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Abstract. Equations of coupled dynamics of the solid system with slider-crank 
mechanisms as internal movers are obtained on rough surface with friction for cases of 
translational and rotational movement by the methods of mathematical modeling. Such class 
mechanism driven by inner movements of masses being isolated from surrounding space in 
shell can be used in conditions where traditional movers (wheels, tracks, legs) for some 
reasons are not applicable.  

 
 
1 INTRODUCTION 

An interest in solid systems driven by inner movements of masses without outer movers, 
such as wheels, chain tracks, or legs, arises in the last decade [1-4]. A new class of 
mechanisms (robots), able to move in a resisting medium without external movers due to 
movement of internal bodies, attracts attention and is studied. At constant outer shell by 
changing internal geometry of mass the movement of solid system can be carried out in an 
arbitrary point. 

A solid system moving on three points of support is also very attractive for researchers [5-
7]. They investigate: dynamics of a body sliding on a rough plane and supported at three 
points; exact normal forces and trajectories for a rotating tripod sliding on a smooth surface; 
problems on the motion of a disc with three supports on a rough plane. 

This work is devoted to the same class mechanism. Studied solid system consists of main 
frame (supporting structure) that has three points of contact with rough surface and moves 
coplanar; and two nesting slider-crank mechanisms that move respectively two internal 
masses (sliders) relatively to the frame. The crank is rotated by direct-current motor, so in 
mathematical modelling it moves under assumption of a decreasing linear relationship 
between torque of motor and angular velocity of its shaft. In dry friction between frame and 
surface the local Amontons–Coulomb law is used. The movement of the system is studied 
with the help of mathematical modelling. 

The equations of motion of the system with movable masses are obtained. Two types of the 
frame movement are considered: translational (sliding) and rotational (spinning). Preliminary 
experimental observations make it possible to assert that approximately periodic movement 
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can be achieved in sliding or spinning of supporting frame on rough surface. 
The movement can be explained qualitatively as follows. Slider-crank mechanism 

approximately periodically moves masses with different accelerations in different directions. 
Unequal pulses of the masses are converted into a non-uniform translational/rotational 
movement of the supporting frame, and hence there are unequal frame pulses differently 
compensated by friction forces between points of contact and rough surface. 

Such class mechanism being isolated from surrounding space in shell can be used in 
conditions where traditional movers (wheels, tracks, legs) for some reasons are not applicable: 
corrosive environments or limited in size, on the outside plating of a spaceship or pipeline, in 
conditions of different planets, etc. 

 

2 MECHANICAL MODEL 
3D-concept of the mechanism is shown in Figure 1. As you can see, the solid system has 

three points of contact with the horizontal surface. 

 
Figure 1: 3D-concept of the model 

Two heavy sliders move along the guide rails on the supporting structure. Two motors 
transmit mechanical power through cranks and links to the sliders. When moving, mechanism 
does not bounce as well as sliders. It remains in full contact with the surface. 

 

3 MATHEMATICAL MODEL 
For motion control on a predictable trajectory let’s divide the movement into two basic 

types. The first – sliding or moving forward in a straight line; and the second – spinning or 
rotation around a fixed point. In this section we obtain the equations of motion for these cases. 

3.1 Underlying assumptions 
No friction is inside construction. Friction is only between points of contact and horizontal 

surface. The friction is described by Amonton-Coulombs law, we use dry friction model. 
Direct current motor is described by linear dependence between torque and angular velocity 
of shaft. Supporting structure movement occurs without jumping, as well as sliders. We lay in 
the model that the contact points do not lose contact with the surface, and the reaction forces 
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are always opposite to direction of free fall acceleration. 

3.2 Translational case (sliding) 
Illustration for the translational case of mathematical model is presented in Figure 2. 

