ANALYSIS OF FUNCTIONALLY GRADED MATERIAL ACTUATOR USING NEW FINITE ELEMENTS

JURAJ PAULECH*, JUSTIN MURIN*, VLADIMIR KUTIS*,
GABRIEL GALIK* AND TIBOR SEDLAR*

* Department Applied Mechanics and Mechatronics
Institute of Automotive Mechatronics
Faculty of Electrical Engineering and Information Technology
Slovak University of Technology in Bratislava
812 19 Bratislava, Slovak Republic
e-mail: juraj.paulech@stuba.sk, www.stuba.sk

Key words: Instructions, Coupled Problems, Multiphysics Problems, Applications, Computing Methods.

Abstract. Actuator is a mechatronic system that transforms one type of energy (e.g. electric energy) into the mechanical displacement and mechanical force (mechanical energy). Nowadays, these actuators can be made of Functionally Graded Materials (FGM) to ensure simple shape of the actuator and to improve its effectiveness, particularly for micro systems. FGM is built as a mixture of two or more constituents which have almost the same geometry and dimensions. The variation of macroscopic material properties can be induced by variation of both the volume fractions and material properties (e.g. by a non-homogeneous temperature field) of the FGM constituents.

The paper deals with a new approach in analysing of the systems made of FGM using our new beam finite elements. Multiphysical analysis (weak coupled electro-thermo-mechanical analysis) and spatial continuous variation of material properties are supported. The analysis of the micro actuator with constant cross section made of FGM is presented in the paper. This simple-shaped actuator is supplied by electric current and the efficiency of the actuator is optimised. The solution results will be compared with those obtained by using solid elements of a FEM commercial program.

1 INTRODUCTION

Nowadays, the scientific and technological progress are already at such level that for the development of new systems in classical way (such as mechanical and heating systems, systems in construction industry, etc.) it is not enough to propose new shapes of components and their optimization, but it requires use of new materials with the desired properties that lie outside the parameters of materials commonly used for that purpose. New materials like Functionally Graded Material (FGM) are necessary for sophisticated structures like Micro-Electro-Mechanical Systems (MEMS), advanced electronic devices, etc. In all these applications, using new materials like FGM can greatly improve efficiency of a system e.g. classic shape of
actuator (Figure 1a) can be replaced by new type – simply-shaped actuator (Figure 1b) where functionality is caused by varying material properties.

![Figure 1: a) Classic shape of MEMS actuator, b) New shape of FGM actuator](image)

FGM is built as a mixture of two or more constituents which have almost the same geometry and dimensions. From macroscopic point of view, FGM is isotropic in each material point but the material properties can vary continuously or discontinuously in one, two or three directions. The variation of macroscopic material properties can be caused by varying the volume fraction of the constituents or with varying of the constituents’ material properties (e.g. by non-homogeneous temperature field). The methods based on the homogenization theory have been designed and successfully applied to determine the effective material properties of heterogeneous materials from the corresponding material behaviour of the constituents (and of the interfaces between them) and from the geometrical arrangement of the phases. Coupled electro-thermo-mechanical analysis of actuator made of FGM using our new beam finite elements will be presented.

2 FEM EQUATIONS FOR COUPLED ELECTRO - THERMO - MECHANICAL ANALYSIS

Derivation process of the new FEM equations for coupled electro-thermo-mechanical element is based on differential equations for electric thermal and structural fields for 1D type of analysis, respectively. All quantities in following equations are the polynomial functions of x. Homogenization process of the varying material properties and the calculation of other effective finite element parameters have been done by extended mixture rule [1] and multilayer method is fully described in [2, 3].

2.1 Differential equations

Homogeneous 1D static differential equation for FGM (with non-constant coefficients on the left-hand side) for electric field with boundary conditions has a form:

$$\begin{align*}
-\sigma(x) \frac{d^2 \varphi(x)}{dx^2} - \frac{d \sigma(x)}{dx} \frac{d \varphi(x)}{dx} &= 0 \\
\varphi(0) &= \varphi_0 \\
J(L) &= J_L
\end{align*}$$

where x [m] is the longitudinal coordinate, $\varphi(x)$ [V] is the electric potential, $\sigma(x)$ [S/m] is the specific electric conductivity and $J(x)$ [Am$^{-2}$] is the current density.

