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Abstract. We implemented loose and tight coupling methods to understand thermal
diffusion between ocean and ice by means of a simplified one-dimensional model set-up
proposed by Stefan. A Stefan problem is a prototypical two-phase model that can used
to model, for example, melting and freezing of water due to the transfer of heat fluxes
between the two phases. We discretized heat fluxes using low order derivatives for loose
coupling and higher order derivatives for tight coupling while fluxes are computed at the
(moving) interface. Compared to a known reference solution the tight coupling method
exhibits a lower error when compared to the loose coupling discretization. However, further
numerical tests are required to analyze these coupling methods.

1 Introduction

The interaction of sea ice with ocean and atmosphere through the exchange of heat,
moisture and momentum is one of the most important interactions in climate models.
Especially, in the polar regions, sea ice forms an interface between ocean and atmosphere.
Thermal process such as downward radiation, turbulent heat flux from the atmosphere,
the oceanic heat flux and dynamical processes such as wind stress, ocean ice stress and
internal ice stress influence the sea ice distribution. This study mainly focuses on the sea ice
thermodynamics, namely growth and melt through ice-ocean interaction. The relationship
between sea ice melt and the heat supplied to the upper ocean from the atmosphere is
explained in [6]. This study also suggests that during the ice melt season, the upper ocean
and sea ice are thermodynamically strongly coupled. The growth and decay of sea ice
affects the global thermohaline circulation and the intensity of oceanic deep convection [2].
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The implementation of the sea ice component is a major issue during the development
of any earth system model (ESM). In some ESMs, the ocean is coupled directly to the
atmosphere over the sea ice, in which the ice model sends a sea ice fraction to the ocean
and, in turn, the ocean sends information about new ice growth to the ice model. It
is also common for ESMs to incorporate a subset of the sea ice thermodynamics into the
atmosphere component where it is computed on the atmosphere grid with the atmosphere’s
physics time step. The rest of the sea ice processes lies within the ocean component and
are solved on the ocean grid with the ocean’s time step [5]. While there have been some
major advances in the most complex sea ice models during the past decade, the processes
of atmosphere-ice-ocean interaction are still only crudely understood and it is therefore not
clear if they are realistically represented in the models. It is also very challenging to assess
the quality of sea ice simulations in coupled climate models against the observed sea ice
evolution.

Some of the differences between observations and models could be due to limited obser-
vations and inaccurate coupling methods between the ocean and sea ice models. In ESMs
the sub-components of a climate model are coupled with each other at their boundaries
through couplers. The main function of a coupler is to interpolate the coupling fields and
provide input to the sub-components. However, it is still unclear if this coupling strategy
provides a consistent framework for coupling components of climate models. Hence there
is a need to understand the various coupling methods. Therefore, the motivation of the
present study is to understand what we call loose and tight coupling methods (see below).
We do this for thermodynamics, namely on melting and freezing of ice by exchanging
temperatures and heat fluxes at the interface and compare the results with an analytical
solution of the two phase Stefan problem. The spirit of this work lies in taking a different
point of view: instead of coupling various subsystems of a complex system we look at the
system as a whole and rather consider decoupling strategies into less complex model parts
whose dynamics consistently reflect the dynamics of the whole system.

The Stefan problem was among the first mathematical models to study heat distribution
in a phase changing medium [8]. Examples of Stefan problems include the melting of ice,
solidification, fluid flow in porous media, and shock waves in gas dynamics. In this study,
we consider the example of diffusion of heat in the melting of ice where the melting rate
is based on the temperature gradients at the interface. This ad-hoc procedure is very
simple, yet energy conserving. The Neumann method [3] is used to obtain an analytical
solution for the two phase Stefan problem and is used as a reference to our study. For
simplicity, the phase change temperature (interface temperature) between the two phases
in our Stefan problem is assumed to be constant. More realistic models for the temperature
at the ice-ocean interface are surveyed in [4].

