Embedding: a Unifying Concept
for Recursive Program Design

C. Rosselld
J. L. Balcazar
R. Pefla

Report LSI-88-13

S LR

e AU0000 8442

o

-Q,'=,ﬁf’g:_‘~

Embedding: a Unifying Concept
for Recursive Program Design

Celesti Rosselld
José L. Balcdzar
Ricardo Pena

Department of Software (Llenguatges i Sistemes Informatics)
Universitat Politécnica de Catalunya
08028 Barcelona, SPAIN

e-mail
celesti@fib.upc.es (ean)
eabalqui@ebrupc51 (bitnet)
ricardo@fib.upc.es (ean)

Abstract: The concept of embedding one function into another is used to get
a unified view of some well-known design techniques, such as loop derivation
using invariants, recursion removal, or folding-unfolding. A design method for
recursive functions based on embedding is presented and its reiation to those
techniques stated. Efficiency transformations are also formalized using embed-
ding. A few examples will clarify and complement the proposed technique.

Resum: Es fa servir el concepte d’immersié d’una funcié en una altra per
donar una visié unificada d’algunes técniques de disseny ben conegudes com
sén: derivacié de bucles fent servir invariants, eliminacié de la recursivitat
o plegat i desplegat. Es proposa un metode de disseny recursiu basat en
la immersid 1 es relaciona amb les tecniques abans esmentades. La immersi6
també es fa servir per formalitzar les transformacions d’eficiéncia. Es presenten
uns quants exemples per illustrar el meétode proposat.

1. Introduction

In the design of algorithms, two major goals are correctness and efficiency; both concepts
can be formalized in a scientific, mathematically based way. Each goal requires the
development of appropriate tools for the analysis of programs from the respective points
of view; in particular, certain formal methods are a useful tool in the design of correct

algorithms.
A “correct algorithm” is an algorithm which behaves “as expected”. Thus, the

to prove that the algorithm satisfies it.

formalization of the very definition of correctness requires an appropriate language in
which to express the expected behavior of the algorithm (its specification), in order
Specifications are useful in two additional

1

ways: supposedly correct algorithms have to be transformed (e.g. by translation into
machine code), and transformation rules have to be shown to preserve the correctness;
furthermore, the specification can be highly useful during the design, since, as expressed
in [Gri], “programming is a goal-oriented activity”.

In particular, a well-known methodology for the design of loops has been developed,
based on the identification of appropriate invariants and the design of loops according
to these invariants ([Dij-a], [Gri]). However, the verification of iterative (i.e. loop-based)
algorithms is usually more complex than the verification of recursive programs, where
a noetherian induction, using as hypothesis the correctness of the recursive call, may
require much less verification effort. See [BrK] for a discussion of the loss of structure
in the recursive-to-iterative transformations. We also discuss this topic later.

Thus, if a recursive design based on the specification of the prograin succeeds,
the correctness of the obtained program is usually easier to argue than for iterative
designs. However, in frequent cases appearing in a programming-in-the-small paradigm,
attempting at direct recursive design based on the specification fails; the reason uses
to be the need for the introduction of additional variables where intermediate results,
which do not appear in the specification of the algorithm, must be kept. In this case,
the specification gives no hint on the properties that define the meaning of these new
variables, and the help obtained from it in the design is very limited.

We take here the following position: even if new variables must be introduced, we
want to attempt at a recursive design. Of course, the reason is the greater simplicity of
the correction arguments. A second step could be the transformation of the recursive
program into an iterative one, for efficiency reasons. As argued in [BrK], proving the
correctness of the recursive program must be easier since the verification of the iterative
cne amounts frequently to verify simultaneously the original recursive program and the
soundness of the transformation.

The result of adding new variables to our program, is called an embedding; i.e. a
new, more general function which has either more arguments, more results, or both,
and which for certain values of the new arguments computes, among other data, the
result of the original function. Thus, the problem of designing recursively a program for
the original function can be transformed into designing a program for the embedding
function. A methodology for the design of recursive programs from their specification
exists; thus, our central problem is to derive the specification of the embedding.

We propose here a method for designing recursive programs by embedding, by
deriving the specification of the embedding from the initial specification; we show its
correctness, and demonstrate its usefulness presenting a few examples and showing how
the formal methods for loop derivation are exactly the particular case of our method for
the obtention of tail recursive embeddings. The issue of efficiency is also discussed, by
analyzing forms of improving the efficiency of a program through the use of additional
embeddings, as well as the relationship with known techniques of program transforma-
tion.

We briefly summarize the design of recursive programs from their specification in
section 2; this section aims mainly at setting the stage for our work and introducing
our notation. The core of the paper is section 3, where our method is presented and
discussed. The relationship to program transformation and, in particular, to recursion
removal, is discussed in section 4: we show there the close relationship between the
specification we obtain for the embedding and the invariants of the resulting loops. We
devote section 5 to the most important particular case, tail recursion; we indicate the

2

particular way of applying the general method in order to attempt at a tail recursive final
design; we discuss how this method gives as particular applications the formal derivation
of loops as described in [Dij-a} and [Gri], and the folding-unfolding method for recursion
removal ([BuD], [ArK]), which can be seen as an embedding transformation in which the
obtained program is tail recursive. Section 6 discusses the use of embedding in improving
the efficiency of programs. We close the paper with a section of conclusions. In the
appendix we present a complete, unified example illustrating several steps discussed in
the body of the paper.

2. Recursive Design

A recursive function is one which has invocations to itself inside its definition. A linear
recursive function is the particular case in which, at most, one recursive invocation is
made for each activation of the function. In what follows, we restrict our attention to
this important case as it gives place to well-known transformation techniques.

Recursive design, and correctness proving of recursive programs, are based on in-
duction principles. We summarize the main ideas about the subject, that have been
exposed elsewhere (e.g. see [Ars, Sch)), adapting them to the notation that will be used
in the rest of the paper.

Let func f(z : T1) ret (§ : T2) be the function we wish to design. First of all, we
must formally specify it by establishing its precondition Q(Z), which defines the allowed
values for the arguments, and its postcondition R(Z,7) that defines how the results 3
are related to the arguments # assuming these satisfy the precondition.

Two are the main ideas guiding the recursive design of f:

— to decompose the vaiue Z into values T’, of the same type T as Z, so that the
solution ¥ for f(Z) can be easily calculated from the solution §' of f{7'). We
will call ' a subproblem of z.

- to ensure that data &' will be, in some well defined sense, smaller than z.

Using the same argument, the solution for &’ can be expressed in terms cf a smaller
subproblem z", and so on. The crucial point to ensure the correctness of the design is
to prove that the descending sequence (z,Z',3",...) is not infinite. In this way, there
will be minimal element(s) whose solution can be calculated without further decom-
positions. Let us call 6,(Z) the predicate that characterizes these minimal valués (s is
for “simple”), and let e(Z) be the solution for f in these cases. When Z is not simple
enough, we decompose it to get a smaller value Z'. Let us call b.(Z) (r for “recur-
sive”) the predicate that characterizes the non minimal values, and s the function that
calculates the decomposition, so ' = s(Z) (s for “successor”}. From the result §' we
calculate the solution for f(Z) by means of a new function ¢(¥',Z) (¢ for “combine”).
This design is reflected in the generic program for f of figure 1. If ¢ is not needed, i.e. if
f(Z) = f(3(2)) in the recursive case, f is called tail recursive.