Static differential equation for heat transfer with non-constant auxiliary thermal source $Q(x)$ [Wm$^{-3}$] in the volume, with non-constant convective heat transfer coefficient $a(x)$ [Wm$^{-2}$K$^{-1}$] and with coupled to the electric field has a form (2). One-way coupling between the electric and thermal field is provided by Joule heat $P_{Jo}(x)$ [Wm$^{-3}$], that can be calculated as one of the outputs from electric analysis and it enters the thermal analysis as volume heat (beside or instead of $Q(x)$).
\[-\lambda(x) \frac{d^2 T(x)}{dx^2} - \frac{d\lambda(x)}{dx} \frac{dT(x)}{dx} + \alpha(x) T(x) \frac{o}{A} = P_{J1}(x) + Q(x) + \alpha(x) T_{amb} \frac{o}{A} \]

\[T(0) = 0 \quad q(L) = q_L \]

with boundary conditions, e.g.:

where \(\lambda(x) \) [Wm\(^{-1}\)K\(^{-1}\)] is the thermal conductivity, \(T(x) \) [K] is the temperature, \(o \) [m] is the perimeter, \(A \) [m\(^2\)] is the cross section area, \(T_{amb} \) [K] is the ambient temperature and \(q(x) \) [Wm\(^{-2}\)] is the heat flux.

Homogeneous differential equation for structural analysis with effect of thermal expansion (coupling with the electro-thermal analysis) for pure tensile and compressive stress has a form:

\[E_L^{NH}(x) \frac{d^2 u(x)}{dx^2} + \frac{dE_L^{NH}(x)}{dx} \frac{d u(x)}{dx} = n(x) + \alpha_i(x) \Delta t(x) \frac{dE_L^{NH}(x)}{dx} + \Delta T(x) \frac{d\alpha_i(x)}{dx} + E_L^{NH}(x) \alpha_i(x) \frac{d\Delta t(x)}{dx} \]

\[u(0) = u_0 \quad \sigma_{N}^e(L) = \sigma_{N,L}^e \]

where \(E_L^{NH}(x) \) [Pa] is the Young modulus for tension/compression, \(u(x) \) [m] is the displacement, \(n(x) \) [Nm\(^{-1}\)] are the distributed axial forces, \(N(x) \) [N] is the normal force and \(\alpha_i \) [K\(^{-1}\)] is the coefficient of thermal expansion.

Homogeneous differential equation for structural analysis for bending has a form:

\[\frac{d^2 w(x)}{dx^2} = \frac{M(x)}{E_L^{MH}(x) I_y} \]

\[w(0) = w_0 \quad \sigma_y(L) = \sigma_{y,L} \]

where \(w(x) \) [m] is the transversal displacement, \(M(x) \) [Nm] is the bending moment, \(E_L^{MH}(x) \) is the Young modulus for bending, \(\varphi_i(x) \) [rad] is the angle of the cross section rotation, \(I_y \) [m\(^4\)] is the quadratic moment of the cross section.

The solution of these differential equations is based on numerical method for solving 1D differential equation with non-constant coefficients and with right-hand side described in [4] in detail.

2.2 New beam/link FGM finite element equations

The finite element equations for electric analysis in FGM link have a form:

\[
\begin{bmatrix}
-c_0(L) \\
-c_0(L) - \frac{c_1(L)c_0'(L)}{c_1'(L)}
\end{bmatrix}
\begin{bmatrix}
-1 \\
1
\end{bmatrix}
\begin{bmatrix}
\varphi_0 \\
\varphi_L
\end{bmatrix} =
\begin{bmatrix}
\frac{c_1(L)}{\sigma_0} J_0 \\
\frac{c_1(L)}{c_1'(L)\sigma_L} J_L
\end{bmatrix}
\]

