¢ 440000943
QE)\‘r%Ot J

On algorithms
for real algebraic curves

F. Cucker
F. Roselld

Report LSI-89-24

i

FACULTAT DheFiangliica
BIBLIOTECA
rR. Yav) 18 DIC. 198

e T ——

————— e

—_—

Abstract: In this note we give two new algorithms for computing a cylindrical algebraic
decomposition as well as the topological type of a real algebraic curve that run in time
O(n'6log® n) and O(n9log® n) respectively, improving then the running time of the best
algorithms known so far for the same problems.

Resum: En aquesta nota donem dos nous algorismes per a computar una descomposicié
algebraica cilindrica i el tipus topologic d’una corba algebraica real amb complexitat
O(n'6log® n) i O(n19log® n) respectivament. Aquests algorismes milloran aixi el temps de

calcul dels algorismes més rapids coneguts fins ara, per a resoldre els mateixos problemes.

On algorithms for real algebraic curves

F. Cuckert F. Rossells }
Dept. L.S.I. Dept. Algebra i Geometria
Facultat d’Informatica Universitat de Barcelona
Barcelona 08028 Barcelona 08007
SPAIN SPAIN

During the last years several researchers have considered the problem of finding polynomial-time sequential
algorithms for the computation of the topology of a real algebraic plane curve. Such algorithms have been
given for instance in [1] and [4], both by coding real algebraic numbers using isolating intervals and restricted
to non-singular curves, and in (6], using coding & la Thom and applying it to any curve.

Let F € Z[X,Y] and let C C IR? be the algebraic set defined by the equation F(X,Y)=0. Let p be
the degree of F and, if F = ¥ a; ; X'V, then let |F| = log /3> a}; and n = maz{p, |F|}.

With these notations, the algorithm given in [1] is shown to run in time O(n¥), while no complexity
estimates are given for the one in [4]. As far as the algorithm in [6] goes, in [8] it is proved that it runs in
time O(n*®), and also that a cylindrification of C can be obtained in time O(n®3).

Recently, it has been noted that the ground algorithm used to code real algebraic numbers 4 la Thom
has a complexity smaller than the one used for the complexity estimates given in [8]. The new bounds for
the complexity of such ground algorithm will appear in [7].

Using these new bounds it can be shown that the cylindrification algorithm in [6] runs actually in time
O(n'7(log n)®) while the one computing the topological type of the curve runs in O(n*(logn)%).

In this note we introduce some modifications to the latier algorithms, obtaining a cylindrification algo-
rithm which runs in time O(n'%(logn)?®) and an algorithm for the computation of the topological type which
runs in O(n'?(logn)?). The ground tools for our algorithms remain Sturm-Habicht sequences and coding a
la Thom. On the other hand, they differ from those given in [6] and [8] by the fact that we systematically

use real algebraic numbers to get the information which in the quoted algorithms is obtained by working
with infinitesimals.

1. Ground tools.

1.1. Sturm-Habicht sequences and systems of equalities and inequalities.

We begin by introducing some notation and terminology that will be useful for the rest of this note. In the
sequel we shall call sign condition, or simply sign, one of the following three: < 0, > 0 and = 0, and we shall

denote them by —,+ and 0 respectively. We shall call generalized sign condition any sign condition as well
as <0 and > 0.

Given two k-tuples of sign conditions € = (€1,...,&) and ¢ = (€},...,€}), we shall say that e is
compatible with € when

6";/-‘6:- —— 6,'20, l:l,,k

Given a polynomial F = 2 6i; XY’ € Z[X,Y] we recall that its norm is defined as 2-a};, and that
its size |F| is defined as the logarithm of its norm. o
Now, let A be an ordered domain, K its field of fractions and K the real closure of K. Given polynomials

PQy,...,Q € A[X] and a k-tuple of sign conditions € = (e1,...,€x), we denote by ce(P;Qq,.. ., Q) the
number of solutions in K of the system

P(X) =0
AQ(X) g

Qu(X) e
We shall say that € is satisfied when ce(P,Qy,...,Qx) #0.

"' Partially supported by DGICyT PB 860062 and the ESPRIT BRA Program of the EC under contract no. 3075, project ALCOM
I Partially supported by DGICyT PB 870137.