Correctness proofs are based on noetherian induction, which is based on the concept
of well-founded sets (see e.g. [LoS]). The property we want to prove is that the function
satisfies its specification, i.e. that satisfies R(Z, f(Z)) for all Z in E = {7 | Q(Z)}, doing
a finite number of recursive calls. So, we define a strict preorder relation < on F such
that (E, <) is a well-founded set {WFS) in which s(z) < £ holds. An easy way to
guarantee that (F, <) is a WFS is to define a function between E and the natural
numbers, ¢t : £ — IN and then define the relation < as follows

Va,be E:a <b <> t(a) < t(})

3

{Q(@)}

func f(z) ret (7) is
if by(Z) — rete(Z)
0 b.(z) — retc(f(s(Z)), 7)
fi

end-func

{R(z,9)}

Figure 1. Generic linear recursive function

where < is the usual strict ordering on IN. Since all our programs will be strong-
terminating (in the sense of [Dij-b]), such a morphism always exists.

Based on all the above, the steps to show the correctness of a recursive design are
the following;:

1. prove that Q(%) = (bs(Z) V b:()), i-e. that f is defined in all its domain.

prove that Q(Z)Ab-(Z) = Q(s(Z)), i.e. f is always activated inside its domain.

establish the induction base: prove that Q(Z) A b,(Z) = R(Z, e(%)).

prove the induction step: Q(Z) A b-(Z) A R(s(%),§') = R(%,¢(¥', T))-

define ¢t : E — IN to convert E into a WFS, i.e. for an appropriate t, show that

Q(z) = (¢(z) e N).

6. show that Q(Z) A b.(Z) = (s(Z) < Z); i.e. each activation of f receives a value
smaller than the previous activation.

Al el

In 12.1 of [Gri] the following principle is stated: “A program and its proof should
be developed hand-in-hand, with the proof usually leading the way”. This principle is
also applicable in the case of recursive design. Steps 1 to 6 may be used as guidelines
for the design. The recommended steps for designing f are the following:

a) study the simple case, and establish b, and e such that the function finishes
satisfying the postcondition. This fulfils proof argument 3.

b) establish b, (this is easy from Q and b,) and design the successor function in
such a way that progress is made towards termination, i.e. towards satisfy-
ing b,, and the invariance of Q) is preserved. If this succeeds, this step satisfies
arguments 1, 2, 5 and 6.

¢) design function ¢, which modifies results §', in such a way that invariance of
the postcondition R is preserved. This is equivalent to proof argument 4.

3. Design by embedding

We have informally defined what is an embedding: a generalization of a function giving
another function with more parameters, more results, or both. Only the addition of
parameters is useful for designing. Both the case analysis and the function body depend
on the function parameters. Indeed, adding more parameters may help us in discovering
new recursion relations that were imposible before. On the other hand, adding more
results does not help in designing the function since neither the case analysis nor the
function body depend on them.

Let f be the function we want to design and let g be a generalization of f. Their
specifications can be written as

{Q@)} {Q'(z,w)}

func f(Z) ret (y) func g(z, @) ret ()
{R(z,9)} {R'(z,9,7)}

For the sake of simplicity, we will restrict ourselves to designs that leave the pa-
rameter £ unmodified. This may seem a severe restriction but it is not. If we are trying
an embedding design is, probably, because a direct recursive design was not possible.
So, it will be reasonable to try a design by embedding that only modifies the added
parameter. However, if someone ever needs to modify Z it is always possible to copy it
(or part of it) in @ so that the original Z is left untouched.

We must specify g by writing the appropiate pre- and postconditions @'(Z,w) and
R'(z,w,q). First, we want to use g instead of f and this means that g must satisfy the
postcondition of f for some suitable precondition @'. So, we essay to write the following
implication for g

Q'(z,) = R(Z,9(%,w))
Note that R here does not depend on w; thus, if we could design g according to the above
equation, then we also could design f without any embedding at all. The function g will
be easier to design if we manage to introduce % in R, thus weakening it. One possibility
is to substitute w for some expression ¢(Z) in R, obtaining a weaker predicate R' such
that

R(2,3,9(z,2)) =R 9(z,9))
#(2)
If we call P(Z,w) the substitution equation (@ = ¢(Z)) then R’ AP = R. Thus Q' may
not guarantee exactly R, but the weaker R'. At some moment before the end of g the
predicate P must hold to guarantes R. We can assure that P holds either before the
call to g, by an appropriate initialization of the embedding parameters, or at the end
of g. In the latter case we will have both R’ and P in the postcondition of g, while in
the former P is established independently of g and thus R' suffices as postcondition.
Now we turn our attention to the precondition. Every restriction that f putson Z
must be preserved on ¢ since there is no reason (and no need) to let g be more defined
than f -With respect to . It will be a restriction on w, D(w) (from Domain) that
exclude thiose values that make R' false or undefined. Of course, the domain of @ must
include ¢(Z), i.e. D(¢(Z)) = true.
Let us assume that we can find A and B such that AA B = R'. Then the
precondition will be

Q'(z,%) = Q(Z)AD(T) A A

where A restricts even
postcondition R’ which
achieved by 4 = true ang
of £ and w.

domain of w and may be, in some cases, a “part” of the

t depend on ¢g. If R’ i5 not in conjunctive form this is

w this case the precondition reduces to the domains
1

can try (among other possihilities) the substitution
defined by ¢(z) = ¢(&, @) es P(Z,w) = (w = ¢(Z,w)). This is the same
as saying that in some mome e computation w will hold the final value of g.
So, when this occurs we have reached the end of the recursion, both P and R' hold

If R is in conjunctive

5

which implies R, and no further computation is needed; we have tail recursion. Some
of the conjunctions of R’ (or all of them) must appear in the precondition; it is a design
decision which ones. Be aware not to put too much restrictions on @' so that the
initialization will be difficult, nor to put too few because then you will not be able to
design the function. We will come back to this topic in section 5.

Now g is completely specified and may be designed. However, we are looking for a
program that computes f, but we only have a program that computes g. All we have to
do is to adapt the latter to the former. If we have tail recursion, P is satisfied an so is R.
Then, any value wo that satisfies Q(Z) = Q'(Z,Wo) guarantees that when we feed g with
such value it behaves like f. If we have nontail recursion, then P(Z,®) is not satisfied
vet, and we must select a value W that guarantees Q(z) = (Q'(Z, Wo) A P(Z,Wo)) and
initialize w to that value.

According to the above discussion, the method of recursive design by embedding
consists of the following steps (it is assumed that f has been specified a priori):

1. Write the postcondition of f in the form R(Z, g(Z,w)).

2. Weaken R(Z,g(Z,w)) by replacing an expression ¢(Z) by w, obtaining R'.
Record the substitution in the form of a predicate P(Z,w) = (@0 = ¢(Z)).
Define the domain of @ (and call it D(w)).

Choose A and B such that AAB = R'.

Define Q'(Z,w) = (Q(Z) A D(w) A A).

Design recursively the embedding function, and ensure that P holds upon
termination.

el

o o

First ezample
Let a[i:n] be an array of integers with n > 0. Design a function that computes the sum
of the elements in a. The specification is

{true}

func sum(a : array;n : nat) ret (s : int)

n

{s =2 alil}

i=1

Following the design procedure we find that

R(a,n,g(a,n,k)) = (g(a,n, By=>" a[z'])

i=1
where Z = (a,n) and @ = k. There are a few possibilites for weakening R
R'(a,n,k,g(a,n,k)) P(a,n, k)

n

gla,n, k) =k with k=Y ali] (a)

=1
k
g(a,n,k) =) ali] with k=n (b)
=1

gla,n, k) = Za[i] with k=1 (c)

i=k

{1<kAk<n+1}

func esum(a : array;n, k : nat) ret (s : int) is
if k=n+1-—retl
0% +#n+1—reta[k]+ esum(a,n, k + 1)
fi

end-func

{s = ik alil}

Figure 2. Program for the first example

The possibilities (a) and (b) are nonsense; (a) assumes we know how to compute
the sum independently of the call to g, and reduces g to a projection function. On the
other hand, (b} forces us to compute exactly the same as before. The third possibility
(c) is good.

