Y,Z) <= (SPB(Z,X)ASPB(Z,Y)) A (-T(X,Y)) (3.5)

Since definition of ~ARCH has been obtained minimizing its extension, then the
ARCH’s definition 3.5 is the most general that can be obtained using the information
given to the system.

Under this circumscriptional approach, learning consists of a process that goes from
the most general definition of a concept, allowed by the first near-miss, to more specific
characterizations, obtained using new near-misses, until getting an adequate specificity,
which is not necessarily the same as that of the concept. In this case, it is not necessary
to eliminate the added noise, as it is eliminated with the first near-miss. However,
Winston’s learning algorithm proceeds inversely. It is a generalization technique for
learning concepts. The non compulsory relations are added by positive examples (noise),
which produce excessive restrictions on the concept’s characterization that have to be
eliminated by the introduction of positive examples; if these new examples are not
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carefully chosen by the professor, they could introduce new disturbances. Another well-
known limitation of this approach is that, as the number of examples increases, rules
become overly specific and thus difficult to understand and debug. This process finishes
when the professor decides that the system has an adequate characterization which,
eventually, could match the concept.

On other hand, although Winston, in his work [WINS75] textually says that:

"If two differences are found, either of them may be sufficient to be a near-miss,
while the other difference may be equally sufficient or merely irrelevant”

Although, from the near-miss of figure 3.3 his system concludes, in the same work, that
both support relations are crucial. However, the correct conclusion must be that one of
them or both are necessary, which in our notation can be expressed as:

ARCH(X,Y,Z) => SPB(Z,X) Vv SPB(Z,Y) (3.6)
If this expression is used instead of expresion 3.3, the definition of arch becomes:
ARCH(X,Y,Z) < (S(2,X)V S(Z,Y)) A (-T(X,Y))

Now, even expression 3.6 is not correct without the supposition that arch’s concept
can be completely characterized by a subset of the initial relations set presented in the
initial example (see expression 3.1). The same holds for expression 3.4.

In general, for the logical validation of the conclusions obtained by Winston’s algo-
rithm, you must suppose that the examples contain enough information (relations) to
result on a complete characterization of the target concept as a subset of those relations.

The following theorem makes explicit the logical assumptions implicit on Winston’s
method, and justifies the conclusions obtained from the graph comparation. The proof
of this theorem is in Appendix A.

Theorem 3.1

Assume a set of predicates IT = {P,... , Pn} whose conjuction is a sufficient
condition for the complete characterization of a concept C, that is:

/\ P; = C where (N ={1,...,n}) (3.7)
tEN

Also assume that the concept C can be completely characterized by the con-
junction of a subset of II, that is:

15 C N such that C «—= /\ P; (3.8)
1€ES
If there exists a subset T' of N and constant objects 01,...,0k such that:
(A PIAC N\ (=P))) (01,-..,0k) is true (3.9)
i€T iEN\T
and
(APIAC N\ (-P)) = -C (3.10)
i€T iEN\T
then
C= \/ P (3.11)
iEN\T
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3.2. Inductive learning of concepts. Vere’s method

Vere, [VERETS], has proposed a learning method which is an inductive gener-
alization using examples and counter-examples. The concepts are characterized by
conjuctions and disjunctions of predicates. The abstraction process is based upon an
operation of inductive substitution, where some given occurrences of specific terms are
substituted for variables. Those variables must not appear previously in the expression,
and for different terms the use of different variables is necessary. For the sake of sim-
plicity, we only consider those substitutions where all occurrences of the same term are
substituted for the same variable.

Let E; and E, be first-order formulse expressed in the normal conjunctive form.
Ey is more general than E,, if there exists a substitution o such that the set of clauses
of E; is a subset of the set of clauses oE,. Here, 0F, is the resulting expression from
the application of o to E,. The intersection and the difference of the set of clauses of
Ey and 0 Ey, are respectively called the coupling and the remainder.

Let us introduce some abbreviations for simplicity:

ON (O) SPHERE (S) CUBE (C) PYRAMID (P)
YELLOW (Y) RED (R) GREEN (G) BLUE (B)
Example 3.1

Let us consider the expression:
O(4,B) AS(A) A C(B) A G(A) A G(B) (3.12)
If we replace A by X and B by Y we obtain:
O(X,Y)AS(X)AC(Y)AG(X)AG(Y)
As it has been explained, the formula:
O(X,Y)AS(X)AG(X)AG(Y)

is one of the possible generalizations of (3.12).