— they can be computed in polynomial time
— they have good specialization properties

We don’t pretend to introduce here this tool; the interested reader can get acquainted with it by looking
at [5]. We just recall that if F,G € A[Y] have degree n and m respectively, then the Sturm—Habicht sequence

assoclated to F and G is 3 sequence of polynomials Foi1=FF, = G, F,_y,...,Fyin A[YJ, where 8 — g

the j—th Sturm-Habichi principal coefficient of F and G the coefficient of degree j of Fi,7=0,...,8+1.
Some of these Sturm- Habicht coefficients may vanish,

Moreover, if 4 = Z[X] and j is the smallest index such that F; # 0, then F; agrees, up to an integer
factor, with the g.cd. of F and G,

If we denote now by Sth(P, Q) the difference of sign variations taken by the Sturm—Habicht sequence
associated to P and P'Q at —oco and +oo, then we have the following

Theorem 1.1. (sce [5] and [8])

Let P,Q ¢ A[Y] be arbitrary polynomials of degrees p and q respectively,

i) In the Sturm-Habicht Sequence associated to P and Q appear at most min{p, ¢} + 3 non-zero poly-
nomials.

11) The Sturm-Habicht sequence of P and Q can be computed in O(pq) arithmetic operations over
A. Moreover, if 4 — Z[X] and 5 and ¢ denote the degrees of P and @ with respect to the variable X,
then the sizes of the coefficients appearing in the Sturm-Habicht sequence of P and Q are bounded by
O(»|Q| + q|P| + (p+q) log(p +9)), and their degrees are at most pg + pq.

lii) Sth(P, Q) = ¢, (P; Q) — c_(P; Q).

1v) Sth(P,Q) can be obtained by looking at the signs of the Sturm-Habicht principal coefficients of P
and P'Q.

This theorem allows us to compute the values of co(P;Q), ¢y (P; Q) and c-(P;Q) for P, Q€ Z[X]. We
Just have to solve the following matrix equality

1 1 17 [eP;Q) Sth(P, 1)
0 1 —1{]ep(P;Q)| = Sth(P, Q)
0 1 1] [c(P;Q) Sth(P, Q?)

The SI procedure, which we now describe, allows us to get the c.’s when several polynomials Q’s are
involved. For details about it see [7].

Procedure SIadd.

The input of this procedure is the following set of data
— polynomials P, Q1,...,Qy with integer coefficients
— the list of satisfied k—tuples of sign conditions ¢, . . . 1 Er (k)
~— the vector ¢ of non-zero values ¢, (P;Q,, .. ., 5 73) . Ceony (P; Q1. .., Qx)
— polynomials R, ... y By(xy which are products of some of the Q’s
— a vector v, whose elements are the values Sth(P,R;), j=1,.. (k)
— an invertible r(k) x (k) matrix A(k) satisfying the equation A(k)-cy = v,
as well as a new polynomial Qry1.
Its output is

— a list containing P, Q.. Quyy

— the list of satisfied (k + 1)-tuples of sign conditions ¢, . .. YEp(h41)

— the vector ¢k+1 of non-zero values ce, (P;Qy, ..., Quir),. .. ,c,_‘H‘)(P;Ql, sy Qiyr)
— polynomials Ry, ..., By (xy1y which are products of some of the Q’s

~— @ vector vy4y whose elements are the values Sth(P, R;), j = 1,. .. 7R+ 1)
— an invertible r(k 4 1) x 7(k + 1) matrix A(k + 1) satisfying the equation A(k +1)-¢pp, = Vpi1
The procedure performs the following steps:

) Let Rygypy; = R,-Qi_,_,_ for j =1,...,7(k) and Ruor(e)y4j = RjQuyr for j =1,... ,#(k). We compute the
37(k)-dimensional vector v whose j-component is the number Sth(P, R;).
2) We now define a list of 3r(k) (k + 1)-tuples of sign conditions whose first 7(k) elements are the input

k-tuples followed by 0, the second r(k) elements are the same k—tuples followed by +, while for the last r(k)
elements we add a —,

3) We compute the Kronecker product A of A(k) with

11 1
01 1
01 -1

l.e. the matrix
A(k) A(k) A(k)
0 A(k) A(k)
0 A(k) —A(k)

4) We compute a 3r(k)-dimensional vector ¢ satisfying the equation 4 -¢ = v

5) We get a new vector cr+1 by deleting the zero components of ¢, a new matrix A’ by deleting the columns
corresponding to these components in A4 and a new list of r(k + 1) (k + 1)-tuples of sign conditions by
deleting the ones which are not satisfied.

6) We get an invertible square submatrix A(k+1) of A’ by conserving the first #(k+ 1) linearly independent,
rows, and a new vector vg4; by conserving in v the components corresponding to those rows.

Procedure SI.

The input of this procedure consists of a sequence of polynomials with integer coefficients P, Q;, . .. , Qr.

