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E. Oñate, M. Papadrakakis and B. Schrefler (Eds)

THERMO-MECHANICAL COUPLING IN
FIBER-REINFORCED CONTINUA: MIXED FINITE

ELEMENT FORMULATIONS AND ENERGY-MOMENTUM
TIME INTEGRATION

Dietzsch J.∗, Groß M.† and Flessing L.††

Technische Universität Chemnitz
Professorship of applied mechanics and dynamics

Reichenhainer Straße 70, D-09126 Chemnitz

∗ julian.dietzsch@mb.tu-chemnitz.de † michael.gross@mb.tu-chemnitz.de

†† tmd@mb.tu-chemnitz.de

Key words: Mixed finite element method, higher-order energy-monentum scheme, fiber-
reinforced material, polyconvex strain energy function, anisotropic thermoelasticity

Abstract. Our research activity is motivated by accurate dynamic simulations of fiber-
reinforced materials in light-weight structures. In order to accomplish this, we have to
take various steps. The material behavior is formulated with an anisotropic, polyconvex
strain energy function. We combine different mixed element formulations (e.g. see Ref-
erence [2] or [3]) with a Galerkin time integrator as shown in Reference [5]. This reduces
the volumetric locking effect of an incompressible matrix material as well as the locking
effect due to stiff fibers. In addition, we increase the accuracy by using Galerkin-based
higher-order time integrators. Since in long-term simulations a hugh energy error is a
strong problem, we apply the mixed finite element formulations to an energy-momentum
time integration scheme (see Reference [6]). In the next step, we extend the material
formulation by adding a thermo-mechanical coupling as shown in Reference [7]. Here we
also describe the directional heat conduction of the fiber. As numerical examples with
multiple material domains and families of fibers serve cooks cantilever beam as in Ref-
erence [5]. The Dirichlet boundary conditions are modelled by the Lagrange-multiplier
method (see Reference [7]) and as Neumann boundary condition a pressure distribution
is used.

1 INTRODUCTION

The accurate dynamic simulation of fiber-reinforced materials in light-weight structures
plays an increasing role. Meanwhile these materials are used in many areas such as
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aircrafts, automobiles and wind power plants. In addition to the low density and the high
modulus of elasticity, the thermal properties also play a crucial role. For example the
low thermal expansion of the matrix part, as well as the possibility to conduct the heat
directionally with the fibers. Therefore, in this paper, we present the dynamic behavior
of a thermoelastic anisotropic continuum, where the different fibers and the matrix part
have different thermal parameters.

By using the mentioned materials, we have on the one hand volumetric locking effects
of an incompressible matrix material and on the other hand, locking effects due to stiff
fibers. A first formulation that prevents volumetric locking successfully is described in
Reference [1]. Here, the volumetric dilatation is approximated independently from the
deformation gradient. Futhermore, this formulation was improved again in Reference [2]
by approximating the cofactor also as an independent field. A possibility to overcome
the locking of the fiber is shown in Reference [3]. Here an independent approximation
of the right Cauchy-Green tensor for the anisotropic part of the strain energy function is
done. In Reference [5] this method is reformulated in the fourth invariant and another
field for the fifth invariant is introduced. In addition, the invariant method can also be
represented in tensors, but the results for both methods are the same (see Reference [5]).
The tensor variant has the advantage to use several fibers without further implementation
effort for the element formulation.

In order to perform exact dynamic simulations and therefore to enable long-term sim-
ulations, it is necessary to provide higher-order time integrators. Thereby Galerkin-based
higher-order time integrators are a good option. In addition, a hugh energy error is a
strong problem and so we have to apply energy-momentum time integration schemes (see
Reference [6]).

It is only logical to combine these methods and thus to combine the advantages of
these methods. On the basis of Reference [7], we combine the Hu-Washizu function-
als shown in Reference [5] with the mixed principle of virtual power and thus obtain
a thermo-mechanical formulation for the various mixed elements and a Galerkin-based
higher-order time integrators. Here, the Dirichlet boundary conditions are modelled by
the Lagrange-multiplier method and a Neumann boundary condition in the form of a
pressure distribution will also be provided. In addition, we extend the continuum in such
a way, that we can model different families of fibers and directional heat conduction of
the fibers.