Loose coupling was implemented in [1] to couple separate computations of one-dimensional
thermal diffusion in liquid (ocean) and solid (ice) domains. In loose coupling, low order
derivatives are used to discretize heat fluxes at the interface. However, the accuracy of the
solution is dependant on the width of the subdomain overlap of the models [7]. In order to
increase the overlap at the interface, we implemented a tight coupling in addition to loose
coupling where we use higher order derivatives to compute fluxes at the interface. Here
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we compare our solution of coupling methods to an analytical solution of two phase Stefan
problem allowing for a rigorous comparison.

The organization of the paper is as follows. In Section 2, a two phase Stefan problem
and its analytical solution are described. Section 3 describes the loose and tight coupling
methods whereas Section 4 shows numerical tests. In Section 5 we discuss the results.

2 Model description of Two-phase Stefan Problem

A Stefan Problem is a specific type of a free boundary value problem for a partial
differential equation for the distribution of heat in a phase changing medium. The Stefan
problem is widely referenced in sciences where moving boundaries are considered. An
example is the diffusion of heat in the melting of ice where melting causes the phase
boundary of the ice to change position.

Consider a domain Ω = [0, X] in which the initial state of the material is assumed to
be solid. We denote the temperature at the point x at time t by u(x, t). A constant
liquid temperature ul which is less than melting temperature um is imposed at x = 0
resulting in an increase of temperature to reach the melting point causing liquid to appear
in the domain. Let s(t) be the point separating the two phases which determines the
(initial) position of the interface. Movement of the interface is based on the temperature
gradients of solid and liquid phase. The interface temperature is assumed to be constant,
for simplicity. Two phase Stefan problem is mathematically expressed as heat conduction
in liquid region

∂u

∂t
= kl

∂2u

∂x2
, 0 < x < s(t), t > 0 (1)

and heat conduction in solid region

∂u

∂t
= ks

∂2u

∂x2
, x > s(t), t > 0 (2)

where kl > 0 and ks > 0 are constant but possibly different diffusion coefficients for each
phase.

The temperature at the interface is given by

u(s(t), t) = um, t > 0 (3)

where um is the melting temperature which is assumed to be constant in time. The position
of the interface s(t) is determined by the jump condition also called Stefan condition which
satisfies the principle of conservation of energy:

ρL
ds

dt
= ks

∂u

∂x
− kl

∂u

∂x
, x = s(t), t > 0 (4)

where L and ρ are latent heat and density respectively and are assumed to be constant.
The initial condition is given by

u(x, 0) = us < um, x > 0, s(0) = 0 (5)
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where us is the solid temperature which is also assumed to be constant. Boundary condi-
tions are given by

u(0, t) = ul > um, t > 0 (6)

u(x, t) = us t > 0

where ul is the liquid temperature which is also assumed to be constant.

2.1 An Analytical Solution

An analytical solution of the above two-phase Stefan problem was obtained by Neu-
mann [3] in terms of a similarity variable ξ given by

ξ =
x

2
√
kl

. (7)

The solution for the interface position can be written as

s(t) = 2λ
√
klt (8)

the temperature in the liquid phase reads

u(x, t) = ul − (ul − um)
erf( x

2
√
klt
)

erf(λ)
(9)

and the temperature in the solid phase as

u(x, t) = us + (um − us)
erfc( x

2
√
kst

)

erfc(vλ)
(10)

where erf(ξ) denotes the Gaussian error function and erfc(ξ) denotes the complementary
error function

erf(ξ) =
2√
π

∫ ξ

0

exp(−θ2)dθ

erfc(ξ) = 1− erf(ξ) =
2√
π

∫ ξ

x

exp(−θ2)dθ

(11)

The basic properties of these functions are

erf(0) = 0 , erf(∞) = 1 ,

d erf(ξ)

dξ
=

2√
π
exp(−ξ2) > 0 , and

d2 erf(ξ)

dξ2
= −2ξ

d erf(ξ)

dξ
=

−4ξ√
π

exp(−ξ2) .