Its output is a list with
— the list of satisfied k—tuples of sign conditions €1y -y € k)
-—— the vector ¢; of non—zero values ¢, (P;Quy .., Qn),. .. 1Ceriny (P53 Q1, - -, Q)
— polynomials Ry, ..., R, (x) which are products of some of the Q’s
— a vector vy whose elements are the values Sth(P, R;),i=1,...,7(k)
— an invertible »(k) x 7(k) matrix A(k) satisfying the equation A(k) - cr = vy
The procedure consists in performing k times the Sladd procedure.

Lemma 1.1. ([7])
Let r be the number of real roots of P. The polynomials R; (i = 1,...,7(k)) in the output of
SI(P;Q1,...,Qs) are products of at most log » polynomials Q; or Qf (7=1,...,k). m

Notice also that r(k) < .

Proposition 1.1.
Let » be the number of roots of P, d a bound on the degrees of the polynomials P,Q,,...,Qx, and N
a bound on their sizes. The procedure SI runs in time O(krd*(logr)3N?2).

Proof.

We perform k times the procedure Sladd. In the first step of each performance, we compute at most 2r
Sturm-Habicht sequences associated to P and polynomials R which are products of P’ and at most O(log#)
polynomials @; (i = 1,...,k). So, the degree of such a polynomial R is at most O(dlogr) and its size is at
most O(N logr). It follows that the sizes of the coefficients of the corresponding Sturm-Habicht sequences
are bounded by O(dN logr). Thus, each one of these sequences costs O(d*(log #)3N?). Since the cost of the
remaining steps of the procedure Sladd is negligible, we get the stated total bound by multiplying the latter
cost by kr. m

For the sake of simplicity, in the sequel we shall bound the number of real roots of a polynomial
P € Z[X] by its degree. Notice that, in average, the number of real roots is much smaller than the degree

(see [3]).

1.2. Real algebraic numbers.

A way of coding real algebraic numbers is given in [2] which relies upon the preceding algorithms. Tt also
relies on the following result

Thom’s lemma. ([2])

Let P € A[X] be a polynomial of degree n and € = (e, ..., €,) a n—tuple of generalized sign conditions.
Let

A(e) ={z € K | PD(2)e;, i=0,...,n}.

Then: i) A(e) is either empty or semialgebraically connected; ii) if A(e) is not empty, then its closure is

A(e) where ¢ is obtained from e by relaxing the sign conditions. =

Seting €g = 0 we get a way of individualizing the roots of P and then a way of coding real algebraic
numbers.

Proposition 1.2. (Coste and Roy.)

Let P € A[X] be a polynomial of degree n > 1.

i) Let €1,..., €, be sign conditions. Then the system

P(X)=0
P’(X) €1

PM)(X) e,

has at most one solution in K.
ii) Let & and &; be two (different) elements of K, and set & = sign PU)(¢,), §; = sign PU)(&y) (5 =
0,...,m). If the (n + 1)-tuples of sign conditions (€0y...,€) and (&, .. .,0n) are different, then we can
deduce from them the relative position of £&; and €5 in the following way:
Let j be the smallest number such that €n—j # 6n_j. It is clear that j > 1 and that €n_jt1 =6
different from 0.

a) If €n_j41 > 0 then & > &, iff P(=3i)(¢,) is greater than P("=3)(¢,), and we can decide it by looking
at €n—; and §,—;.

b) If €n_j41 < O then ¢, > &, iff P("‘j)(fl) is smaller than P("‘j)(fg), and we can decide it by looking
at €q,—; and 6,_;.

n—j+1 18

|]
Remark 1.1.

This Proposition allows us to code each root of P by the n-tuple of signs taken on it by the derivatives
of P. Notice that from these codes we can deduce the relative position of all these roots, as it is shown in
point (ii) of the last Proposition.

We want also to remark that we can always sort a root £ of P and another real number ¢ by comparing

the code (€1,...,€,) of £ (as a root of P) and the n + I-tuple of signs taken by P and its derivatives on ¢
(if ¢ # &, then this (n + 1)~tuple of signs is different from (0,€,,...,€,)). This observation allows one to
simplify the algorithm for the comparison of two real algebraic numbers given in [7). n

Procedure RAN.
Its input is a polynomial P with integer coefficients.

Its output is the list of n—tuples of sign conditions satisfied by the derivatives of P on its roots, together
with a matricial equation like in SI. The codes are sorted in increasing order of the corresponding roots,

If n is the degree of P, then the algorithm performs the procedure SI(P; P(*-1) P,
Procedure RANI.

Its input is the output of RAN(P) and a new polynomial Q.

Its output is the sign Q takes on the roots of P.

The algorithm just applies Sladd to the output of RAN(P) and Q.

Proposition 1.3.

i) Let d and N be the degree and the size of P, respectively. Then RAN(P) runs in time O(d%(log d)3(d+
N)?).

ii) If now Q is a polinomial of degree ¢ and size S, the computation RANI(RAN(P), Q) takes time
O(d*(q+ dlogd)(d(d + N)logd + dS + gN)?).