In the current paper, we first define the continum model and the finite element for-
mulation. Then, with the help of the mixed principle of virtual power, we obtain the
weak forms. Finally, we make various numerical studies on cook’s cantilever beam. Here
we can show the excellent convergence behaviour of the mixed elements and the positive
effect on the computational time. In addition, the advantages of using different fibres in
the same continuum can be demonstrated, as their different properties can be used more
purposefully.
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2 CONTINUUM MODEL

As continuum model, we consider an anisotropic material with nF fiber directions ai
0

moving in the Euclidean space Rndim with the constant ambient temperature Θ∞. With
the structural tensor M i = ai

0 ⊗ ai
0, the right Cauchy-Green tensor C = F TF and the

absolute temperature Θ, we define the strain energy function, which is split into a single
matrix part ΨM and multiple fiber parts ΨFi

, given by

Ψ(C,Θ,M ) = ΨM(C,Θ) +

nF∑
i=1

ΨFi
(C,Θ,M i) (1)

By taking into account J = det[F ] =
√
det[C], we assume the specific dependencies

ΨM(C, cof[C], J,Θ) = Ψiso
M (C, cof[C], J) + Ψvol

M (J) + Ψcap
M (Θ) + Ψcoup

M (Θ, J) (2)

ΨFi
(C, cof[C], J,Θ,M i) = Ψela

Fi
(C, cof[C], J,M i) + Ψcap

Fi
(Θ) + Ψcoup

Fi
(Θ,C,M i) (3)

The elastic part of the matrix part ΨM is split into an isochoric part Ψiso
M and a volumetric

part Ψvol
M . The thermo-elastic free energy of the matrix is subdivided into a heat capacity

part Ψcap
M , and the part of the thermo-mechanical coupling effect, which takes the form

Ψcoup
M (Θ, J) = −2ndimβM(Θ−Θ∞)J

∂Ψvol
M (J)

∂J
, (4)

where βM ist the coefficient of linear thermal expansion for the matrix part. For the fibres,
the thermal part is separated in the same way. We assume heat capacity parts Ψcap

Fi
as

well as parts of the thermo-mechanical coupling

Ψcoup
Fi

(Θ,C,M i) = −2βFi
(Θ−Θ∞)

√
I i4
∂Ψela

Fi
(I i4, . . . )

∂I i4
, (5)

with the fourth invariant I i4(C,M i) = tr[CM i] and the coefficients of linear thermal
expansion for the fiber parts βFi

.

3 FINITE ELEMENT FORMULATION

For the formulation of finite element discretizations in space, we use Hu-Washizu func-
tionals ΠHW . With the assumed temperature field Θ̃ and the entropy density field η as
the corresponding Lagrange multiplier, the complete functional of the internal energy is

Πint = ΠHW +

∫

B0

η (Θ− Θ̃)dV (6)

The functional of the standard displacement element reads

ΠD
HW (q,Θ) =

∫

B0

Ψ(C(q),Θ,M)dV (7)
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Table 1: Prescribed simulation parameters for Cook’s cantilever beam.

ε1 = 0.1e6 ε6 = 10e6 kM = 0.1 kF1 = 0.1 kF2 = 50
ε2 = 0.1e6 ε7 = 4 βM = 1e− 7 βF1 = 1e− 9 βF2 = 1e− 10
ε3 = 1.8e6 ε8 = 4 c0M = 1500 c0F1

= 1500 c0F2
= 3000

ε4 = 100e6 ε9 = 1 c1M = 0.003 c1F1
= 0.003 c1F2

= 0.006
ε5 = 4 ε10 = 0.1e6 ρ0 = 1000 Θ∞ = 300
hn = 0.005 T = 1.0 TOL = 1e− 4 p̂ = 1.5e6

Table 2: Numbering of the polynomial degrees.

digit nr.: 1 2 3 4 5 6

pol. degree of: q,Θ H ,B J̃ ,p̃ CA,SA HA,BA J̃A,p̃A

With the introduction of an independent variable for the volumetric dilatation J̃ , we
obtain the displacement-pressure element introduced by Simo et al. in [1]. Here, the
corresponding Lagrange multiplier p̃ plays the role of the hydrostatic pressure. The cor-
responding functional takes the form