The precondition of ¢ will be 1 < k Ak < n + 1 because R’ is not in conjuctive
form. This corresponds to the factor D(@) in the expression of Q'(Z,) of the method.
We choose k = n+ 1, where the summation is zero, as the simple case, and the recursive
case as k # n + 1. The complete design is shown on figure 2.

The embedding parameter k must be initialized to some suitable value, say ko, if we
want esum behave like sum. Since P = (k = 1) the only possible value for initializing k
is 1, and the equality sum(a,n) = esum(a,n, 1) holds.

Once the specification of the embedding is obtaired, the design decisions are up to

he programmer. In this example a linear recursive program was obtained. But no one
is committed to do so. A program based on the divide and conquer paradigm could
equaly well be designed, leading us to multiple recursion.

Second ezample

Design a function that computes the integer part of the square root of a natural number.
Its specification is
{true}

func root(n : nat) ret (r : nat)

P <nAn<(r+1)*}

First we have, with £ =n and w = a
R(n,g(n,a)) = (g(n,a)2 <SnAn<(g(na)+ 1)2)

It seems that the only possible substitution is the constant 1. In the next example we
will follow this way. But now try to substitute the whole function g. This gives

R'(n,a,9(n,a)) = (a®* <nAn<(a+1)?%)
P(n.a) = (a = g(n,a))

Since R’ is in conjunctive form we can break in into two parts and one of them will
be guaranteed by the precondition. Call 4 the first conjunction and B the second one
(but it could be equally well the opposite way). The domains of the natural-valued
parameters n and @ are both true so the precondition is Q'(n,a) = A = (a® < n).

7

{a? < n}

func eroot(n, a : nat) ret (r : nat) is
if n <(a+1)? > reta
O0n>(a+1)? — ret eroot(n,a+1)
fi

end-func

{rP<n<(r+1)}}

Figure 3. Program for the second example

Now we begin the design of the function. The simple case is defined by B because
AAB = R'. When we fulfil R' we must return the value of g(n,a) but P defines it
to be a. So we have not only the specification, but also the definition of b4(n,a) and
e(n,a) (see figure 1). The complete program is shown in figure 3.

Since P is satisfied at the same time as the postcondition, it does not define any
set of possible initial values for the embedding parameter (as the previous example
does). Any value of the embedding parameter a that satisfies the precondition is a valid
initialization. The simplest is ap = 0, but note that we may compute an approximation
of the square root by some other means and initialize a to this approximation, provided
that it satisfies the precondition. So, if we want to keep things simple, we must look for
a constant or a simple initializing function.

Third example

Take the same example as before but this time substitute the constant 1 for an embed-
ding parameter a. The postcondition wiil be

R'(n,a,g(n,a)) = (9(n,a)* < nAn < (g(n,a) +a)*)

with P(n,a) = (a = 1). Although R’ is in conjunctive form, none of the conjuncts can
be moved to the precondition, since then the precondition of g will depend of g. So, as
in the first example, we will have nontail recursion. The precondition will consist only
of the domains of n and a; there is no restriction over n but we must avoid the value 0
for a since then R’ evaluates to false. The specification of this new embedding is

{a>1}
func eroot(n,a : nat) ret (r : nat)

{r! <nAn<(r+a)?}

The ﬁrst conjunct in R’ is satisfied trivially if we return 0. This forces us to ensure
that n < a2, and we take it as the simple case. The recursive case is, thus, n 2 a’
and progressing towards the simple case requires to increase a, e.g. by doubhng it. The
relation between eroot(n,a) and eroot(n,2 * a) is

s sin < (s+a)? _ P
eroot(n,a) = {s ta sin3(s+a)? where s = eroot(n,2*a)

The complete algorithm is shown if figure 4.
Adapting eroot for the computation of root is simple since P requires a = 1, so
root(n) = eroot(n,1). It is interesting to note that eroot(n,a) = al\/n/a).

8

{a>1}
func ercot(n, a : nat) ret (r : nat) is
if n <a? — ret0
On > a? — defs = eroot(n,2 * a);
if n<(s+a)? —rets
On>(s+a)> = rets+a
fi
fi
end-func
{rP<nAn<(r+a)?}

Figure 4. Program for the third example

func f(z) ret (7) is

varz
Z:=1I;
dob.(z) — z := 3(Z) od,;
g 1= e(2);
doz # 7 — z:=15(2);§ := ¢(7,Z) od;
rety

"~ end-func

Figure 5. Generic transformation of a linear recursive function

4. Recursion removal

We address in this section the question of the construction of iterative programs equiv-
alent to the recursive embeddings ohtained by our method. We concentrate on the
case that the obtained embedding has linear recursion. Although the transformation
of recursive programs into iterative ones is a well-studied topic, and even more in the.
case of linear recursive programs ([Ars], [ArK], [BuD}, [BrK]), we expect to convince
the reader that the remarks presented in this section are useful for understanding of
the benefits of our method. The discussion will also be useful to develop in the next
section some considerations regarding the case of tail recursion and its relationship to
the formal derivation of loops.

We follow here the patterns of transformation proposed in [BrK]. More discussion
considering [ArK] and [BuD] will be presented in the next section. In particular, we
want to point out some comments regarding the invariants of the loops obtained by the
transformation of linear recursive programs into iterative ones. Consider the recursive
scheme of figure 1.

The equivalent iterative scheme of figure 5 is proposed in [Brk{], with small nota-
tional adjustments. It consists of two consecutive loops, corresponding respectively to
the forward computation and the backward computation. The auxiliar function ¢s(Z)
recovers the value of Z corresponding to the previous recursive call; sometimes it can
be computed directly if s is injective, otherwise the successive values of Z must be kept
into an appropriate data structure (a stack), and the function is operates on it.

9

func g(z,w) ret (7) is
{Q'(z,w)}
if b,(z,w) — rete(z,w)
0 b,(Z,w) — ret c(g(Z,s(@)),Z, D)
fi
{R'(z,w,9)}
end-func

Figure 6. Generic linear recursive embedding

func ¢g(z,w) ret (7) is
varz
Z = w;
dob.(z) — z := s(2) od;
g :=e(Z,2);
doz #£w — z:=1s5(2);§ := ¢(7,7,%) od;
rety
end-func

Figure 7. Generic transformation of a linear recursive embedding

Invariants for these loops are provided in [BrK] in terms of the activation sequence,
using the auxiliar function is and also an auxiliar functional iter to denote the successive
iterations of the function s on the inital values z. These invariants are rather general,
and have the form of an existential quantifier asserting that z can be obtained from Z
by iteration of s, an universal quantifier asserting that for none of the previously found
values of Z the simple case predicate bs(Z) evaluates to true, and for the second locp a
third clause asserting that the current value of 7 is the result of f on the current value
of 7. In most particular applications, these general invariants have to be rewritten into
more precise forms, closer to the actual application, and usually much simpler. In case
of tail recursion, the second loop is unnecessary, since after the first assignment to j the
postcondition holds and §’s value is invariant through the second loop.