Proof.

i) The size of P®)/il is bounded by i + N, and thus the sizes of the coefficients in the Sturm-Habicht
sequences are bounded by O(d(d + n)logd). Now, similar arguments to those used to prove Proposition 1.1
give us a total time bound in O(d°(log d)3(N +d)?).

ii) As in Proposition 1.1, the dominant step is the first one, in which we compute at most 2d Sturm—
Habicht sequences of P and products P'RQ, where R is a product of at most O(log d) derivatives of P. The
degree of each P'RQ is bounded by O(q + dlogd) and its size by O((d+ N)logd + S).

Fach Sturm-Habicht sequence then takes time O(d(q+ dlogd)(d(d + N)logd + dS + qN)Z) , 80 we get

the stated total computation time. =

1.3. Specialized computations.

As far as we are concerned in this note, two main procedures are needed for specialized computations. They
respectively count and code the roots of a bivariate polynomial one of whose indeterminates is specialized
at a root of a given integer polynomial. For details about, them, the reader can look up [8].

So, let F € Z[X, Y] and D € Z[X], and let €1, ..,& denote the real roots of D, that we shall suppose
coded by RAN.
Procedure St;.

Its input 's the pair (T, S) where
— T is the oztput of RAN(D).
— S is the Sturm-Habicht sequence of F and F;

Its output is the sequence n,, ..., n,, where n; is the number of real roots of F(§,Y).

Since each n; coincides with Sth(F(£;,Y),1) and this number can be deduced from the Sturm-Habicht
principal coefficients of F(§;,Y) and Fy(€;,Y), the procedure Just performs RANI(T,c), for every such a
principal Sturm-Habicht coefficient c.

We shall denote by St1(D, F) the invocation St(T, S).
The procedure RAN,.

Its input is the pair ((D,&;), F) where (D,&;) denotes the output of RAN applied to D as well as the
choice of a particular root & of D.

Its output is a data structure like the one produced by RAN, but with bivariated polynomials instead
of univariated ones. The collection of sign conditions codes now the roots of F(§,Y).

The procedure is based on the same principle as RAN. The only difference is that, in the present case,
the Sturm-Habicht queries, which form the vector appearing as the right member of the matricial equality,
must be computed in the same way as the values Sth(F(¢;,Y),1) in Sty.

Remark 1.2.

Notice that, while St; computes its output for all the roots of D simultaneously, this is not the case
with RAN;, where a single root must be distinguished. The reason is that, while each specialized Sturm-
Habicht query of the form Sth(F, R) reduces to several applications of RANI for the principal coefficients of
the sequence and this procedure is executed simultaneously for all the roots of D, the forking process that
generates the products of derivatives to be used in these queries varies with each root. o

As far as the running time of these procedures goes, we have the following result.

Proposition 1.4.

Let d and N be the degree and the size of D € Z[X] respectively. Likewise, let p and M be the total
degree and the size of F € Z[X,Y] respectively. We have
i) St1(D, F) runs in time

O(pd*(p* + dlogd)(d(d + N)logd + dp(M + logp) + p’N)?).
ii) Let £ be a root of D. Then RAN;((D,¢), F) runs in time
O(p'°(log p)®(p + M)? + p°d2(p® log p + dlogd)(d(d + N)logd + dp(p + M) log p + p* N log p)?)

Proof.

i) We must call RANI(RAN(D), c), for every principal Sturm-Habicht coefficient ¢ in the input sequence.

Each such a ¢ has degree O(p?) and size O(p(M + logp)). Applying Proposition 1.3 (ii) we see that each
run of such a RANI takes time

O(d*(p® + dlogd)(d(d + N)logd + dp(M + logp) + p°N)?)

and therefore we get the total time by multiplying this bound by p (since O(p) is an upper bound for the
number of ¢'s).

ii) We perform O(p) iterative steps. Each one of them computes at most O(p) Sturm-Habicht sequences
of polynomials of degrees O(p) and O(plogp), carrying out in this way O(p® log p) arithmetical operations
with univariated polynomials.

These univariated polynomials have their sizes bounded by O(p(p+ M)log p) and their degrees bounded
by O(p?log p). Thus, the computation of these sequences takes

O(p°(log p)°(p + M)?) (1)

bit operations.

Once computed the Sturm-Habicht sequences, the RANI procedure must be called at most O(p) times
per queried Sth value. Each RANI has as input RAN(D) and a polynomial of degree O(p?logp) and size
O(p(p + M)logp). Thus, each such a RANI costs

O(d*(p*logp + dlogd)(d(d + N)logd +dp(p+ M)logp + p* N log p)?).