ΠDP
HW (q,Θ, J̃ , p̃) = ΠD

HW +

∫

B0

p̃ (J(q)− J̃)dV with (8)

ΨM(. . . ) = Ψiso
M (C, cof[C], J̃) + Ψvol

M (J̃) + Ψcap
M (Θ) + Ψcoup

M (Θ, J̃) (9)

ΨFi
(. . . ) = Ψela

Fi
(C, cof[C], J̃ ,M i) + Ψcap

Fi
(Θ) + Ψcoup

Fi
(Θ,C,M i) (10)

A third functional is shown in Reference [2]. Here an additional field for the cofactor of
C is introduced, such that we arrive at the functional

ΠCoFEM
HW (q,Θ, . . . ,H ,B) = ΠDP

HW +

∫

B0

B : (cof[C(q)]−H)dV with (11)

ΨM(. . . ) = Ψiso
M (C,H , J̃) + Ψvol

M (J̃) + Ψcap
M (Θ) + Ψcoup

M (Θ, J̃) (12)

ΨFi
(. . . ) = Ψela

Fi
(C,H , J̃ ,M i) + Ψcap

Fi
(Θ) + Ψcoup

Fi
(Θ,C,M i) (13)

Especially for anisotropic material formulations another element (called SKA element) is
presented in Reference [3]. This introduces an additional field CA for the anisotropic part
Ψani of the material formulation. The anisotropic part of the stress tensor is represented
by the corresponding Lagrange multiplier SA. Here, we arrive at

ΠCoSKA
HW (q,Θ, . . . ,CA,SA) = ΠCoFEM

HW +

∫

B0

1

2
SA : (C −CA)dV with (14)

ΨM(. . . ) = Ψiso
M (C, cof[C], J̃) + Ψvol

M (J̃) + Ψcap
M (Θ) + Ψcoup

M (Θ, J̃) (15)

ΨFi
(. . . ) = Ψela

Fi
(CA, cof[CA],

√
det[CA],M i) + Ψcap

Fi
(Θ) + Ψcoup

Fi
(Θ,CA,M i) (16)
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Figure 1: Geometry, configuration and fiber direction (a10)
T = [1 1 1] of cooks cantilever beam.

At last we add the additional fieldsHA and J̃A and the corresponding Lagrange multipliers
BA and p̃A we get the CoCoA element as shown in Reference [5]

ΠCoCoA
HW (q, . . . ) = ΠCoSKA

HW +

∫

B0

BA : (cof[C]−HA)dV +

∫

B0

p̃A(J − J̃A)dV with (17)

ΨM(. . . ) = Ψiso
M (C,H , J̃) + Ψvol

M (J̃) + Ψcap
M (Θ) + Ψcoup

M (Θ, J̃) (18)

ΨFi
(. . . ) = Ψela

Fi
(CA,HA, J̃A,M i) + Ψcap

Fi
(Θ) + Ψcoup

Fi
(Θ,CA,M i) (19)

Now, we apply the mixed principle of virtual power in Reference [7]. In this way, we can
extend this formulation to dynamic problems. The basis is the total energy balance

Ṫ (q̇, v̇, ṗ) + Π̇ext(q̇,λ, Θ̃) + Π̇int(q̇, Θ̇, η̇, Θ̃,SA, ĊA, p̃,
˙̃J,B, Ḣ , p̃A, J̇A,BA, ḢA) = 0

(20)

where the time derivative of the kinetic energy

Ṫ (q̇, v̇, ṗ) =

∫

B0

(ρ0v − p) · v̇dV +

∫

B0

ṗ · (q̇ − v)dV +

∫

B0

p · q̈dV (21)

is defined by the velocity v, the linear momentum p and the mass density ρ0. As external
power functional, we assume

Π̇ext(q̇,λ, Θ̃) = −
∫

∂B0

t · q̇dA−
∫

∂B0

λ · (q̇ − q̇ref)dA+

∫

B0

1

Θ
∇Θ̃ ·QdV . (22)

Here, Dirichlet boundary conditions are modelled by Lagrange multipliers λ. q̇ref denotes
the time evolution of Dirichlet boundary displacement vector, t denotes the traction load