\[415\]
FEM equations for thermal analysis considering the convective effect, generated heat and Joule heat (coupling between the electric and thermal field) have a form:

\[
\begin{bmatrix}
 c_0(L) \\
 \left(c_0(L) - \frac{c_1(L)c_0(L)}{c_1'(L)} \right)
\end{bmatrix}
\begin{bmatrix}
 c_0(L) \\
 \left(c_0(L) - \frac{c_1(L)c_0(L)}{c_1'(L)} \right)
\end{bmatrix}^{-1}
\begin{bmatrix}
 T_0 \\
 T_L
\end{bmatrix}
= \begin{bmatrix}
 \frac{c_1(L)}{\lambda_0} q_0 - \sum_{j=0}^{g} \varepsilon_j b_{j+2}(L) \\
 \frac{c_1(L)}{c_1'(L) \lambda_L} q_L - \frac{c_1(L)}{c_1'(L)} \sum_{j=0}^{g} \varepsilon_j b_{j+2}(L) + \sum_{j=0}^{g} \varepsilon_j b_{j+2}(x)
\end{bmatrix}
\] (0)

Derived FEM equations for the structural analysis for pure tensile and compressive stress with coupling to the electro-thermal analysis (thermal expansion coefficient) have a form:

\[
\begin{bmatrix}
 c_0(L) \\
 \left(c_0(L) - \frac{c_1(L)c_0(L)}{c_1'(L)} \right)
\end{bmatrix}
\begin{bmatrix}
 c_0(L) \\
 \left(c_0(L) - \frac{c_1(L)c_0(L)}{c_1'(L)} \right)
\end{bmatrix}^{-1}
\begin{bmatrix}
 u_0 \\
 u_L
\end{bmatrix}
= \begin{bmatrix}
 \frac{c_1(L)}{E_L^{NH} A} N_0 - \frac{c_1(L) \alpha_{m0}}{E_L^{NH} A} \Delta T_0 - \sum_{j=0}^{g} \varepsilon_j b_{j+2}(L) \\
 \frac{c_1(L)}{c_1'(L) E_L^{NH} A} \left(\frac{N_L}{E_L^{NH} A} + \alpha_{mL} \Delta T_L - \sum_{j=0}^{g} \varepsilon_j b_{j+2}(L) \right) + \sum_{j=0}^{g} \varepsilon_j b_{j+2}(L)
\end{bmatrix}
\] (10)

and FEM equations for bending of the beam have general form:

\[
\begin{bmatrix}
 K_{11} & K_{12} & K_{13} & K_{14} \\
 K_{21} & K_{22} & K_{23} & K_{24} \\
 K_{31} & K_{32} & K_{33} & K_{34} \\
 K_{41} & K_{42} & K_{43} & K_{44}
\end{bmatrix}
\begin{bmatrix}
 w_0 \\
 \varphi_{y,0} \\
 w_L \\
 \varphi_{y,L}
\end{bmatrix}
= \begin{bmatrix}
 T_{z,0} \\
 M_0 \\
 T_{z,L} \\
 M_L
\end{bmatrix}
\] (11)

where \(T_z(x) \) [N] is the transversal force. The terms \(c_1(x), c_1'(x), b_i(x), b_i'(x), i \in <0, 1> \) are the transfer functions (for particular solution and for uniform solution) of the differential equations (1) - (6) which can be calculated by simple numerical algorithm [4].

