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Abstract. A capsule robot (capsubot) without external drivers is considered. The device 
consists of a shell, an actuator, and certain equipment. It can move on a rough surface due to 
the controlled movement of an internal mass and external friction. The mass is driven by the  
actuator according to a given program, which ensures the movement of the shell due to the 
inertia forces. The system includes an elastic spring, connecting the shell with the internal 
mass. A control is proposed that allows to maximize the average velocity under  given 
technological restrictions. 
 
1 INTRODUCTION 

 A capsule robot (capsubot) is a type of compact mobile device which can explore fields 
inaccessible to humans. In recent years, such devices received intensive attraction mostly in 
connection with medical purposes: a tiny capsubot with camera can be swallowed by patient 
to diagnose diseases; another application is inspection of pipelines. Some methods of active 
locomotion were developed. The simplest approach is based on internal control forces and 
external static friction [1-5]. Comparatively to a legged design, it leads to more save 
interaction between the capsule and the explored area. Similar idea was used to study floating 
robots [6,7]. A capsubot without external moving parts contains an internal mass, being put in 
motion by an actuator. As the internal mass changes its position relative to the capsule, the 
center of gravity shifts. An appropriate  control strategy is needed to provide periodic motion 
of the capsubot in desired direction. Due to limited resources (size and mass of the robot, 
power supply, etc.), the optimization problem (in a sense) is of great practical importance. A 
number of results in this direction are obtained [1,2,8]. Further modifications of the capsubot 
include elastic springs [9-11]. Numerical studies and experiments show that the addition of 
springs leads to improved technical characteristics such as the average velocity of the robot 
and energy consumption. Generally speaking, the use of springs allows to increase the 
maximum force during acceleration of the internal body, as well as to reduce the energy 
consumption during its braking. The present paper is devoted to the control of a capsubot with 
a linear spring. Taking as a basis the results of cited papers, we will look for the parameters of 
the spring and the control law, providing the maximal average velocity of the robot. 
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2 PROBLEM STATEMENT 

      The physical model of the capsubot is shown in Fig.1. It consists of a capsule shell 1m , 
interacting with an internal moving mass 2m  and with a horizontal support. Let y  be the 
relative position of the inner body, x  is the position of the shell with respect to an external 
fixed frame, and /v x dx dt  .The following forces will be taken in account: (i) a control 
force ( )F t  is generated by an actuator, attached to the shell (not shown), and acts on the inner 
body; (ii)  a force  ( )G y , generated by a linear) spring, acts on the inner body (the opposite 
force is applied to the shell); (iii) friction force ( )T v  between the shell and support.  

 

 1( ) ( )G y F t m                                                                     

                                       2m                                 
 

Fig.1. The capsubot model 

       Equations of motion in Newton form are 

                 1 2 0 1 2 2 2( ), ( ) ( )m m v m m v m y T v m v y F t G y                              (1) 

where 0v  is velocity of the mass center.  Define friction force by the Coulomb friction law  

              0 0 1 2

1, 0
( ) Sign , , , Sign 1, 0

[ 1,1], 0

v
T v T v T k m m k fg v v

v


       
  

                 (2) 

where g  is acceleration of gravity and f   is the coefficient of friction. If the capsule moves 
to the right, then 0v   and  0T T  ; similarly, we have 0v   and  0T T   for sliding to the 
left. In the stick phase 0v  , then according to (1) 

                                        2

1 2

[ , ], my k k
m m

   


                                            (3) 

Assume that control function ( )F t  is   - periodic, piecewise continuous, and has zero mean 
value, i.e. 