Now assume that, for a given function f(Z), an embedding g(Z, @) has been designed
according to our method:

{Q(@)} {Q'(z,2)}
func f(z) ret (%) func g(z,w) ret (j)

{R(z,79)} {R'(z,%,7)}

where Q' and R’ are as before. Assume g designed with linear recursion as in figure 6. We
are assuming that Z is not modified from one activation of g to the next. If modifications
are needed, a copy of ¥ should be initially included in w.

Its iterative version is given in figure 7, where is is such that s(is(Z)) = z (whether
it is implemented directly or using a stack).

Now we claim that the predicates computed during the development provide valu-
able information for the design of invariants for the loops; indeed, Q' is the core

10

of the invariant for the forward computation loop, while R' (with 7 instead of g)
is the core of the invariant for the backward computation loop. To see this, ob-
serve that the recursive design of g has to guarantee that the precondition holds be-
fore the recursive call. Therefore, Q'(Z,2) A b,.(2) = Q'(Z,s(Z)), which is the invari-
ance of Q'. At the end of the first loop, since @' implies b, V b, but b, does not
hold, b, holds and therefore R'(Z,Z,7) holds before the second loop by the correct-
ness of the nonrecursive case ¢(Z,Z). Finally, the correctness of the recursive design
of ¢ guarantees that R'(Z,s(2),y) = R'(%,Z,¢(§.%,Z)) when b.(Z,Z) holds, and using
5(4s(2)) = Zz this argument can be transformed into the proof of the invariance of R':
R'(z,%2,§) = R'(Z,1s(2),c(§, %,is(2))) when b.(Z,%s(Z)) holds. It may be the case that
ensuring b, requires to add to the invariant of the first loop clauses guaranteeing that
for all values is(Z), b-(Z.is5(Z)) is true; in most cases, however, this is easy to do using
the domain clause D(Z) which is part of Q'(Z,).

We are interested in invariants in verification not only as a formal game, useful but
sometimes infeasible to play, but as a powerful tool to understanding the program and
its behavior, as well as for documentation purposes in communication between program-
mers. In this sense, the assertions @' and R’ as partial invariants, although possibly
insufficient for a formal proof, convey a lot of very useful information compared to the
amount of work required to find them, if our methodology is followed; moreover, com-
pleting them up to formally sufficient invariants should not be a difficult task. The usual
reason for the insufficiency is that, in the recursive version, the correctness argument
regards simultaneously each iteration of the forward loop with the corresponding iter-
ation of the backward loop, while the verification of the iterative program must record
all necessary information about each iteration in the first loop, collecting these facts
for use during the verification of the second loop. The hints provided in {BrK| may be
followed in case that difficulties are found during the verification.

Fourth ezample

We end this section by pursuing further the third example of section 3, presenting its
iterative version and discussing the appropriate invariants. Its specification was:

{a=1}
func eroot(n,a : nat) ret (r : nat)
{rP<nAn<(r+a)?}

Following the scheme above, from the recursive solution in figure 4 of section 3
we obtain the algorithm of figure 8. In it, the new parameter of embedding is no
longer necessary in the heading and therefore has been omitted, being initialized to 1
as section 3 points out.

The invariance of Q' is immediate. Trying to establish the invariance of R'. it is
easy to see that a piece of additional information is needed, namely that a is always
even; since it is being halved each iteration, the invariant for the second loop must
declare a to be a power of 2. Finally, in order that the modified invariant holds before
entering the second loop, we must add the same fact to the invariant for the first loop;
its invariance is again immediate. This completes the verification process.

Observe that the fact that a is a power of two was unnecessary for the verification
of the recursive version. Now we need to record all the facts achieved at each iteration
of the first loop, in order to use them at each iteration of the second loop.

11

func eroot(n : nat) ret (r : nat) is
vara : nat
a:=1;
{Q:a21}
don > a® — a:=2+*ao0d;
r = 0;
doa #1—
{R':(r* <nAn<(r+a)?)}
a:= adiv 2;
if n < (r+a)® — skip
On>(r+a)l—r:=r+a
fi
od;
{R:(r* <nAn<(r+1)?)}
retr
end-func

Figure 8. Iterative program for the fourth example

5. Tail recursion

It can be observed from the examples in the previous sections that the proposed method-
ology may yield tail recursive embeddings. Since this particular case is important from
the point of view of efficiency, we discuss in this section how to obtain tail recursive
embeddings, when possible, via our methodology, and how this relates to the formal
derivation of loops from their invariants as described by [Dij-a] and [Gri]. The method
consists of obtaining R’ as above, but keeping the complete condition R as postcondi-
tion; this usually requires to perform a certain kind of substitutions in the design of R'
and to select a stronger @', as we shall see.

Let us consider the formally necessary facts to obtain a tail recursive design. The
central point is, of course, that as soon as any ‘recursive call ends, by reaching the
nonrecursive case, its result must fulfil postcondition R, and not just postcondition R
Therefore, during this section, the postcondition for the embedding will be always R.
However, we keep the name R' for an auxiliary predicate playing exactly the same role
as the R' of the previous sections. Now it must be possibie to design a nonrecursive
case

0 bs(Z,) — &(Z,0)

such that the value e(Z,w) can be returned as a result of the very first recursive call;
therefore R(%,e(Z,w)) must hold.

Step 2 of the methodology presented in section 3 suggests the use of following
equation for designing R'(Z, @, (%, w)):

(P(z,w) A R'(z,%,9(z,))) = R(Z, 9(, D))

where P(Z,w) usually has the form @ = ¢(Z) indicating the substitution made on
R(Z,9(z,)). If the result e(Z,w) returned by the nonrecursive case must satisfy

12

| sinCiata
R{Z,¢(Z,w)), the natural way of achieving it is ensuring that it satisfies P(Z,w) /\H\I
R'(Z,w,9(Z,w)). Let us see how to satisfy this. \& O

An appropriate embedding is obtained by selecting some of the components of the S

(vectorial) variable w, and making them correspond to simple expressions using each of
the components of g(Z,w), for instance g(Z,w) itself. In this way, the substitution of
o for ¢(Z) must capture all the occurrences of g(Z,®) in R(Z,¢(Z,w)). This yields a
predicate R’ in which g does not appear, so that in the implication P A R’ = R above
only P(Z,w) depends of g(Z, w). Then usually simple manipulation allows one to isolate
the conditions imposed by P(Z,w) on the values of ¢g(Z,), so that

P(z,0) <= (P'(z,0)Ag(Z,D) = &(Z,0))

for some expression e¢(Z,w). This provides easily the nonrecursive case, by selecting b,
such that b, = P'(Z,®) and in this case returning e(Z,w) as result. Furthermore, in
order to get R' we need that Q'(Z,w) A b, implies all of R'(Z,w), which is now inde-
pendent of g since all the occurrences disappeared in the substitution. The particular
case that Q'(Z,w) coincides with all of R'(Z,w) should not be discarded, since it may
sometimes be a useful decision.

Now, we argue that the nonrecursive case is correct, since R'(Z,w) is implied al-
together hy Q'(Z,%) and b,, and the returned value is g(Z,w) = e(Z,w), which added
to by = P'(Z,w) guarantees P(Z,w) A R'(Z,w,g(Z,w)) and therefore R(Z,g(Z,w)).
The design should be completed by finding initial values of @ establishing @'(z,w) for
the first call, and a successor function s(w) which progresses towards the nonrecursive
case and maintains Q'(Z,w) true. A reasonable guard b.(Z,w) for the recursive case
is usually required to show that Q'(Z,s(w)) holds; observe that Q'(Z,®w) must imply
bs(Z,@) V b(Z, @), for instance by taking b.(Z,w) = —b,(Z,w).