It follows that, once the corresponding Sturm-Habicht sequences are known, the vectors of queries in each
iterative step are computed in time

O(p’d*(p* logp + dlog d)(d(d + N)logd + dp(p + M) logp +p’Nlogp)?). (2)

Summing up (1) and (2) and multiplying the result by p (which is an upper bound for the number of
iterative steps) we get the total time. "

2. The Algorithms.

Let F € Z[X,Y] be a square—free polynomial, monic as polynomial in Y, and let D denote the discriminant
of F with respect to Y. Let p be the degree of F and let &1 <€ < ... <& denote the real roots of D. Set
Ao =] = 00, &1[, Ar =Jé;,+oo[and, for i = 1,...,7 — 1, A; =&, &41[. (If » = 0, we shall write 4o = IR.)
Let C C IR? be the algebraic set defined by the equation F(X,Y)=0.
Let us recall that the number of real roots of F(z, Y'), considered as a polynomial in ¥, remains constant
as long as z lies in a (fixed) A;. These roots are given by continuous semi-algebraic functions

(p,"1<<p|"2<...<qo.',p_.ZA"——-bR, i:O,...,r.

One calls the graphs of such functions ¥i,; the real branches of C over A;.

2.1. Cylindrical decomposition.

In this paragraph we give an algorithm CAD for the computation of a Cylindrical Decomposition of F (see
(6], Sect. 2). Specifically, our algorithm

1) Characterizes the real roots & of D,

i1) Finds the number p(&;) of real points of C over each ¢, and

iii) Finds the number p; of real branches of C over each A;.

Notice that in particular this algorithm determines whether C is empty, a finite set of points, or an
algebraic curve.

Algorithm CAD.
The algorithm CAD performs the following steps:

1) We compute the Sturm-Habicht sequence of F and Fy, regarded as polynomials in Y. This computation
gives D, up to a constant.

2) We compute the codes of the real roots §iof Dandmy of D' (i=1,...,7,5=1,... y8). To do this, we
apply RAN(D) and RAN(D’) respectively.

Next, we sort all numbers ¢; and n;, by using their codes and Proposition 1.2 (it). In particular, and
because of Rolle’s Theorem, for all 4, 1 <i<r—1, wefind an index 5; € {1,. .., s} such that #;, € 4;.

3) We compute the number p(&;) of real roots of F(¢;,Y) and the number p(n;) of real roots of F(n;,Y)
(t=1,...,7,5=1,...,8). To do this, we apply St1(D, F) and St;(D’, F) respectively.

Notice that p(n;,) = p;, fori=1,...,7 — 1. Moreover, if there is some g (resp. J») such that n; < ¢
(resp. 7, > &) then p(nj,) = po (resp. p(n;.) = p,).
4) If there does not exist such a root N5, < &1 (resp. 75, > &), we find the number p, (resp. p,) as the
number of roots of F(z,Y) when 2 = —co (resp. when 2 = +00). To get this number, we only have to check

the degrees and the signs of the leading coefficients of the Sturm-Habicht coefficients of F' and F} and to
apply Theorem 1.1,

We have now the following result for the complexity of CAD.

Proposition 2.1.

Let n be the first integer greater than p and |F|. The algorithm CAD runs in time O(n'®(logn)?).

Proof.

We only have to check the complexities of steps (1) to (4).

1) From Theorem 1.1 we deduce that the complexity of the computation of the Sturm~Habicht sequence
of F and Fy is in O(n!?).

2) Both the degrees and the sizes of D and D' are bounded by O(n?). Then, by Proposition 1.3 (i),
the complexity of both RAN(D) and RAN(D') is in O(n'%(logn)?).

3) By Proposition 1.4 (i), the complexity of both Sti1(D, F) and St,(D’, F) is in O(n'%(logn)3).

4) The complexity of this step is negligible. ' =

2.2. Topological type.

In this paragraph we give an algorithm TOP for the computation of a Semi-Algebraic Stratification of
F (see [6] Sect. 2). Specifically, our algorithm

1) Characterizes the real roots & of D,

ii) Characterizes the real points Ci,j of C over each &,

iii) Characterizes the real branches @i,; of C over each 4;, and

iv) Determines the adjacency relations between the points ¢;,; and the branches gy ji.

Notice that from this information we can deduce the topological type of C: the number of connected
components, the number of singularities, the number of algebraic branches through each singularity, etc ...
We can even “draw” a planar graph homeomorphic to € (cf. [6]).

In order to get the information quoted in (i) and (ii), we can use RAN and RAN;. For characterizing
real branches of C in such a way that the adjacency relations between points and branches could be deduced,
we shall rely upon the following facts, which were used for the first time, to our knowledge, in [6].