                                                    
0

1( ) ( ) 0F t F t dt



                                                           (4) 
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then ( )v t  is continuous, and ( )y t  is smooth. We look for such control that functions ( )v t  and 
( )y t  are   - periodic and maximize average velocity of the robot:  

                      
0

1( ) ( ) max s.t. | ( ) | , ( ) [0, ]v t v t dt F t M y t L



                               (5) 

 
3 SIMPLEST CASE: NO SPRING 

       First discuss the case ( ) 0G y   [2]. Then in eqs (1) v  does not depend on y  directly:   

                                  1 1 2 1 2( ), ( )m v k m m F t m y km F t                                          (6) 

In such statement, problem (5) has the optimal periodic solution (period   being fixed) [2]: 

                            

1
0

1 2 1 2

0 2

2
0

2max
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, [ , )

1( ) ,
3

M t
TF t M t
M

T t

LM Tv t
m M


    

 

  


 
        

  


 



                                    (7) 

     According to (7), the three-step control profile is used here: acceleration of the shell, its 
deceleration, and rest. The conditions of Pontryagin’s principle are satisfied, since the 
maximal admissible control is used at each phase of motion. A geometric interpretation of the 
optimal solution is presented in the phase plane ( , )y y  (Fig.2, a). Each of the three steps is 
depicted by a parabolic arc; these lines form a closed loop.  
 

       y                                                                   y  
                        A                                                                         A                                                 
       C                                                                                'С                                    
                                                                      C 
                                                                          

    0                                       L     y                   0                                        L     y 
                                                                                         
                       B                       (a)                                                                  (b) 

 
Fig.2. Periodic motions of the robot a) no spring: (i) acceleration AB (green); 

(ii) deceleration BC (red); (iii) rest phase CA (black);  
b) with spring: acceleration AC, two-step rest phase CС'A . 

4 ADDING A LINEAR SPRING 

Suppose now that function ( )G y  in eq. (1) is linear: 0( ) ( )G y c y y   and modify 
formula (7) for this case. In the acceleration phase we have ( )F t M  , and the equations of  
motion are 
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                                    2, ( )v y k m v y M G y                                                    (8) 

Therefore, 

                                         
 1 1 2

1 2

( ),
( )

m v k m m M G y
m y km M G y
    

  
                                                    (9) 

The second equation here can be considered separately.  It admits one-parameter family of 
solutions, satisfying given length restriction: 

                                   
 

21 2 2
0

1 2

( ) 1 cos , ( ) sin
2 2

,
2

L Ly t t y t t

m m L M kmc y
m m c

 



   


  



                                             (10) 

The presence of the spring allows to increase the acceleration of the shell, as well as eliminate 
the braking phase. Let A  be such point at which the shell begins to move (Fig.2,b), its 
position on the curve (10) is defined by a value At t . Substituting expressions (10) into the 
first formula (8), we obtain after integration: 

                                 ( ) sin sin
2A A
Lv t k t t t t                                                      (11)  

Now we can determine point C  as first root of equation ( ) 0Cv t  . Thus, 2 /C At t    , 
where   is first positive root of equation 

               
1

sin cos , , ,
2 2

C A
A

cL t
km

         
                                     (12) 

      Further, in the rest phase 0v  , hence 
    
                                   2 2, ( ) ( )m y T m y F t G y                                                              (13) 

which is consistent provided   

                                               ( ) ( ( ))F t G y t T                                                                    (14)     

In view of (5) we should minimize the duration of this part. This is known minimum time 
control problem: how to get point A  starting from point C  as fast as possible under 
restriction y k  . The solution curve is either parabola y k   or two parabolic arcs 

y k   depending on the coordinates of points C  and A . Both arcs belong to the region 
[0, ]Ay y . If y k  , then 0T T  and to fulfil equality (14) for any [0, ]y L  it is sufficient 

that 

                                                   1 22 2
2

cLM k m m                                                         (15) 
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In fact, in this case we can impose condition (14) only on the interval [0, ]Ay y  (which 
covers the arc 'CC ).  Similarly, in the case 0T T   non-slip condition (14) must be satisfied 
for '[ , ]C Ay y y , i.e. 

                                                        '
11

2C
Ly


   
 

                                                           (16) 

which is rather restrictive.  To satisfy both conditions (15) and (16), it is necessary that 
0M T . 