The parameter λ in equations (8)-(10) is the solution to the transcendental equation

λ
√
π =

Stl
exp(λ2) erf(λ)

− Sts
v exp(v2λ2) erf(vλ)

(12)
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Solid phase (us < um)

(a) Interface

x = 0 ∆x

Liquid phase Solid phase

Interface(b)

Temperature value
Heat flux

x = 0 ∆x ∆x

Figure 1: 1D Schematic representation of coupling methods at (a) t= 0 and (b) t> 0.

where Stl =
Cl(ul−um)

L
and Sts = Cs(um−us)

L
are the Stefan number for the liquid and the

solid, respectively. The parameters v =
√

kl
ks

, Cl and Cs are the heat capacities at constant
pressure for liquid and solid, respectively, and are assumed to be constant.

3 Coupling methods

We consider the same heat equations as in (1) and (2), but the interface condition
in these coupling methods are different from Stefan’s condition (4). For simplicity, the
interface temperature in a Stefan problem is assumed to be constant. We, on the other
hand, implement loose and tight coupling methods in which we compute the temperature
at the interface by exchanging temperature values from liquid domain and heat fluxes
from solid domain [1]. The solutions to our different coupling methods are compared to
the analytical solution of the Stefan problem.

Figure 1(a) shows the initial condition of the model, where the material is solid and
the interface is x = 0. Figure 1(b) represents the movement of the interface based on new
interface temperature. The interface temperature is computed by exchanging temperature
values from the solid domain for the computation of liquid domain, and heat fluxes for
the computation of the liquid domain from the solid domain. If this interface temperature
exceeds the melting point of ice, the interface temperature is set to that value and the
excess energy is considered to melt the ice.

The heat equation for liquid and solid domains is same as (1) and (2). The coupling
equation at the interface is

∂u

∂t
=

∂

∂x
(ks

∂u

∂x
− kl

∂u

∂x
) . (13)
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In the following subsections, we elaborate on the implementation of loose and tight coupling
methods.

3.1 Loose Coupling

The numerical algorithm for determining un+1
i for the liquid is

(un+1
i − un

i )∆x

∆t
=

kl
∆x

(un
i+1 − 2un

i + un
i−1), (i ≤ ib) (14)

The corresponding numerical algorithm for determining un+1
i for the solid is

(un+1
i − un

i )∆x

∆t
=

ks
∆x

(un
i+1 − 2un

i + un
i−1), (i ≥ ib) (15)

while the numerical algorithm to determine interface temperature un+1
ib is

(un+1
ib − un

ib)∆x

∆t
= −qw − kl

∆x
(un

ib − un
ib−1), (i = ib) (16)

where qw is the heat flux specified at the interface, is given by

qw = − ks
∆x

(un
ib+1 − un

ib) . (17)

To summarize the communication between the two calculations for i ≤ ib and i ≥ ib, at
each time step there is an exchange of data, with the program performing the calculation
for i ≤ ib supplying the temperature value of un

ib to the other program performing the
calculation for i ≥ ib, while the program performing the calculation for i ≥ ib supplies
heat flux qw to perform the calculation for i ≤ ib.

If un+1
ib exceeds the melting temperature um, the interface moves to the right of domain

representing melting of solid. If un+1
ib is less than the melting temperature, the interface

moves to the left of domain, representing freezing of liquid.

3.2 Tight coupling

In order to achieve higher order accuracy, higher order approximations of the derivatives
are used. We consider forward in time and centered difference in space for discretizing
the heat equation. We use fourth order central difference approximations for first order
derivatives to calculate the heat flux at the interface. These approximations use five point
stencils in one dimension.

The numerical algorithm for determining un+1
i for the liquid is

∆x

∆t
(un+1

i − un
i ) =

kl
∆x

(un
i+1 − 2un

i + un
i−1) , (i ≤ ib) (18)

while the corresponding numerical algorithm to determine un+1
i for the solid is

∆x

∆t
(un+1

i − un
i ) =

ks
∆x

(un
i+1 − 2un

i + un
i−1), (i ≥ ib) . (19)
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The numerical algorithm to determine interface temperature un+1
ib is

∆x

∆t
(un+1

ib − un
ib) = −qw − kl

∆x
(un

ib−2/12− 2un
ib−1/3− 2un

ib+1/3 + un
ib+2/12), (i = ib) (20)

where qw denotes the heat flux specified at the interface given by

qw = − ks
∆x

(un
ib−2/12− 2un

ib−1/3− 2un
ib+1/3 + un

ib+2/12)

If un+1
ib ≥ um, the interface moves to the right of domain representing melting of solid. If

un+1
ib < um, the interface moves to the left of domain, representing freezing of liquid. In the

following section, we validate the results of loose and tight coupling methods to analytical
solution of two phase Stefan problem.