Proposition 2.2.

a) For each i, 1 < i < r, there exists € > 0 such that for every j < p; the signs of F}',,‘..,Fl‘:_l
remain constant over Ci,j,+, the graph of ¢; ; Jessbite[" It implies that the codes of the roots of F(,,Y), for
v €], & + €[, characterize the real branches of ¢ over A;.

b) For j < p;, if o = (01...,0p5_1) is the (p— 1)-tuple of sign conditions taken by Fy,..., F](,’_l) over
Ci j,+ then there exists one and only one root ¢ of F(&;,Y) such that its code § = (61,...,6p_1) is compatible
with o. Moreover, (;,¢) € Cii+-

¢) Similar claims hold on the left of &G, i=1,...,»

Proof.

a) Straightforward.

b) Let us consider ¢ and ¢’ roots of F(£,Y), and let § = (61,...,6,—1) and &' = (81,---165_,) be their
respective codes.

If both are compatible with o, their (p — 1)-tuples of relaxed sign conditions must coincide, and so, by
Thom’s Lemma, these two roots have to be the same.

On the other hand, at least one root of F(&,Y) is adherent to Ci j,+ because F is monic as a polynomial
in Y and therefore has no vertical asymptotes. A trivial argument of continuity entails the compatibility of
this root’s code with o.

c) Just translate (a) and (b) to the left. "

Remark 2.1.

Point (b) of the previous Proposition was used by M.—F. Roy in [6] to decide to which points glued each
real branch of C. However, no real point was taken in J€i, & + €[in order to compute the (p — 1)-tuples of
sign conditions o’s corresponding to the branches over this interval.

Instead of that, a point 5,-“' “infinitesimally to the right” of ¢; (and belonging to a non-archimedean
extension of IR) was taken as a ground for such computations. These computations, that provide the part
(iii) of the information quoted at the beggining of this paragraph, turns out to be the most expensive part
of the algorithm given in [6], as it is shown in [8]. We shall return on these facts in §2.3.

Our idea is to decrease the cost of characterizing the real branches of C by working with real algebraic
numbers instead of infinitesimals. Specifically, we shall find algebraic points 4+ €)i, & + €, at least for
i =1,...,7— 1. To do so, first notice that if we denote by Dj the resultant wr.t. ¥ of F and F}(’J)'
i< j<p-—1(sothat D= D), then the value &i + € can be taken as the nearest to ¢; among all the roots
at its right, of all D;’s. Let 154 denote this root, and let J be such that Dj(r,4) = 0. Then, in the case
J 2 2 we can find a root % 4 of (DD;) in)&, v 4| (because of Rolle’s Theorem), while in the case 7 = 1,
7i,+ can be found as a root of D'.

The only possible exception to this reasoning is for i = », because such a vy 4 does not have to exist.
In this case, it turns out that the signs of F;.-,...,F;_l remain constant over the graph of ap,._.,-|](”+m[,
J=1,...,p. So, in order to characterize the real branches of C over A, we can take 9, 4 = 400, This

case will introduce no expensive computation, since the signs of univariated polynomials at +oco are trivially
checked.

A similar reasoning applies to the left of &;, at least for i > 2. n
The algorithm TOP.
Based on the latter remark, our algorithm TOP performs the following steps:

1) We compute the Sturm-Habicht sequence of F regarded as a polynomial in Y. As in the first step of
CAD, this computation gives D, up to a constant.

We also compute D; = resultant (F, F](,j)), i=2,...,p-1.

2) We compute the codes of the real roots of Dj(j=1,...,p~1),of (DD;)' (j=2,...,p—1), and of D'. To
do this, we apply RAN(D;) (7 =1,...,p—1), RAN((DD;)') (j =2,...,p—1), and RAN(D’), respectively.

3) We apply RANI(RAN(D;),D™) (1 <i<j<p—1,0<k < degD;). By means of this information,
applying Proposition 1.2 (ii), we sort the roots of all the D;’s.

8

We also perform RANI(RAN(D), (DD;)®) and RANI(RAN(D;),(DD;)®) 2 < j<p-1,0<k <
deg DD;). By means of this information, and again by Proposition 1.2 (ii), we sort, for each j > 2, the roots
of D' DJ and {DDJ)'

Finally, we also sort the roots of D and D' by means of their codes.

In this way, for all couples (4, h) withl1<i<rand he {+, -} (except, possibly, for (1,-) and (7, +))
we get an iy € {1,...,p— 1}, a root vin of Dy, and, when iy > 1, a root ;5 of (DD;,), while if 4, =1
then we get a root 7; 4 of D', in such a way that

i) ¥, <, < & and there is no root of any Dj in Jy; _, &

i) & <74 < w4 and there is no root of any Dj in)&, v 4 [.