       To evaluate duration of the rest phase, note that equation y k   is equivalent to   

                                                  2 , const
2

y y
k
                                                      (17) 

If points C  and A belong to the same line (17), then the black line in Fig.2,b  is single 
parabolic arc, and duration of the rest phase equals  

                                                       0 /A Cy y k                                                           

Otherwise, the fastest path from C  to A consist of two arcs: y k   and y k   . The total 
duration of such path is 

                                     2
0 2 A C

A A C
k

y y y
k

 


 
     

 
                                          (18) 

where the values A  and  C   are defined by (14) for points A  and C , correspondingly. With 
account of (10) and (12),  
 
                                       sin sin cosA C AL                                                  (19) 
 
The total period   is the sum of 0  and the duration of  the first phase 1 C At t   .   
       The path S , taken by the shell in one period, can be calculated by integration of (11):  

                                           sin( ) sin cosAS L                                                  (20) 

Finaly,  

                                                   
0

( )
2 /
Sv t

  



                                                          (21) 

5    RESULTS AND DISCUSSION 

      We discuss the feasibility of adding a spring for two cases: 0/ 1M T   and 1 . Take 
initial point A  (see Fig.2,b) such that  
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                                                0 0( )Ac y y M T                                                                (22) 

In view of (9), the value of Ay  is maximum possible to keep the shell at rest just before the 
acceleration phase (we set here F M ). To start the acceleration, we assume F M  , so at 
this moment first eq. (9) becomes  

                                                     1 2 0m v M                                                                    

Note that the acceleration rate here is maximal regardless the coefficients of elasticity and 
friction. Therefore, the capsubot can move even for 1   in conrtast to a robot without 
spring. However, in this case motion in the rest phase will be rather slow. Indeed, in this case 
inequality (15) is violated. To ensure the rest phase, we should modify formulas (15), (16) by 
replacing k  with such value 'k k  that they became true, i.e. 

                                '(1 ) min ,2 , 1k
k

                                                     (23) 

Note that the value 'k  will appear in denominator of (18) instead of ,k  thus there is a reason 
to increase  . In turn, the parameter  is proportional to the spring elasticity, it determines 
the duration of the propulsion phase and the distance travelled. In view of physical restriction 
(25), it’s impossible to increase both parameters. Hence, an optimal relation between them is 
to be found. For this purpose, the following algorithm can be implemented.  

     Suppose that the parameters 1 2, , ,m m L k , and 1   are given. Explore admissible scope of 
variables   and   in accordance with inequality (23). First we choose maximal value Ay   
with account of restriction (23). Unfortunately, the solution to (22)   

                                                (1 )cos 2A                                                         (24) 

is not admissible, and we are to replace the control force M  in equation (21) with some 
'M M . This implies the relation 

                                 0(1 )cos 2 ' , ' '/A M T                                             (25) 

Then the conditions cos 1A   and (23) are equivalent to the system 

                                                 ' , '                                                               (26) 

Then find the first positive root of equation (12). At last, perform the calculations by formulas 
(18)-(21). 

     Example. Let 0.8, 0A     . To satisfy (23), put 

                                                   4 5 , 0,0.8      

then equation (12) has form 

                                                        2 sin2                                                                   (27) 
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The interval  0,4  correspond to the root of eq.(27) in the range  0,1.2  . Numerical 

calculations by formulas (18) – (21) lead to the dependence ( ) ( )v t  , shown in Fig.3. A 
single maximum is situated at  
 

                   
Fig.3. Typical dependence of normalized average velocity  

on the parameter   (radians)  
 

     The case 1  can be considered qualitatively. In view of (10), (21) we assume 

                     11 1 1

1

cos 2 2 4( ),
2 cos

A

A

km km km MO c O
km M L L

  
 

 
    


                          (26) 

We are free to choose ( / 2,0)A   , then we determine   as first root of eq. (12): 

                                                2(1 ) ( )
2 A O        

 
                                             (27) 

Keeping in mind that the differnce A C   is bounded, we obtain 

       
11

cos ( / 2 )sin
( ) cos ( / 2 )sin 2

4 cos
A A A

A A A
A

L c LMv t
mm

       
 

 
        (28) 

As   , the value c  is large, and in theory the last fraction in (28) can be arbitrary big. 
We conclude that the use of springs is advisable both to increase the speed of the mobile 
device, and to ensure its movement with a low-power motor. 
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