 
Figure 2: Mathematical model of the translational case (side view)  

Mechanical coupling equation for slider-crank mechanism: 
cos cosh a b     (1) 

Kinetic energy of the system: 
2 2

2 2
C BMx mxT     

(2) 

For absolute and relative coordinates we have: 

,B C B B C Bx x x x       (3) 

where: 

sin sin , cos cosB Ba b a b           (4) 

Taking into account the relation of the equation (1), we have: 
sin sina b    (5) 

Consequently: 

sin
sin

a
b

 


   
(6) 

So for the relative velocity of slider B: 

  sincos cos
sinB

aa h a
b

   


     
(7) 

187



Sergey V. Semendyaev 

 4 

In our model sin 0  , hence we obtain: 

    
1/22 1/21/2 22 2cos 1sin 1 cos 1 cosh a b h a

b b
  

             
  

(8) 

With regard to the latter, we can write for (7): 

 
  1/222

cos sin
cos

cos
B

h a
a

b h a

 
  



 
   

  
 

  

(9) 

For simplicity, we omit the index: 

Cx x   (10) 

Then finally for kinetic energy: 

 
  

2

2

1/222

cos sin
cos

2 2 cos

h aMx mT x a
b h a

 
 



  
       

     

  

(11) 

In our model, the potential energy is constant, so we assume it to be zero. The Lagrangian 
is equal to the kinetic energy.  

Generalized force, taking into account the friction forces with the local Amontons–
Coulomb law, will be equal to: 

, 0
0, 0 sgn

, 0
x

N if x
Q if x N x

N if x






 
   
 

  

(12) 

And for the generalized force applied to the crank we consider direct-current motor, so in 
mathematical modelling it moves under assumption of a decreasing linear relationship 
between torque of motor and its shaft angular velocity: 

; , , 0Q         (13) 

The first equation of motion in the Lagrangian form is: 

x
d T T Q
dt x x
 

 
 

  
(14) 

Let’s denote the following functions: 

 cos sinf h a      (15) 

  1/222 cosg b h a      
(16) 

Then rewrite the expression for the kinetic energy in the form: 
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22

cos
2 2

Mx m fT x a
g

 
  

     
  

  
(17) 

So: 

cos ; 0T f TMx m x a
x g x

 
   

         
  

(18) 

cos sind T f fMx m x a a
dt x g g

   
                          

  
(19) 

It is well known that: 

2

f f g g f
g g

    
 

 
  

(20) 

We calculate the derivatives: 

   2cos sin sin cos cosf h a a h a                
(21) 

 cos2 cosa h   
  

 

     1/22 22 21cos cos
2

g b h a b h a
g

 
           

  
(22) 

 1 2 cos sin
2

fh a a a
g g

      

So, for (20) we have: 

 
2

cos 2 cos fa h g a f
f g
g g

     
  

 
  

(23) 

  2 2
3 cos 2 cosa h g af

g
      

In this way for (19) we obtain: 

    2 2 2
3

1cos sin cos 2 cosd T fM m x ma a h g af
dt x g g

     
   

                
  

(24) 

Consequently for (14) we have equation: 

   2cos sin sgnfM m x ma q N x
g

    
  

         
  

  
(25) 

where: 
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  2 2
3

1 cos 2 cosq a h g af
g

      
(26) 

As for normal reaction N, we can find it from projection of Newton's law on the vertical 
direction (opposite to the free fall acceleration FFg ), taking into account that the common 
center of mass does not move vertically: 

      , , 0ext
FFM m a n R n M m g N         (27) 

  FFN M m g    (28) 

Finally the first equation of motion: 

     2cos sin sgnFF
fM m x ma q M m g x
g

    
  

          
  

  
(29) 

Now let’s consider the second equation of motion in the Lagrangian form: 
d T T Q
dt  
 

 
 

  
(30) 

Calculation of derivative gives us: 

 cos cosT f fma x a ma x a u u
g g

   


    
              

  
(31) 

where: 

cos fu
g

    
(32) 

We continue calculation: 

      d T ma x a u u ma x a u a u u x a u u
dt

   

            

  
(33) 

    2ma x a u u x a u u       
where, taking into account also (23) and (26): 

 cos sinfu q
g

  
       

 
  

(34) 

For simplicity we may assign: 
sinw q     (35) 

Then: 

    2d T ma x a u u x a u w
dt

  



   


  
(36) 
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     
2

2

2 2
T Mx m x a u m x a u a u m x a u a w



    


           
  

(37) 

Finally the second equation of motion: 

  2ma x a u u auw        (38) 

In (29) and (38) let’s express higher derivatives through the lower order: 