The Maximum common generalization (Mcg) of two expressions is a generalization
of both, with the additional characteristic that it cannot be more general than any other
common generalization.

Vere’s learning algorithm essentially consists in:

~ The professor gives the system a set of examples and counter-examples. Then
the system builds, by means of an iterative process, the Mcg of all examples, taking
the examples by pairs, and exploring all the possible couplings.

~ If the Mcg obtained includes some counter-examples, then the Mcg of the re-
mainders of these counter-examples is introduced as restrictive term. These remainders
are obtained through the elimination, from the clausal form of the counter-examples,
of those clauses that are instances of any clauses present in the Mcg. In this step the
learned concept is:

Cl = Mcg A ("'Nl)

If the concept C; excludes some examples then it is added to N; a new negative condition
N2, and successively. In general, the target concept C is expressed as:

C = MCg/\ _\(Nl A _'(N2 A _|( A _1Nk)))

12



We use the following example, which has been extracted from [LOPES8T], to ilus-
trate our approach in the case of inductive learning. In this case, the Vere’s method
begins obtaining the Mcg of four examples of figure 3.5: which is:

Co = O(X,Y) A C(Y) A G(Y)

Examples

G
NF 7 R
‘ | G G G

Figure 3.5

Ey = 0(01,02) AS(01) A C(02) A G(O1) A G(05)
E; = 0(03,04) A P(03) A C(O4) A B(O3) A G(Oy)
E; = O(0s,05) A C(Os) A C(Og) A Y(0s) A G(Os)
E4 = O(01,05) A O(0s, 01) A C(O7) A C(Os) A C(0Os)

AR(O7) A G(Os) A G(Oy)
Counter-examples
@ Y
sARGANE
ﬂCE , CE, CE, CE ,
Figure 3.6

CEy = O(Py, P) ANS(P1) AC(P;) AB(Py) A G(P,)

CE; = O(P3, Py) AS(Ps) A C(Py) A G(P3) A B(Py)

CE3 = O(Ps, Ps) A O(Py, Ps) A C(P7) A C(Ps) A C(Ps)
AY(P;) AB(Ps) A G(Ps)

CE; = O(Ps, Ps) A C(Ps) A C(Py) AB(Ps) A G(Py)

13



The counter-example CE; is eliminated by C; because the cube P4 is not green. As
CE,, CE;, CE4 are included by Cp, it is necessary to introduce a corrective term
N1, which is the maximum common generalization of the counter-examples remainders

Ry, R, Ry.
R, = S(X) A B(X)
Ry = O(2,X) A C(Z) AC(X) AY(Z) A B(X)
Ry = C(z) A B(X)

From this expressions is easy to obtain N1 = B(X), therefore the new characterization
of the target concept is:

C1 = Cy A (-B(X))

as C] does not include example Ej, is obtained a new remainder with the F5’s clauses
not covered by the C}’s clauses. This remainder is P(X), which is its own maximum
common generalization, then the concept, finally, is characterized as:

C'=Co A (=(B(X) A (-P(X)))) (3.13)

3.2.1. Circumscriptional approach

Under our circumscriptional approach, the previous example can be reformulated
as follows. The previous algorithm implicitly assumes that the Mcg of a set of examples
1s a necessary condition for the concept’s characterization, that is: ¢ —= Mecg. In this
case results that: C = Cj, or equivalently:

~Cy = -C (3.14)
On other hand, making the assumption that the generalized expression of each counter-
example is a sufficient condition for ~C, replacing the correspondent terms of each

predicate of the counter-examples CE;, CE3, CE,4, by the same variables , and grouping
the obtained expressions in a single one, results:

Co A (R] \% R3 \% R4) = C (315)
And besides:

RV Ry V Ry = B(X) A(S(X) V C(X) A (O(2,X) A C(Z) A Y(Z) A C(X)))
= B(X) A (S(X) V C(X)) (3.16)