3 NUMERICAL EXPERIMENT

Let us consider actuator with constant cross section made of FGM according to Figure 2. It consists of 3 parts (beams) that lengths are: \(L_1 = 5 \text{ mm}, L_2 = 0.3 \text{ mm} \) and \(L_3 = 5 \text{ mm} \). Their constant rectangular cross-section is \(b = 0.2 \text{ mm} \) and \(h = 0.1 \text{ mm} \).
Actuator is made of FGM that consist of two components: matrix denoted with index m and fibre denoted with index f. Material properties of the components are constant (not temperature dependent), Matrix: Young modulus $E_m = 211$ GPa, thermal conductivity $\lambda_m = 80.4$ Wm$^{-1}$K$^{-1}$, electric conductivity $\sigma_m = 1 \times 10^7$ Sm$^{-1}$, thermal expansion coefficient $\alpha_m = 2.18 \times 10^{-5}$ K$^{-1}$; Fibre: Young modulus $E_f = 119$ GPa, thermal conductivity $\lambda_f = 401$ Wm$^{-1}$K$^{-1}$, electric conductivity $\sigma_f = 5.96 \times 10^7$ Sm$^{-1}$, thermal expansion coefficient $\alpha_f = 1.65 \times 10^{-5}$ K$^{-1}$. The variation of material properties is caused by varying volume fraction. Variation of the fibre’s volume fraction has been chosen as the polynomial function of longitudinal (L) and lateral (b) directions of individual beams. Coordinates for these directions are denoted x and y for the variation of material properties. Through the depth b of the beams the material properties are constant and they are derived from the variation in longitudinal and lateral directions.

Variation of the fibres volume fraction $v_f(x, y)$ for the first (from point A to B) and third beam (from point C to D) are shown in Figure 3. The constant fibres volume fraction $v_f(x, y) = 0.143$ for the second beam (from point B to C) is considered.

![Figure 3: Variation of the fibres volume fraction, left - beam 1, right - beam 3](image)

The effective material properties (Young modulus for tension/compression $E_{LH}(x)$ [Pa], Young modulus for bending $E_{LH}(x)$ [Pa], thermal conductivity $\lambda_{LH}(x)$ [Wm$^{-1}$K$^{-1}$], electric conductivity $\sigma_{LH}(x)$ [Sm$^{-1}$], thermal expansion coefficient $\alpha_{LH}(K^{-1})$) of the homogenized beam have been calculated by multilayered method [2, 3]. An example of the results for the first beam are:
\[\sigma_L^H(x) = 4.61 \times 10^7 - 2.67 \times 10^{13} x^2 + 1.53 \times 10^{16} x^3 - 3.16 \times 10^{18} x^4 + 2.23 \times 10^{20} x^5 \]

\[\lambda_L^H(x) = 313.8 - 1.73 \times 10^8 x^2 + 9.9 \times 10^{10} x^3 - 2.04 \times 10^{13} x^4 + 1.44 \times 10^{15} x^5 \]

\[E_L^{NH}(x) = 1.44 \times 10^{11} + 4.95 \times 10^{16} x^2 - 2.84 \times 10^{19} x^3 + 5.86 \times 10^{21} x^4 - 4.13 \times 10^{23} x^5 \]

\[E_L^{MH}(x) = 1.57 \times 10^{11} + 3.7 \times 10^{16} x^2 - 2.12 \times 10^{19} x^3 + 4.37 \times 10^{21} x^4 - 3.08 \times 10^{23} x^5 \]

\[\alpha_L^H(x) = 1.86 \times 10^{-5} + 9.01 \times 10^{-4} x + 1.45 x^2 - 989.6 x^3 + 2.15 \times 10^5 x^4 - 1.56 \times 10^7 x^5 \]

The homogenized thermal conductivity \(\lambda_L^H(x) \) for the first and third beam is shown in Figure 4.

![Figure 4: Homogenized thermal conductivity, red - beam 1, purple - beam 3](image)

The applied constrains and loads are:

- electric potential and current: \(V_A = 0 \) V, \(I_D = 5 \) A;
- temperatures: \(T_A = 25 \) °C, \(T_D = 25 \) °C;
- fixed support: \(u_A = 0 \) m, \(u_D = 0 \) m,
 \(w_A = 0 \) m, \(w_D = 0 \) m,
 \(\varphi_A = 0 \) rad, \(\varphi_D = 0 \) rad

The coupled electro-thermo-mechanical analysis of FGM actuator has been done using our new FGM beam/link finite elements. The calculation has been done using software MATHEMATICA. Only three of our new finite elements have been used (one for each part). The same problem has been solved using a fine mesh – 29 000 of PLANE223 elements of the FEM program ANSYS (see Figure 5). The average relative difference \(\Delta [\%] \) between quantities calculated by our method and the ANSYS solution has been evaluated.
Electric analysis was performed as the first solution and the nodal electric variables have been obtained (see Table 1).