Fifth example

The second example in section 3 corresponds to this particular way of applying the
methodology. Let us develop one more example, again for computing the integer part
of the square root of a natural number. Recall its specification from section 3

{true}
func root(n : nat) ret (r : nat)
{r*<nAn<(r+1)?%}

Here the input Z corresponds to n. This time, let us use a “vectorial” embedding, i.e. let
us introduce two variables: @ = (a1, a2).

R(n,g(n,a1,a2)) = (9(n,a1,a2)? < nAn < (g(n,a1,a2) +1)%)

The substituted formula is ¢(zZ) = (9(n, a1, a2), g(n, a1, az) + 1) which, according to our
indications, gives a predicate R’ in which g does not occur. We obtain

R'(n,a;1,a3) = (01> < nAn < a?)

P(n,a) = ((a1,a2) = (9(n, a1,02), 9(n,a1,a2) + 1)

As expected, P has two parts. One of them is a; = g(n, a;,az), and indicates that upon
reaching the nonrecursive case, the variable a; contains the value to be returned; tne

13

{a;2 £ nAn < ar?}

func eroot(n, ai, az : nat) ret (r : nat) is
ifag=a,+1—reta;
0 as # a3 + 1 — ret eroot(n, move(n,as, az))
fi

{rP<nAn<(r+1)*}

end-func

Figure 9. Program for the fifth example

other is a; = ¢(n,a1,a2) + 1, which can be expressed equivalently as az = a; +1, and
gives the predicate detecting that the nonrecursive case has been reached. The complete
formula (a;2 < nAn < a?) can be installed as precondition @', and we obtain a scheme
such as that of figure 9.

There, the function move decreases the distance between a; and a3, e.g. by halving
the interval and setting to the middle point either a; or az, in a way that preserves
the truth of Q'. Thus we obtain a function that searches for the square root by binary
search. The design of move is easy since we have its specification.

Comparison with formal derivation of loops

It is interesting to compare the design procedure just described with the formal deriva-
tion of iterative programs [Dij], [Gri]. More precisely, in 16.1 of [Gri] the three first (and
most useful) suggested ways of weakening a predicate are:

1. Deleting a conjunct.
2. Substituting a constant by a variable.
3. Enlarging the range of a variable.

However, enlarging the range of a variable can be seen as a particular case of
deleting a conjunct, that which specifies the smaller range; and substituting a constant
(or other expression) by a variable, say ¢(Z) by W, can be seen as transforming first the
postcondition R into R' A (#(Z) = w), and then enlarging the range of a variable by
deleting a conjunct, obtaining the invariant. Thus, a unified view of the three methods
consists of introducing, if necessary, a new variable, and then deleting a conjunct, which
will later become the exit condition for the loop. The initialization must satisfy the
remaining conjuncts. All this coincides with the methodology presented above; of course,
the coincidence is not casual.

Indeed, if the methodology presented here is used to obtain a tail recursive func-
tion, we may use the deleted conjunct as a guard for the nonrecursive case, which
corresponds to the exit condition for the loop; we may use the remaining part R' as
precondition @', and during the design care should be taken that the guard for the
recursive case b, and the precondition @' force the new precondition of the recursive
call to hold: b.(z,w) A Q'(Z,w) = Q'(Z,s(w)). This condition coincides exactly with
the fact that Q' is invariant for the loop do b,(Z,w) — W := s{(w)od, which is indeed
the iterative version of the tail recursive program we obtain. Finiteness follows in both
the tail recursive and the iterative programs from the same argument, namely that s(iw)
indeed progresses towards termination, as shown by the decrement of the appropriate
natural-valued bound function ¢ (or as decrement of w in the preorder induced by ¢).

Hence, we argue that our methodology for the derivation of recursive embeddings

14

can be seen as a generalization of the formal derivation of loops as described in [Gri],
by considering the derivation of a loop as the derivation of a tail recursive program
whose iterative version is the same loop, and whose correctness is proved using the
same arguments.

The fact that the more general methodology is useful is shown by the example in
section 4, where the design of a single recursive embedding yields, when translated into
iterative programming, both loops at once, while the formal derivation of a loop directly
vields the second one, and a new argument on the proper initialization is required for
designing the first one (see [Dij-a], pp. 63—65). Thus we believe that the design of non-
tail recursion is useful for formal derivation of loops in that it presents more clearly the
internal structure of the designed programs.

A look to folding-unfolding

The folding-unfolding method, as described in [BuD], allows in some cases, to find a
generalization of an already designed nontail recursive function, and to deduce from it
the invariant of the single iterative loop that computes the function. This amounts to
find a recursive-to-recursive transformation from a nontail version to a tail one. The
generalization consists, among other things, of introducing new variables in the loop
which will keep track of some partial computations. Equivalently, the same effect could
be achieved by adding new parameters to the recursive function. So, the method can
be seen as a particular case of embedding. In [ArK], a systematic way of finding that
generalization, together with a smooth method to derive, first the generalization, then
the tail recursive version and then, the iterative one, are given. We will summarize it,
following [ArK], applying the transformations to an abstract program and, then, show
how the design could be achieved using the method proposed in this paper.

Let the program of figure 1 in section 2 be the initial nontail recursive version.
The generalization proposed in [ArK] consists of doing a first-order unification of the
term representing the recursive case of f, introducing variables Z and w to match
the subtrees with operators other than ¢ and f. This unification gives origin to the
generalized function g that, if all goes right, will be tail recursive. In the case of figure 1
in section 2, ¢(Z,w) = ¢(f(Z), w).

Under some suitable conditions for the additional parameters @, the function g will
compute f(Z). The condition in our abstract program is % to be a neutral element @
of ¢. So, f(Z) = ¢g(Z,wo). The second step is tc unfold f in the definition of g obtaining,
for the recursive case, the expression ¢(c(f(s(Z)),Z),w). If operators in ¢ satisfy some
nice properties, the expression can be folded back to match the general structure of g for
the recursive case. In our program, the property we need for c is associativity, obtaining
the equivalent term c(f(s(Z)),c(Z,w)), that after folding gives ¢(s(Z),c(Z,w)). The
unfolding-folding process is applied also to the simple case of g, finally obtaining the
abstract program of figure 10. The recursive function g is transformed to an iterative
one in the usual way, giving the program of figure 11.

The invariant of the single loop, following [BrK], is Q(Z) A (9(Z,) = g(z, ©)).
Using the definition of g, this is equivalent to Q(Z) A (f(Z) = ¢(f(Z),w)).

Sizth ezample

Let us apply the method to the program, obtained by embedding, of figure 2, which is
nontail recursive. The generalization is, obviously,

gla,n, k,s) = s+ esum(a,n, k)

15

func g(z,w) ret (J) is
if b,(Z) — retc(e(Z),w)
0 b-(Z) — ret g(s(Z), ¢(Z,0))
fi

end-func

Figure 10. Tail recursive function after the folding-unfolding process

func f(z) ret (7) is

ret c(e(Z), w)
end-func
Figure 11. Iterative version of the program in figure 10

func g(a : array;n, k : nat;s : int) ret (sum: int) is
ifk=n+1—rets
Ok#n+1—retg(an,k+1,s+alk])
fi
end-func

Figure 12. Folding-unfolding of the program in figure 2

func esum(a : array;n, k : nat) ret (sum: int) is

varj : nat;s: int

(7,8) := (K, 0);
doj #n+1—(j,s) :={j+1,s+alj]) od;
rets B

Figure 13. Iterative version of the program in figure 12

with so = 0, obtaining the program of figure 12, whose iterative version, with s initialized
to 0, is in figure 13.