5
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for the Neumann boundary conditions and

Q = −

[
nF∑
i=1

J
kFi

− kM
C : M i

M i + kJC−1

]
∇Θ (23)

denotes the Piola heat flux vector derived from Duhamel’s law (see Reference [7]). Here km
and kFi

denotes the material conductivity coefficients for matrix and fibers. By variation
with respect to the variables in the argument from Eqn. 20 (as shown in Reference [7]),
we get the following weak forms of the CoCoA element:

∫

T

∫

B0

[Div[FS]− ṗ] · δq̇dV dt = 0

∫

T

∫

B0

[
1

ρ0
p− q̇

]
· δv̇dV dt = 0

∫

T

∫

∂B0

[−t− λ] · δq̇dAdt = 0

∫

T

∫

∂B0

[
˙̃q − q̇ref(t)

]
· δλdAdt = 0

∫

T

∫

B0

[
Θ− Θ̃

]
δη̇dV dt = 0

∫

T

∫

B0

[
η +

∂Ψ

∂Θ

]
δΘ̇dV dt = 0

∫

T

∫

B0

[
Div[Q]

Θ
+ η̇

]
δΘ̃dV dt = 0

∫

T

∫

B0

1

2

[
ĊA − Ċ

]
: δSAdV dt = 0

∫

T

∫

B0

[
1

2
SA − ∂Ψ

∂CA

]
: δĊAdV dt = 0

∫

T

∫

B0

[
˙̃J − J̇

]
δp̃dV dt = 0

∫

T

∫

B0

[
p̃− ∂Ψ

∂J̃

]
δ ˙̃JdV dt = 0

∫

T

∫

B0

[
Ḣ − ˙cof[C]

]
: δBdV dt = 0

∫

T

∫

B0

[
B − ∂Ψ

∂H

]
: δḢdV dt = 0

∫

T

∫

B0

[
J̇A − J̇

]
δp̃AdV dt = 0 = 0

∫

T

∫

B0

[
p̃A − ∂Ψ

∂J̃A

]
δJ̇AdV dt = 0

∫

T

∫

B0

[
ḢA − ˙cof[C]

]
: δBAdV dt = 0

∫

T

∫

B0

[
BA − ∂Ψ

∂HA

]
: δḢAdV dt = 0

As second Piola-Kirchhoff stress tensor, we obtain

S =2
∂Ψ

∂C
+ 2B :

∂cof[C]

∂C
+ p̃J−1cof[C] + SA + 2BA :

∂cof[C]

∂C
+ p̃AJ

−1cof[C]. (24)

All quantities are approximated with Lagrangian shape functions in space (see Refer-
ence [4, 7]) and time (see Reference [7]). All exsisting integrals are solved with the
corresponding Gaussian quadrature rule. We eliminate p and η and condense out the
resulting formulation at the element level to a displacement and temperature formulation
(see Reference [2]). Therefore, all mixed fields except q and Θ are discontinuous at the
boundaries of spatial elements.
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Figure 2: Convergence of the y-coordinate on point A and the v. Mises equivalence stress σVM on point
B for the parameters shown in Table 1 and fiber F1.

4 NUMERICAL EXAMPLES

As numerical example serves the well-known Cook’s cantilever beam with a quadratic
distribution of an in-plane load on the Neumann boundary. Two different fibers are used
for this example. On the one side a fiber (F1,(a

1
0)

T = [1 1 1]) for mechanical reinforcement
of the matrix, but with an equally low thermal conductivity. On the other side, a fiber
(F2,(a

1
0)

T = [1 1 0]) with a very high thermal conductivity, but a low stiffness. The energy
functions are given by

Ψiso
M =

ε1
2
(tr[C])2 +

ε2
2
(tr[cof[C]])2 − ε3ln(J) Ψvol

M =
ε4
2
(J ε5 + J−ε5 − 2)

Ψela
F1

= ε6

(
1

ε7 + 1
(tr[CM 1])

ε7+1 +
1

ε8 + 1
(tr[cof[C]M 1])

ε8+1 +
1

ε9
det[C]−ε9

)