    2

2 2

sgnFFM m x mau M m g x maw

ux au auw
ma

  
 

      

 

  

  

(39) 

Or in vector-matrix form: 

11 12 1

21 22 2

x  
  
    

    
    

  
(40) 

where for coefficients: 

 

2
11 12 21 22

2
1

2
2

, , ,

sgnFF

M m mau u au
M m g x maw

auw
ma

   

  
 

    

   


 

 

(41) 

We can solve the system (40) using Cramer's rule: 

1 12

2 22 1 22 2 12

11 12 2 11 1 2111 22 12 2111 1

21 22 21 2

1 1x
 
     

          
   

 
 

               
 
 

  

(42) 

Then we reduce the problem to the Cauchy problem with variables: 

x v
 
   

   
   

  
(43) 

   

  22

sgn
1

sgn

FF

FF

M m g au v u
v

M m g u v MauwMau
ma

 
  

    
                

 

where, taking into account (32) and (35): 

 
  1/222

cos sin
cos

cos

h a
u

b h a

 





 

 
  

(44) 
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      

  

2 22 2

3/222

cos 2 cos cos cos sin
sin

cos

a h b h a a h a
w

b h a

    




    
  

 
  

(45) 

As we can see the system (43) is valid when 0u  , but in case of 0u   we should return 
to the main system of motion (39). This case of 0u   corresponds to the extreme points that 
the slider may occupy in relative motion on guide rail. It is at these points (or near) that a 
pulse is transmitted from the slider to the carrier platform. As a result, the platform is moving. 
Let us assume in equation (39) that 0u  , so we obtain the angle corresponding to this value 
from equation (44): 

cos ,h h
a b b a

    
  

  

(46) 

and substitute in the system (39): 
2

sgnFF
max g x w

M m




         
  

  

(47) 

The latter relations determine the conditions for the onset of motion (note that 0x x   in 
state of rest), in view of the overcoming of frictional forces.  

 

3.3 Rotational case (spinning) 
Illustration for the rotational case of mathematical model is presented in Figure 3. 

 
Figure 3: Mathematical model of the rotational case (view from above)  
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While in the case of the translational motion the sliders moved synchronously, in the case 
of rotational motion of supporting structure we must consider the movement of the sliders 
separately. This means that it has to be written for each slider mechanical coupling equation 
for slider-crank mechanism: 

cos cos , 1,2i ih a b i      (48) 

Here, since point C is fixed (center of mass of the support structure coincides with the 
middle point of contact in the projection onto a plane), the kinetic energy of the system can be 
written as: 

 
2

2 2

1 2 i i
i

mT x y


    
(49) 

The absolute coordinates of each slider: 

i

i
B

i

x
r

y
 

  
 

  
(50) 

We can link the absolute and relative coordinates through rotation matrix: 

i iB Br A    (51) 

where: 
cos sin
sin cos

A

   
    

  
(52) 

And for relative coordinates of the sliders: 

1

1 1 1 1 1

1

sin sin sin
B

a b a g
d d

   



      

       
      

2

2 2 2 2 2

2

sin sin sin
B

a b a g
d d

   



      

            
  

(53) 

where: 

  1/222 cosi ig b h a      
(54) 

Hence, considering (51) and (52): 
cos sin
sin cosi

i i
B

i i

r
 
 

   
     

  
(55) 

For the absolute velocities of the sliders: 

cos sin cos
sin cos sini i

i i i
B B

i i i

dv r
dt

  
  
    

   
    

  
(56) 

In (55) we take into account that for the relative coordinates: 
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i const    (57) 

By analogy with the translational case (9) for the sliders it can be written: 

 
  1/222

cos sin
cos cos

cos

i i i
i i i i i

i
i

h a f
a a

gb h a

 
    



 
        

   
 

  

(58) 

where: 

 cos sini i if h a      (59) 

On this basis of (56) – (59), we find for kinetic energy: 

   
2

2 22 2

1 1

1 1 cos
2 2i

i
B i i i i

i i i

f
T v a

g
   

 

                
    

(60) 

As in the previous case, the potential energy is constant, so we assume it to be zero. The 
Lagrangian is equal to the kinetic energy. 