4) We compute the codes of the real roots Cij of F(€,Y), by means of RAN((&, D), F) (1<i<y).

We also compute the codes of the real roots of Fin,Y)(1<i<r he {~=,+}). To do that, when
ih = 1 we apply RAN,((D', 1), F), and when iy > 1 we apply RAN,(((DD;,), m.1), F).

From all these codes, and Proposition 2.2, we can determine how the different real branches of ¢ on Ay
(at least for k = 2,...pr — 1) glue to the ¢; ;'s. Moreover, if in step (3) we have found an element M,— (resp.
7hr,+) then we can also determine how the different real branches of C on A, (resp. A,) glue to the Cij's
(resp. ¢, ;).

5) If in step (3) we have not found such an element 7, (resp. n,,4), this implies that there does not
exist either a real root vi,-, of some Dy _, smaller than €1 (resp. a real root U, +, of some D, , greater than

&)

<

In this case, we compute the signs of Fy,, ..., ,(f_') on the roots of F(~oco,Y) (resp. F(400,Y)), and
we deduce from them how the different real branches of C on 4 (resp. A,) glue to the ¢; ;’s (resp. $rj’s).

As far as the complexity of TOP goes, we have the following result:

Proposition 2.3.

Let n be the first integer greater than p and |F|. The algorithm TOP runs in O(n'(log n)?).

Proof.

We only have to check the complexities of steps (1) to (5).
1) The complexity of the computation of the Sturm-Habicht sequence of F' and the complexity of the
computation of D; (j =2,...,p— 1) are in O(n'?). So the total complexity of this step is in O(n!1).
2) We apply O(n) times RAN to polynomials whose degrees and sizes are bounded by O(n?). By Proposition
1.3 (ii) the complexity of such an application of RAN is in O(n'®(log n)?). Thus, the total complexity of this
step is in O(n'"(logn)3).
3) We apply O(n*) times RANT to couples of polynomials whose degrees and sizes are bounded by O(n?).
By point (i) in Proposition 1.3, the complexity of such an application of RANI is in O(n'%(log n)3). Thus,
the total complexity of this step is in O(n'®(log n)3).
4) We apply O(n?) times RAN1((@,9), F) to roots of polynomials Q whose degrees and sizes are bounded by
O(n?). By Proposition 1.4 (ii) the complexity of such an application of RAN((Q,6), F) is in O(n'"(log n)3).
Thus, the total complexity of this step is in O(n'%(logn)%).
5) The complexity of this step is negligible. =

2.3 Comparison with Roy’s algorithms.

As we have already said, in (6] an algorithm for the computation of the topological type of C is given, while
an algorithm for the computation of a Cylindrical Decomposition of F can be found in [8]. Our algorithms
are very close to these ones, except for the way of dealing with the real branches of ¢ over the sets 4;: while
we sistematically work with real algebraic numbers, in the quoted papers the authors use infinitesimals to
cope whith what happens to the left or to the right of the roots & of D (see Remark 2.1). It turns out that
our algorithms are less expensive than those in [6] and [8], and the goal of this paragraph is to explain why
it is so.

Let us first recall some notations from (6] and [8].

Let £ € IR and Q € Z[X]. One calls the sign of Q at £* (resp. at £~) the sign of @ over an interval
1€,€ + €[(resp. J¢ — €,€[), with € > 0 such that the sign of Q does not change on this interval.

Given ¢ € IR, one calls half-branch @e+,5 (resp. g- ;) of C above £+ (resp. above §7) the germ of the
graph of the function ¢; ; on an interval J€, € + €[(resp.]¢ — €, £]) where ®i,j 1s defined.

9

Given a polynomial G € Z[X,Y], one calls the sign taken by G on pg+ ; (resp. - ;) the sign of
Q(=,¢:,(2)), for = €]¢,€ + €[(resp. = €]¢ — €,€[), with € < € such that this sign is independent of z.

Remark 2.2.

We can determine the sign of a polynomial at ¢+ (resp. at £7) in the following way (see paragraph
(I.C.2) in [8]):

i) If Q(€) # 0, then sign Q(¢+) = sign Q(€7) = sign Q(¢).

i) If Q(€) = 0 and Q™ is the first derivative of Q which does not vanish at ¢, then sign QY =
sign Q)(€) and sign Q(€7) = (~1)*sign Q)(¢). .

Now, let P,Q € Z[X], and let & < ... < §» denote the real roots of P, which we suppose coded by
RAN. The following algorithm evaluates the signs taken by Q at &' and £, 1<i<r

Procedure RA 1;.