Ψela
F2

=
ε10
2
(tr[CM 2]− 1)2

Ψcap
X = c0X(1−Θ∞c1X)(Θ−Θ∞ −Θ ln

Θ

Θ∞
)− 1

2
c0Xc

1
X(Θ−Θ∞)2

and the prescribed simulation parameters, shown in Tab. 1. Geometry, configuration
and fiber direction (a1

0)
T = [1 1 1] of cooks cantilever beam are shown in Fig. 1. We

compare the mixed finite elements up to cubic order and analyze the spatial convergence
for some combinations of polynomial degrees in space of the independent quantities and
the effect on the thermo-mechanical coupling. In the second step, we analyze the option of
directional heat conduction using the fibers. The element title starts with H for hexahedral
element and is followed by the element type and the information about the polynomial
degrees of all quantities (see Table 2). Fig. 2 shows the convergence of the y-coordinate
and the stress σVM of some elements. These element selection is based on the results from
Reference [5] and is a selection of the best elements of each element type. They show the
same behavior for the spatial convergence. CoCoA elements with a low polynomial degree
for the quantities of the anisotropic part have the highest convergence rate, followed by the

7
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Figure 3: Convergence of the y-coordinate on point A and the v. Mises equivalence stress σVM on point
B for the parameters shown in Table 1 and fiber F1.

CoFEM elements and the standard elements. Also, the HCoSKA1000 element represents
a special case and has a very high convergence rate of the y-coordinate for a linear element.
Nevertheless, you can see a strong oscillation in the convergence rate of σVM .

This also has a direct effect on the computing time. Fig. 3 shows the same curves over
the computational time. The high convergence rate saves at least one order of magnitude
in computational time, because coarse meshes are sufficient for accurate solutions in space.
This plays all the more a role for thermo-mechanical systems, since here not only the
degrees of freedom increase by a third, also the symmetry of the tangents matrix is lost.

Furthermore, Figs. 4, 5 and 6 show the deformed elements together with the v. Mises
equivalence stress σVM at different discretization levels. Here you can also see, that
the CoCoA and SKA elements show a very good convergence and with nel = 256 they
provide nearly the same solution as with nel = 4000. All elements show the asymmetric
bending caused by the fiber as well as the typical stress curve (tensile and compressive
stress, neutral fiber). Fig. 7 shows that the different solutions in the displacement have
a corresponding effect on the thermo-mechanical coupling. While no temperature change
can be seen in the standard elements, it is clearly visible for the mixed elements (especially
on the Dirichlet boundary). However, it is not possible to say which solution is the optimal
one, further tests have to be performed.

In the next step, we add the second fiber (F2) and a linear start temperature dis-
tribution as shown in Fig. 9. Because of the high conductivity of the second fiber, the
temperature in cook’s cantilever beam is distributed much faster (see Fig. 10).

At least we check the conservation properties on the example of the HSCoCoA210000
element with two fibers (see Fig. 8). For instance, the angular momentum (L) is preserved,
as the theory for Galerkin-based time integrators with Gaussian quadrature predicts. But,
over the entire simulation period, we get a significant error in the energy (E). This was to
be expected, because we do not use an energy momentum scheme to preserve the energy
balance.
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Figure 4: Deformed configuration Bt and v. Mises equivalent stress σVM for the parameters shown in
Table 1 and fiber F1 for t = 1. Cook’s cantilever beam with nel = 32 spatial finite elements.
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Table 1 and fiber F1 for t = 1. Cook’s cantilever beam with nel = 256 spatial finite elements.
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Table 1 and fiber F1 for t = 1. Cook’s cantilever beam with nel = 4000 spatial finite elements.
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Figure 8: Conservation properties of the HSCoCoA210000 element for the parameters shown in Table
1 for nel = 256 and fibers F1 and F2.
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Figure 10: Deformed configuration Bt and temperature Θ for the parameters shown in Figure 1 for
nel = 256 and fibers F1 and F2 of Cook’s cantilever beam.
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5 CONCLUSIONS

We were able to show that the excellent performance of the mixed elements is still
preserved in a thermo-mechanical context. This especially has very good effects on the
computing time. Furthermore we have the possibility to determine the mechanical and
thermal properties of our model separately by using different fibers. In the next step, we
extend this formulation to an energy conserving time integrator and implement thermal
Dirichlet and Neumann boundary conditions.
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