And for the generalized forces applied to the cranks we consider direct-current motors, so 
in mathematical modelling they move under assumption of a decreasing linear relationship 
between torque of motor and its angular velocity: 

; , , 0; 1,2i i iQ i          (61) 

For the generalized force of friction we have: 

   1/22 2
1 2 sgnQ e d N N        (62) 

Since the center of mass does not move relative to the vertical: 

       1 2, , 0ext
FFM m m a n R n M m m g N N N             (63) 

Since the structure does not rotate relatively around its longitudinal axis passing through 
the point C: 

  1 2, 0CM e N N      (64) 

And because the structure does not rotate relatively around its transverse axis passing 
through the point C: 

     1 2 1 2, 0 0C FFM e e N N mg           (65) 

Considering (53), (64) – (65) we obtain: 

  
2 1/222

1 2
1

sin cos
2

FF
i i

i

mgN N a b h a
e

 


      
    

(66) 

So finally we get for (62): 
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    
2 1/21/2 22 2 2

1
sin cos sgnFF

i i
i

mgQ e d a b h a
e

  


        
    

(67) 

The equations of motion in the Lagrangian form are: 

   1 2 1 2, , , , , ,
TT

i
i i

d T T Q q Q Q Q Q
dt q q    

 
    

 
  

(68) 

Omitting details of derivatives calculation, we get after reduction to a first-order system: 

31 2
1 2, , 

 
   
  

  
(69) 

where we have: 

1 1 2 2, ,         (70) 

and where for determinants: 

11 12 13 1 12 13 11 1 13 11 12 1

21 22 23 1 2 22 23 2 21 2 23 3 21 22 2

31 32 33 3 32 33 31 3 33 31 32 3

, , ,
           
           
           

          

(71) 

for the coefficients in these determinants: 

       

2 2
11 1 12 13 1 21 22 2 23 2

2 2 2
31 1 32 2 33 1 2

2 21 2
1 1 1 1 1 1 2 2 2 2 2 2

1/22 2 2 2
3 2 2 1 1 1 1 2 2 1 2

, 0, , 0, , ,

, , 2

,

2 sgnFF

au u d au u d
au d au d d

u au w u au w
ma ma

gad w w a u u e d
e

     

    
 

     

       

      

     
 

     

        

  

(72) 

with the functions: 

  2 2
3

1cos , sin cos 2 cosi
i i i i i i i i

i i

f
u w a h g af

g g
            

(73) 

Just as in the case of sliding in the case of spinning there is a division by 0 in the system 
(69) in some conditions (extreme relative positions of the sliders on guide rails) when

 2 2 2 2 2
1 2 1 2 0a u u      , and we must return to the main (nondeterminant form) system for the 

case of rotation. If 0  then a sharp increase in value of the angular acceleration of 
supporting structure is observed. If 0   we have: 

     
2

1/22 2
1 2 1 2

2 2 2
1 2

sgn

2

, 1,2

FF

i

gAad w w e d
B e

d

i

  

 



         
  

  
   
 

  

(74) 

The latter relations determine the conditions for the onset of spinning (note that 0    

195



Sergey V. Semendyaev 

 12 

at a rest), in view of the overcoming of frictional forces. 

4 DISCUSSION 
In the equations of translational/rotational motion (43)/(69) under certain conditions 

( 0 0 / 0)iu u     , corresponding to the extreme position of the sliders on rail guides, 
certain functions tend to zero, which gives a sharp increase in the values of the 
accelerations/angular accelerations. When these functions are equal to zero, it is necessary to 
go to the basic equations of motion, where there is no division by zero and where we can 
obtain the conditions for the beginning of the movement, meaning the overcoming of 
frictional forces. The system has periodic functions with respect to the shaft’s angle of 
rotation. In the case of steady motion, this suggests a periodic character of the motion. 
 

5 CONCLUSIONS 
- Equations for coupled dynamics of the solid system with slider-crank mechanisms as 

internal movers are obtained on rough surface with friction for cases of translational 
and rotational movement. 

- Such class mechanism driven by inner movements of masses being isolated from 
surrounding space in shell can be used in conditions where traditional movers 
(wheels, tracks, legs) for some reasons are not applicable. 
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