The postcondition of this last version is that of the initial one, i.e. sum = Sonalf]
and the invariant, according to the above, is

n n
1<k<j<n+1AY afil=s+) ali
i=k =3

Note that this expression gives, implicitly, the value of parameter s, which represents
the already calculated part of the function: s = Y} 4 ald).

e 1=

16

Folding-unfolding in our framework

The folding-unfolding method can be seen as a particular case of recursive design using
embedding. Not only the precondition and postcondition of the generalized function g
can be derived using our method, according to the steps given in sections 2 and 3, but
also, we know in advance that the function will be tail recursive. Of course, the method
assumes that the design of g follows the usual patterns of recursive design summarized
in section 2, and it does not attempt to design g by some other means. In this aspect,
folding-unfolding is superior, as it delivers a completely designed function. However,
we feel that the essence of folding-unfolding is to find the appropriate embedding and
this, using the heuristic of [ArK], is preserved in our approach. The important point,
we think, is to have in a single method, well-known strategies for designing programs
such as the Dijkstra-Gries derivation calculus, or-the folding-unfolding transformation -
method, as particular cases.

First of all, note that, in the general embedding method, we are assuming that origi-
nal parameters Z do not change along the activations of the generalized function ¢(z, %).
This is not true in folding-unfolding, where both and w are modified from one activa-
tion of ¢ to the next one. This forces us to introduce a “copy” of Z, say z', that would
have to be considered part of the additional parameters w. For the sake of clarity we
will write it explicitly in what follows.

Let Q'(Z,7',w) and R'(Z,%',w, g(Z,Z',w)) be, respectively the pre- and postcondi-
tion of g. As we are trying to get g tail recursive, the postcondition has to be the same
as that of the original function f, that is

R'(z,%',0,9(z,%',w)) = R(Z,9(F,%, D))

The usual substitution for @ in these cases is an expression containing ¢(Z,z',w). Let
us try @ = ¢(Z,Z’,w), that is, @ conveys the desired result when ¢ terminates. Note
that it is not possible to use Z' for this purpose, as Z’ is assumed to be a copy of Z and
to end with a value Z, that satisfes the simple case of both f and g; i.e. bs(Z,) = true
(see figures 1 and 10). Up to now we have

R(z,7,0) A (w0 = ¢g(Z,%',w)) = R(%,9(Z,%',w))
Next, to derive the precondition Q'(zZ,z',w) = Q(Z) A D(z') A D(w) A A, we have to
express R' as a conjunction of two predicates A and B such that A A B = R'. Note. by
the way, that D(z') = Q(Z') as ' is a copy of Z that has, as initial value, a value in Q(
and, as final value, Z,. To find A and B, we make use of the [ArK] heuristics and wnte
9(z,3',w) = e(f(z'),w). We know that, when ¢ terminates, R' will be satisfied. That

occurs in the simple case b,(Z) and, in th1s case, f returns e(a:). Then, we rewrite R’
in the following conjunctive form

(9(2,Z',%) = c(f(3'),0)) A bs(Z') = R'(Z,3', W)
Note, by the way, that it will also be true the following
b(Z') = 9(z,7',w) = & = c(e(z'), w)
That is, e(Z') is, for the simple case ', a neutral element of c.

17

Now, we take as A the first term (the second will only be true at termination of g),

and obtain finally as precondition for g
Q'(z,3',w) = Q(z) A D(Z') A D(w) A (9(2,7',0) = c(f(z"),w)

This can be expressed in a more useful way by noting that § = 9(z, %', w) = f(Z)
satisfies R(%,9), and §' = f(Z') satisfies R(Z',§").

The initial values of z’ and @ will be derived, as usual, from the equation

Q(z) = Q'(2, %0, W)

The [ArK] heuristic gives us a simple possibility: zl = T and Wy the neutral element

of ¢ as, in this case, ¢(Z,%',w) = f(Z), but the equation is more general in the sense
that leaves place for other valid initializations.

jp—

Sizth ezample (revisited)

Let us apply all the above to the same example used for illustrating the folding-unfolding
method. The postcondition of the program of figure 2, translated to make disappear

the bounded variable s would be

R(a,n, k) = ((g(a,n, b, j,w) =) ali])
=k
We substitute the expression g(a,n, k,j,w) by w and obtain

n
' . . _ — .
R'(a,n,k,j,w)=(w= Z alt])
t=k
We use the [ArK] heuristics to get: A = (¢(a,n, k,j,w) = w + esum(a,n,j)) and
B =(j =n+1). 1t is easy to see that D(j) = (k<iAnj<n+1)and D(w) = true.
So, arranging A in a more convenient way, we get for the precondition of g

Olaymkyjyw) = (1< k<j<ntDAS alil =w+ Y afi
i=k =5
From these predicates, and knowing that the final value of j isn +1 1t is fairly easy to
design g and obtain the tail recursive program of figure 12. The obvious initial values
for j and w are, by [ArK], j = k and w = 0. But, if we know, for instance, that k < n+1
the values j = k + 1 and w = a[k] will also do the job.

6. Efficiency through embedding

When we design algorithms following formal methodologies we sometimes obtain solu-
tions that are correct but are far away from what is used to call an efficient solution.
This is a serious drawback that is often argued against formal methods. Then, most
programmers obtain an efficient algorithm using informal heuristics that may lead to
incorrect results.

Among other reasons, the inefficiency of algorithms comes from the use of costly op-
erations instead of cheaper ones or from the repetition of nearly the same computations
instead of reusing previous results. In all these situations, it is useful to maintain the
necessary information that will enable us to avoid repeated calculations. In recursive
design, this information is maintained in additional parameters or in additional results
depending on where it is needed; i.e. if it is needed before or after the recursive call
respectively. The embedding technique turns out to be very appropriate te solve both
situations: the parameter embedding and the result embedding.

18

Parameter embedding

Parameter embedding is aproppriate when the costly or inefficient operations are before
the recursive call; with respect to the figure 1 those represented by the functions by, b,,
e, and s. This has been proposed elsewhere (e.g. [DoM]). We formalize this technique
in our framework.

For each cosily expression that we are going to optimize, a new parameter must be
added to the function making a new embedding. The type of the parameter must be
that of the expression and the precondition must be completed with an equality relation
between the parameter and the expression it substitutes.

Assume that f(Z) is a function (or an embedding) and ¢(Z) is the expression
appearing in the body of f that is to be optimized. A new function g(Z,w) must
be defined and its precondition set to Q'(Z,w) = (Q(T) AW = ¢(F)), where @(Z) is
the precondition of f. The postcondition does not change because we want the same
function. Now ¢ is designed following the very same design as f; i.e. copying its body
almost exactly but with two exceptions. First, all occurrences of ¢(Z) are replaced
by w. This preserves correction since the precondition ensures that @ = &(Z) holds.
Second, the successor function s must be completed so that the recursive call satisfies
the precondition for @ too. Note that we may use @ in this calculation.

This parameter embedding gives us a more efficient function if reestablishing the
precondition for it is less expensive than calculating the expression that it substitutes.

When we want to use the embedding instead of the function ail we have to do is to
initialize W to ¢(Z). Since initializations are often simple expressions, it is very possible
that &(Z) will evaluate also tc a simple expression.