From the last expression, and 3.15 results:
Co AB(X)A(S(z) V C(z)) => ~C (3.17)

Let us assume that our database A is formed by the expressions 3.14 and 3.17, then
the completion of =C in A is:

COMI[A;-C] = VX ((=Cy) V (Cy A B(X)A(S(X)V C(X)))) «— -C
From here the following characterization of concept C is obtained:
C = CoA(=(B(X)A(S(X)VC(X)) (3.18)
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This results shows that if the domain of variables X y Y, Z is not restricted to the set
Ob = {Sphere, Cube, Pyramid}, our approach obtains a more restricted characteriza-
tion of the concept C than the obtained with Vere’s algorithm (see expression (3.13)).
The explanation for this is due to the fact that we do not restrict the domain and then
the characterization of =C is wider; therefore the characterization of C' is more limited.

It is important to remark that the restriction of the set of variables X, Y, Z to
the set Ob is precisely the application of the Domain-Closure Assumption. If this
assumption is applied then results the next expression:

VX(S(X)V C(X) < (-P(X)))
So, if the DCA holds, then (3.18) is equivalent to:
C = CoA((B(X) A (=(P(X)))))

which is the same resulting expression obtained by Vere’s algorithm.

On other hand, in the completion process we did not take in account the C E,, just
to compare our proccess with that of Vere. However, if we take all the counter-examples,
1t is easy to find out that the same characterization of concept C' is obtained as when
the CE; is not considered. Therefore, our approach consists only in the completion
of the negation of the target concept in the database formed by the expression 3.14,
and the generalized expressions whose state the sufficiency of the descriptions of the
counter-examples for ~C. This result can be generalized to the learning of any concept

C.

4. Conclusions and Future Work

This work introduces a formal approach to the study of some of the implicit assumptions
in the learning paradigms. We have concentrated on the analysis of two classical meth-
ods on SBL, and showed how the circumscriptional approach generalize those rhethods.
We believe that this new framework and the obtained results are of practical interest.

Theorem 3.1 brings new light to the inside of the problem of structural descrip-
tion learning by making explicit all the logical implicit assumptions and proving their
consistency (see appendix A).

In section 3.2.1, we present a strong demonstration of our approach including not
only circumscription but the DCA applied to inductive learning of concepts. We think
that this result could easily be generalized.

Our purpose is to extend our study to other major learning technique, like the
Explanation Based Learning (EBL) and, to the ID-3 family. Also we want to
catch the possible links, under our approach, between EBL and SBL. All this without
forget the implementation side of this approach.
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Appendix A
Definitions

1. Let n be a natural number (n > 0) and, let N = {1,...,n}. For each subset
Xm ={Zmi1,.-.,Tmm} (M1 < ... <mm), of theset {z;,...,z,} we will define P(X) =
P(Tmi,. .y Tmm)-
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2. Let Py,..., P, be predicates of arities a1,...,a, respectively, and let:

n
a = E a;
i=1

Also let k be a natural number such that a; < k < a, for : =1,...,n. For each fixed n-
tuple of subsets X,,,..., X, of the set {z1,...,zk},of ay,...,a, elements respectively,
we define formulee in the variables z, ..., zk, as follows:

V:L'l...V:L'k (/\ P;‘)(il?l,---,mk) = /\ Pi(Xa.')

1€EL teL
Vzy .. Ver (\/ P)(z1,...,2k)) = \/ Pi(Xa,)
t€L i€l

For each subset L € N.
In the proof of theorem 3.1 we will assume that exists an specific n-tuple of subsets

Xays-+-,Xa, and a natural number k, associated to the set of predicates. Also for each
subset L of N, we will write respectively:

instead of:

Proof of theorem 3.1. (By Contradiction). Let us consider expression 3.11 to
be false, then it follows:

CA —~( \/ P;) is true for some k-tupla of objects
tEN\T

From this and 3.8 it can be concluded that SN (N \T) = 0, thisis, S C T. Therefore,
from this fact, 3.8 and 3.10, it can be concluded that:

(ANPIAC A\ P) = ~(A\ P)

ieT iEN\T i€T
but also, obviously:

(ANPIAC N -P)= AP

i€T iEN\T i€T
From the last two expressions and 3.9 results a contradiction. [
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