Table 1: The results of electric analysis

<table>
<thead>
<tr>
<th>electric potential [V]</th>
<th>new element</th>
<th>ANSYS</th>
<th>(\Delta) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varphi_B)</td>
<td>0.0581</td>
<td>0.0576</td>
<td>0.87</td>
</tr>
<tr>
<td>(\varphi_C)</td>
<td>0.0656</td>
<td>0.0614</td>
<td>6.84</td>
</tr>
<tr>
<td>(\varphi_D)</td>
<td>0.0982</td>
<td>0.0937</td>
<td>4.80</td>
</tr>
</tbody>
</table>

Thermal analysis was performed as the second one. Distributed thermal load – Joule heat caused by electric current was included into the analysis. The results of thermal analysis are presented in Table 2.

Table 2: The results of thermal analysis

<table>
<thead>
<tr>
<th>temperature [°C]</th>
<th>new element</th>
<th>ANSYS</th>
<th>(\Delta) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_B)</td>
<td>188.70</td>
<td>174.01</td>
<td>8.44</td>
</tr>
<tr>
<td>(T_C)</td>
<td>177.08</td>
<td>167.82</td>
<td>5.52</td>
</tr>
</tbody>
</table>

Structural analysis is performed as the last analysis, where thermal forces caused by thermal expansion were included into the model. The results of structural analysis are the displacements \(u \) for longitudinal direction and \(w \) for transversal direction (see Table 3).

Table 3: The results of structural analysis

<table>
<thead>
<tr>
<th>displacement [mm]</th>
<th>new element</th>
<th>ANSYS</th>
<th>(\Delta) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_B)</td>
<td>0.0114</td>
<td>0.0095</td>
<td>20.0</td>
</tr>
<tr>
<td>(w_B)</td>
<td>–0.0286</td>
<td>–0.0237</td>
<td>20.7</td>
</tr>
<tr>
<td>(u_C)</td>
<td>0.0080</td>
<td>0.0067</td>
<td>19.4</td>
</tr>
<tr>
<td>(w_C)</td>
<td>–0.0292</td>
<td>–0.0245</td>
<td>19.2</td>
</tr>
</tbody>
</table>
As it can be seen in Tables 1 - 3, there are considerable differences between results obtained by our new element and FEM program ANSYS especially for the analyses (e.g. structural) that are based on the results from preliminary analyses (e.g. thermal and electric analyses). This is caused by the fact that junctions B and C (see Figure 2) are not spot junctions (considered in the beam theory) but they are spatial junctions (see Figure 5), so the current and heat flow in these junctions are not strictly 1D flows as it is considered in the beam theory. This fact also explains lower electric potentials, temperatures and finally displacements in longitudinal and transversal directions in ANSYS results compared to the results from the system based on our new element.

The comparison of total deformation, temperature distribution and electric potential distribution of the FGM actuator calculated by our new approach and commercial FEM program ANSYS is shown in Figure 6.

Figure 6: Results of electro-thermo-mechanical analysis, top left – electric potential, top right – temperature, bottom – displacement (displacement scaling 5:1)

4 CONCLUSIONS

New FEM equations for weak coupled static electro-thermo-mechanical analysis of the FGM beam structures have been presented in this contribution. The numerical experiment – multiphysical analysis of micro actuator made of FGM has been done using our new approach and obtained results have been compared with ones obtained by solution with software
ACKNOWLEDGEMENT

This work was supported by the Slovak Grant Agency: VEGA No. 1/0102/18, VEGA No. 1/0081/18, APVV-14-0613 and APVV-0246-12. Authors are also grateful to the HPC Centre at the STU - SIVVP project, ITMS code 26230120002.

REFERENCES