Seventh exemple

Looking at the third example (figure 4), we see that each call computes the expression a°.
Introduce a new parameter d such that d = a? and add this equality to the precondition.
The resulting specification for the embedding is

{a>1Ad=d?)}
func eeroot(n, a,d : nat) ret (r : nat)

{rP<nAn<(r+a)?}

Accordingly to figure 4, we replace all occurrences of a? by d. Ncte that the
expression (s + a)? that follows the recursive call may be expanded and the term a2
replaced by d. Then, to reestablish the precondition on d we must feed the recursive
call with (2 * a)? = 4 x d. The program is shown on figure 14.

Unfortunately, the result is not very efficient since the products r? and r * g still
appear in the program. There is no way to carry in another parameter the value of r?
or of r * a since both depend on the value returned by the recursive call. So, we cannot
optimize this algorithm any more with a parameter embedding. However, we will see
in a moment that a result embedding solves this problem.

Result embedding

As we have seen in. the above example, the parameter embedding technique does not
work if the expressions to be optimized follow the recursive call. With respect to figure 1,
those expressions that are part of the funciion e.

19

{a>1Ad=ad?}
func eeroot(n, a,d : nat) ret (r : nat) is
if n<d—retl
On>d— defr = eeroot(n,2 xa,4 * d);
ifn<r?4+2xr+xa+d—retr
On>r24+2+«r*xa+d—retr+a
fi
fi
end-func
{r?<nAn<(r+a)?}
Figure 14. Optimized program for the seventh example

The mechanism for a result embedding is identical to that of a parameter embed-
ding. Simply define a new result for each expression in ¢ that you want to optimize, and
state in the postcondition that the embedding will return the expression as an additional
result.

More formally, let f(Z) ret (§) be a function (or any kind of embedding) and let
é(7,) be the expression to be optimized. A new function g(Z) ret (7, Z) must be defined
and its postcondition set to R'(Z,7,%) = (R(Z,§) A 2 = ¢(Z,7)), where R(z,7) is the
postcondition of f, and Z is the new result. Now design g following the design of f but,
as in the case of parameter embedding, be aware that you may use Z instead of &(Z,9)
everywhere after the recursive call; and do not forget to reestablish the postcondition
returning the additional result. Of course, you may use z in this calculation. Again, the
result embedding is more efficient if reestablishing the postcondition is less expensive
than computing the substituted expression.

Seventh ezample (continued)

As you can see in figure 14 there are two expressions that we were not able to optimize
using parameter embedding. So, since there are two expressions, define two new results,
one for each expression. If we make s = r? and ¢ = r * a then the specification of the
result embedding is '

{a>1Ad=d?}
func eeeroot(n, 2, d : nat) ret (r,s,t : nat)
{rP*<nAn<(r+alAs=r*At=rx*a}

Once the function is specified, design it, using the new results. Next, compute the
values that must be returned in s and t to fulfil the postcondition. The final program
is shown on figure 15. Note that it uses only sums and shifts (products or divisions by
two).

The relation between the original function and the three embeddings is

root(n) = eroot(n,1)
= eeroot(n,1,1)

= ;1 (eeeroot(n,1,1))

where m; denotes projection of the first component.

20

func eeeroot(n.a,d : nat) ret (r,s,t: nat) is
if n < d— ret(0,0,0)
On >d— def(r,s,t) = eceroot(n,2 *a,4 * d);
if n<s+t+d— ret(r,s,tdiv2)
On>s+t+d—ret{r+a,s+t+d,tdiv2+d)
fi
fi
end-func
Figure 15. Program for the seventh example with result embedding

{d=1}
func froot(n,d : nat) ret (s,t : nat) is
if n <d— ret(0,0)
On >d— def(s,t) = froot(n,4 * d);
if n<s+t+d—ret{stdiv?2)
On>s+t+d—ret{s+t+d,tdiv2+d)
fi
fi
end-func
{2 <dxn<(#+dP° At =sxd}

Figure 16. Final version for the seventh example

Note that if our purpose is to compute root(n) (and not to use any of the em-
beddings alone) we will always compute the root via the call ceeroot{n,1,1). Since, in
this case, the first and the third result receive the same value, we may suppress the
parameter a and the result r because both of them are useless. Neither the defini-
tion of cases nor any expression depends on a or r (except themselves). The figure 16
shows the program froot that arises from this simplification. The pre- and postcondition
have been rewritten to take into account the simplification. Also we have the relation
root(n) = wq(froot(n,1)), where w2 denotes projection of the second component. It is
interesting to note that w2 (freot(n,d); = d|\/n/d] (compare with the third example).

Call merging

Another situation where efficiency can be gained through embedding arises when, in the
recursive case, two (or more) functions are activated with the same actual parameters.
Then it is possible to replace both functions by only one with the same parameters as
the other two and with the results of both functions. In this way. a new function is
created with only one recursive call. This usually gives a lower complexity cost. An
example will clarify the idea.

Eighth ezample

An array of integers a[l:n] is given such that n > 0 and a function is to be designed
so that it returns true if some element of the array equals the sum of ail elements that
precede it. Otherwise, the function should return false.

21

{true}

func sum_prec?(a : array;n : nat) ret (b: bool) is
if n =0 — ret false
On>0— retsum_prec?(a,n — 1) V (a[n] = sum(a,n — 1))
fi

end-func

{6 = 3%, (ali] = i2] ali])}

{true}
func sum(a : array;n : nat) ret (s : int) is
if n=0—ret)
0n >0 — retsum(a,n — 1)+ a[n]
fi
end-func ,
{s = Xk=1aliD}
Figure 17. Typical solution for the eighth example

func both(a : array;n : nat) ret (b: bool;s : int) is
if n = 0 — ret (false, 0)
On >0 — def (b,s) = both(a,n —1);
ret (b V (a[n] = s), s + a[n])
fi
end-func

Figure 18. Linear cost solution for the eighth example

The straightforward design of the problem involves two recursive functions: one for
computing the sum of the elements and another that checks if an element equals the
sum of its precedents. The specification and the program are shown on figure 17.

Uniortunately this program has a O(n?) complexity cost. But looking at the two
functions we see that their respective recursive calls have the very same actual param-
eters, and also the very same case analysis. A new funciion can be defined that is a
result embedding of the above two. The specification will collect both specifications,
removing duplicate parameters and/or results.

{true}
func both(a : array;n : nat) ret (b: bool;s : int)
i—1 n

{b=3%(ali] = el As =D alil)}

j=1 i=1

The design of the embedding follows the case analysis and recursive call of both
functions and is shown on figure 18. The embedding allowed us to obtain a linear cost
program, thus improving the earlier solution. Different solutions are proposed in the
appendix.

22

7. Conclusions

We have presented a method of recursive design by embedding, based on obtaining in
a formal way the specification of the desired embedding, from which the design can be
conducted. Since the design step is itself a well-studied subject, our contribution relies
on the formal derivation of the specification of the embedding. The addition of param-
eters or results is required frequently in recursive design, and the initial specifications
give no hint on the properties that these parameters must fulfil. Thus, design methods
which require a specification to work from it must be complemented by methods of
finding the specification in case of embedding. We have proposed tools for deriving this
specification.

Several examples of the application of this method have been presented. Further-
more, we have argued its usefulness by showing that other methods of design, such as
formal derivation of loops from their invariants or the folding-unfolding transformation
method, may be viewed as particular cases of our method, in which the obtained pro-
gram is tail recursive. Thus the case of tail recursion has been discussed in depth, due
to its special significance. We have also shown that the specification of the embedding
is closely related to the invariants of the loops after the transformation into iterative
programs.