4 Numerical tests

In order to investigate the relative error between the analytical solution and the coupling
methods, we consider L2-error norm, i.e., the root mean square error, for the temperature.
Let uanalytical be the analytical solution of the Stefan problem and ucoupling be the solution
for loose and tight coupling methods. The relative L2-error norm at time tn for nx (number
of grid points) is given by

Relative error =
∑nx

i=1 |ui,analytical − ui,coupling|2∑nx
i=1 |ui,analytical|2

(21)

Figure 3 shows the relative error for L2 norm for temperature between the analytical
solution of two phase Stefan problem and solution of loose and tight coupling methods.

5 Results and Discussion

Figure 1 shows that the initial state of the material is solid. We impose a liquid tem-
perature ul which is greater than melting temperature um at x = 0. This results in an
increase of temperature from the side x = 0, and when the temperature reaches the melt-
ing point, the material starts melting into liquid. The interface separates the two phases,
where there is an exchange of temperature values from the liquid domain and heat fluxes
from the solid domain. In Stefan problem and coupling methods, the heat equations for
liquid and solid, initial and boundary conditions are the same. But the equation at the
interface for Stefan problem (Stefan condition) is different from coupling methods. In the
Stefan problem, the interface temperature is fixed for simplicity and Stefan’s condition rep-
resents the movement of the interface based on the temperature gradients at the interface.
However, assuming the fixed temperature at the interface is not realistic, and as a result,
we compute the temperature at the interface in coupling methods.

We implemented loose and tight coupling methods to couple thermal diffusion equation
for liquid and solid domains. The two domains are coupled by exchanging temperature
values (Dirichlet type) and heat fluxes (Neumann type) at the interface. The heat equations
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(a)

(b)

(c)

Figure 2: (a) Analytical solution of two phase Stefan problem, (b) solution of loose coupling, (c) solution of tight coupling
at t ≈ 1. The red line represents temperature and the blue line represents the position of the interface.
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Figure 3: re1 represents the relative error in the L2-norm between the analytical solution of two phase Stefan problem and
the solution of tight coupling method. re2 represents the relative error in the L2-norm between the analytical solution of two
phase Stefan problem and solution of the loose coupling method.

for liquid and solid domains in loose and tight coupling methods are discretized by forward
in time and centered difference in space. For the calculation of fluxes at the interface, we
considered low order derivatives for loose coupling and higher order derivatives for tight
coupling. These coupling methods compute temperature at the interface at each time step,
but the interface position does not change. We consider the analytical solution of two phase
Stefan problem for comparison since it yields energy conserving and consistent solution.
In order to move the interface position in coupling solutions to compare to the analytical
solution, we consider index ib to move to the right side of the domain by one grid point,
representing melting if the interface temperature is greater than melting temperature. If
the interface temperature is less than the melting temperature, we consider index ib to
move to left side of the domain by one grid point, representing freezing of liquid.

Figure 2a represents the analytical solution of two phase Stefan problem. Red lines rep-
resent the diffusion of temperature and the blue line represent the position of the interface.
We observe that the position of interface is x = 17.5. Figure 2b represents the solution
of loose coupling, and the interface position is at x = 2.5, while Figure 2c represents the
solution of tight coupling and the interface is at x = 10. From the results, we observe
that the interface in loose and tight coupling solutions moves to the right side of the do-
main representing melting of solid. We also observe that the solution with tight coupling
looks closest to the analytical solution when compared to the solution of loose coupling.
Furthermore, Figure 3 shows that the relative error for L2-norm between the analytical
solution of two phase Stefan problem and solution for tight coupling method shows less
error when compared to the solution with loose coupling method. This may be due to
the large overlap in tight coupling. However, this study requires further analysis for loose
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and tight coupling methods and also needs realistic representation to move the interface
in coupling methods.
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