Its input in the output of RAN(.") and the polynomial Q.

Its output is the list of signs Q takes at £‘+ and§;,1<i<r.

The algorithm just applies RANI(RAN(P), Q™), in increasing order of k, beginning with k = 0, and
until for all £ we have found a k; such that Q™)(£) # 0. Then it applies the rules given in Remark 2.2.

An argument similar to the one used in the proof of Proposition 1.3 shows us that, with the notations
of this Proposition, the running time of RANI;(RAN(P), Q) is bounded by

O(qd*(g + dlogd)((dlogd + g)(d + N) + dS)?).

Now, knowing the way of evaluating signs of polynomials at €t and £, one can give algorithms St,
and RAN; for counting and coding respectively the half-branches of C over &t or 7. These algorithms are
similar to St; and RAN;, except for the fact that they use RANI, instead of RANI. For the details, the
reader can look up [8].

The bounds for the running times of these new algorithms can be obtained just by re-working the proof
of Proposition 1.4, and using the complexity of RANT, instead of that of RANI, With the notations of that
Proposition, the cost of Sty(D, P) turns out to be

O(p°d*(p* + dlogd)(d(d + N)logd + dp(M + p) + p>N)?)
and the cost of RAN;((P,£%), F) (or RAN,((P,€7), F)) is
O(p*°(logp)°(p+ M)? + p°d® log p(p’logp + dlog d)(d(d + N)logd + dp(p + M)logp+ p’N logp)?)

Of course, these running times are much bigger than those for St; and RAN;, since the cost of RANI, is
bigger than that of RANI. It shows us that it is more expensive to work with infinitesimals of the form ¢+
or {~ than to work with algebraic numbers.

Let us come back now to Roy’s algorithms. Let us consider first the algorithm CD in [8], which gives a
Cylindrical Decomposition of F. The difference between this algorithm and our algorithm CAD is in the way
of getting point (iii) of the information quoted at the beginning of §2.1. While CAU computes the number
of real branches over each A4; as the number of roots of F(n,Y), with n a suitable real algebraic number
whose code we know (except possibly for i = 0,7, in which case the extra cost is negligible), CD computes
this number of real branches as the number of half-branches of C above &+ (except for i = 0, in which case
it takes £;7). So, we use Sty, while M.-F, Roy uses Sty, which is more expensive. In fact, it is easy to check
that the dominant step of CD is St2(D, F), which has a complexity in O(n!?(log n)?).

Let us consider now the algorithm TOP in (6], to which we shall refer in the sequel as TOPR, that
computes the topological type of C. The difference between this algorithm and our algorithm TOP is in
the way of getting points (iii) and (iv) of the information quoted at the beginning of §2.2. While TOP
characterizes the real branches to the left and to the right of each & by coding the roots of F(n,Y), with
n a suitable real algebraic number with known code (except possibly for the real branches to the left of
€1 and to the right of &,, in which case the extra cost is negligible), TOPR characterizes them by coding
the half-branches over ¢ and £}. So we use RAN;, while M.—F. Roy uses RAN,, which is again much
more expensive. In fact, it is not difficult to show that the dominant step of TOPR is RANy(D, F), whose
complexity is in O(n?!(logn)*).

10

(1]
(2]
(3]
[4]

(6]
(7]
(8]

References.

D. Arnon and S. Mac Allum; “A polynomial-time algorithm for the topological type of a real algebraic curve”.
J. of Symb. Comp., 5, 1988.

M. Coste and M.-F. Roy; “Thom’s lemma, the coding of real algebraic numbers and the computation of the
topology of semi-algebraic sets”. J. of Symb. Comp. B, 1988.

F. Cucker and M.-F. Roy; “A theorem on random polynomials and some consequences in average complexity”,
to appear in J. of Symb. Comp.

P. Gianni and C. T raverso; “Shape determination of real curves and surfaces”. Ann. Univ. Ferrara, Sez. ViII,
Sec. Math., vol XXIX, 1983.

L. Gonzélez, H. Lombardi, T. Recio and M.-F. Roy; “Spécialisation de la suite de Sturm et sous-résultants”, to
appear in RAIRO Inf. Théor. et Appl.

M.-F. Roy; “Computation of the topology of a real algebraic curve”, to appear in the Proceedings of the Con-
ference on Computational geometry and topology, Sevilla, 1987.

M.-F. Roy and A. Szpirglas; “Complexity of computations on real algebraic numbers”, to appear in J. of Symb.
Comp.

M.-F. Roy and A. Szpirglas; “Complexity of computations of cylindrical decomposition and topology of real alge-
braic curves using Thom’s lemma”, to appear in the Proceedings of the Conference on Real Algebraic Geometry,
Trento, 1988,

11