The use of embedding to enhance the efficiency of programs has been also discussed;
the addition of parameters or of results, such as merging of recursive calls, has been
studied. The combination of all methods in an example of a complete design is presented
in the appendix.

A main motivation for this work stems for the teaching of recursive programming
in the Programming Methodology course at the authors’ University. In this course,
derivation of loops according to the methods of [Gri] is one of the central topics. Trying
to teach to program in a scientific way requires to develop in the students the attitude
of rigorous reasoning. Since recursive design is another of the topics of the lectures, a
coherent approach requires to develop similar methods for the design of correct recursive
programs; for a given specification, the design methods described in section 2 suffice,
but when an embedding is required the available methods were not sufficiens. This was
clear from the fact that many students had trouble in identifying correctiy the new
specification. Being aware of no methods for guiding this task, we have developed ours.
We expect the work reported here to be useful in the teaching of good programming
practices.

References

[Ars] Arsac, J. Les bases de la programmation, Dunod, Paris 1983.

[ArK] Arsac, J.; Kodratoff., Y. Some Techniques for Recursion Removal from Re-
cursive Functions. ACM Trans. on Programming Languages and Systems 4, 2
(Apr. 1982), 295-322.

[BrK] Broy, M.; Krieg-Briickner, B. Derivation of Invariant Assertions During Pro-
gram Development by Transformation. ACM Trans. on Programming Lan-
guages and Systems 2, 3 (July 1980), 321-337

[BuD] Burstall, R.; Darlington, J. A Transformation System for Developing Recursive
Programs. Journal of the ACM 24, 1 (Jan. 1977), 44-67.

[Dij-a] Dijkstra, E. A Discipline of Programming, Prentice-Hall 1976.

23

[Dij_b]
[DoM]

[Gri]
[LoS]

[Sch]

Dijkstra, E. EWD673 On Weak and Strong Termination. In: Selected Writings
on Computing: A Personal Perspective, Springer-Verlag 1982, 355-357.

Dosch, W.; Moller, B. Seminar on Functional Programming, Madrid, Octo-
ber 1987.

Gries, D. The Science of Programming, Springer-Verlag 1931.

Loeckx, J.; Sieber, K. The Foundations of Program Verification. Wiley-Teubner
Series in Computer Science, John Wiley & Sons Ltd. 1984."

Scholl, P. Algorithmique et représentation des données 3. Récursivité et arbres,
Masson, Paris 1984.

24

Appendix

Here we develop an example that uses embedding in the design, efficiency and transfor-
mation to iterative steps.

Problem

Given an array of integers a[l:n] where n > 0, design a function that returns true if
some element of the array equals the sum of all elements that precede it. Otherwise,
the function should return false.

Design step

The specification of the function is

{true}
func sum_prec?(a : vector;n : nat) ret (b : bool)
i—1

{b=3%1(ali] = Y ali]}

J=1
An embedding similar to that of the first example (see figure 2) gives

{1<k<n+1}
func esum_prec?(a : vector;n,k : nat) ret (b : bool)
i—1

{b=3%(ali] = >_ ali])}

j=1

The case analysis is also identical since the embedding is very much the same. The
reason is the strong similarity that exists between the two examples: both cperate on
an array and both compute an associative function extended to all the elements of the
array; the former computes the integer sum and the latter, a boolean sum. The program
for the embedding is shown on figure A-1.

The program is incomplete since the summation in the recursive case is not imple-
mented. If we resort to a function for implementing the sum we will have an overall
cost of O(n?) since the sum function will have a linear cost. Of course, we may design
it but it is an innecessary extra work because in a later step we will try to optimize that
expresston.

Tail recursion embedding step
Following section 5, we will find the embedding that gives us a tail recursive function.
Let us call it tsum_prec?, and write the postcondition
i-1
R(a,n, k) = (tsum_prec?(a,n, k,1,u) = I, (ali] = > _ afj]))
j=1

where [is introduced because our method forbids the modification of parameters other
than the embedding ones. The parameter u appears as a consequence of the general-
ization strategy of [ArK] (see section 5). Next we replace tsum_prec?(a,n,k,l,u) by u
to get

R'(a,n,k,l,u) = (u = 3glali] = 3 ali])

=1

25

func esum_prec?(a : vector;n, k : nat) ret (b: bool) is
if k=n+1— ret false
0% < n — ret esum_prec?(a,n, k + 1)V (a[k] = Zj;ll alj])
fi

end-func

Figure A-1. Program for the design embedding

func tsum_prec?(a : vector;n, k, 1 : nat;u : bool) ret (b : bool) is
ifl=n+1—>retu
01 < n— rettsum_prec?(a,n, k, ! + 1,uV (a{l] = E;;l a{7]))
fi

end-func

Figure A-2. Program after the tail recursive embedding

func etsum_prec?(a : vector;n, k,l: nat;u : bool;s : int) ret (b: bool) is
ifl=n+1-—retu
01<n — retetsum_prec?(a,n, k, 1+ 1,uV (all] = s),s + all])
fi

end-f{unc

Figure A-3. Program after the efficiency embedding

Using the heuristics suggested by [ArK] we obtain A and B as

A = (tsum_prec?(a,n, k,l,u) = (uV esum_prec?(a, n,)
B=(Il=n+ 1)

The domains of [and u are easily obtained as k <! < n+1 and true respectively. Now
we have all the information for writing the precondition of the tail recursive function
tsum-prec? as :

Q'(a,n,k,l,u):(lSk§l§n+1/\3?___k5=(uv5]?=15))

. . =1 L.
where S = (afi] = 202, a[j]). From the above precondition is now easy to get a tail

recursive design. The result is shown on figure A-2.

From the precondition it is clear that the simplest initializations will be [=k (the
computation starts at k) and u = false (the neutral element for V). Note that our
program is incomplete again since we have not implemented the summation vet. This
example shows that the method remains valid even with incomplete designs.

Efficiency step

Since the expression to be optimized appears before the recursive call, a parameter
embedding will be used. Define a new parameter s, and take s = Ei;ll a[j]. Next,
add this equation to the precondition. Of course, the postcondition is left unchanged.
Replace the summation by s and reestablish the precondition for s (using s, of course).

The program is shown on figure A-3. This step could equally well be performed before
the tail recursion embedding without affecting the finai resuit.

26

func sum_prec?(a : vector;n : int) ret (b : bool) is
vark,l : nat;u : bool;s : int
(k,lu,s) := (1,1, false, 0);
do! <n— (kL u,s) = (k, I+ 1,uV(ali] =s),s + a[l]) od;
retu
end-func

Figure A-4. Iterative version for the stated problem

Recursion remowval step

Following section 4 we obtain the iterative version of the program of figure A-3. All
additional parameters that we have introduced in the successive embeddings must now
be set to an appropriate initial value. From the design step we have that the simplest
initialization for k is 1. In the tail recursion step we got { = k and u = false. And from
the efficiency step we know that s = Z;;ll a[j], i.e. s = 0 since ! = k = 1. Putting
together all the initializations we obtain the program of the figure A—4.

In the iterative version we see that the variable & is now superfluous and may be
omitted. Finally, the invariant for the single loop of the program of figure A—4 is the
precondition for the last embedding (see section 4), which is

-1

151§n+1/\3=Za[j]/\3;'=15=(uva?=,5)
i=1

where S = (aff] = Z;;ll a[j]). The invariant has been simplified replacing k£ by 1 (its
initial value) because k is not modified.

27

