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Preface

This problem book evolved from problem lectures I gave in UPC (Univer-
sitat Politécnica de Catalunya). There are two hundred problems completely
solved in detail. Some are public domain, some are recreations and some
others have been told by colleagues. If any merit can be given to the collec-
tion it could be the selection and grouping of the material, mainly following
Polya’s dictum that ’problems grow as mushrooms’.

These problems could interest students of mathematics, physics and en-
gineering. As the title shows the main emphasis is on calculus and not so
much on analysis. Nevertheless bibliography on some delicated questions is
presented here and there. For a quick overview of the style I would like to
mention some of my favourite problems: 3, 6, 14, 54 and its companion 57,
81, the surprising result in problem 114, 145, 160, 173, 178. Physics and
engineering students may like to browse last chapter on electromagnetism.

I only assume a mild responsability as to possible errors because as late
Prof. Wieszlaw Slenck said “correcting is an infinite non convergent process”.
The existence of errors can be seen as a stimulus for the student to be careful.

In any case if the reader wants to point out an error, he can do so writing
to miquel.dv@gmail.com, but he needn’t use this address only for that reason
and if he liked some part(s) of the book he can show it through the same
channel.

Needless to say that my English is IE (International English), not SE
(Shakespeare English); T apologize about that.
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Some notations

As they are mainly standard we mention only a few:

a = b defines a in terms of a known b.

:: Beginning of a theoretical section.

[J:— End of a theoretical section or of a problem.
iff:= if and only if

Matrix (m,n) :=m rows, n columns.

St :=circumference with center at 0 and radius 1.
Sk :=circumference with center at 0 and radius R.

S? :=sphere with center at 0 and radius 1.
5}2z :=sphere with center at 0 and radius R.
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Chapter 1

Curves

1.1 Parametrized curves

A parametrized curve in R™ is a differentiable map

v : la,b] — R"

of class C* (:— with continuous first derivative) at least.

VA
Y ()
Y A
at b v(a)
y
X

e The vector +/(t) is the wvelocity vector at the instant ¢ and its norm
|7/(t)] is called the celerity.

e An instant ¢ € [a,b] is regular if 7/ (t) # 0 (the tangent vector is not
null), and it is singular if 7/(t) = 0.
A parametrization is regular if all instants are regular. The velocity
vector is then never null.
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o Lety(t),t € [a,b] be a parametrized curve in R” and make the change of
variable ¢t = h(7) to obtain another parametrization I'(1) = v(h(7)), T €
[c,d]. We call I" a reparametrization of v and we shall say that both
parametrizations are equivalent. The function

h:le,d — J[a,b]

that does the change of variable must be bijective and both h and A1
are to be of class C! at least (another name for a change of variables is

diffeomorphism).
Z
t
P y
h a

As equivalent parametrizations do the same job we define the curve C' to
be the whole of equivalent parametrizations. The common trace of all those
parametrizations is the geometric curve of C, a subset of R".

We can use as well piecewise C' parametrizations; those are continuous
functions

v la,b] — R"

with a partition of [a,b] in n subintervals {a =, < t; < --- <t, = b} such
that v is C! in each subinterval [t; 1,%],% = 1,...,n. A polygonal line may
be a handy example (see problem 3 a), but see as well 3 b)).
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Problem 1. Parametrizations.

Find parametrizations of the following paths:

a) A complete wind in the positive sense (anti clockwise) around a cir-
cumference with center at 0 and radius R.

b) A spiral that turns in the positive sense and opens.

¢) A complete turn of a helix (the composition of a uniform circular move-
ment and a uniform translation movement perpendicular to the plane
of the circular motion).

Solution:

a) y(t) = (Rcost, Rsint),t € [0, 27].
y

Rsint

Rcost/ X

b) v(t) = f(t)(cost,sint),t € R f(t) being a function such that | f(¢) |
increases. In this case the domain of the parameter is the whole of R.
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¢) v(t) = (acost,asint,bt),a,b > 0,t € [0, 27]. We can visualize precisely
a helix turn if we draw the diagonal of a film tranparency and wrap it
to have a cylinder.
We shall go on using this film in the study of the cycloid.

Problem 2. Equivalent parametrizacions. Opposite curve.

Parametrize:

a) Two complete turns around the unit circumference in the positive sense.

b) One turn around the unit circumference in the negative sense.
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¢) Two complete turns around the unit circumference in the negative
sense.

d) A particle goes from (0,0) to (1,1).

e) A particle goes along the segment (0,0) to (1,1), returns to (0,0)
along the same path, and goes to (1, 1) again following the same route.
Find the obvious piecewise C! parametrization and a not so obvious C*
parametrization as well.

Identify some equivalent parametrizations.

Solution:

a) We can double the time elapsed
71 (t) = (cost,sint),t € [0, 4x],
or double the celerity:
Y2(t) = (cos 2t,sin 2t),t € [0, 27]

Those parametrizations are equivalent because if we make in () the
substitution ¢ = 2u we obtain 75(u). The diffeomorphism we have used
is
h: [0,2n] — [0,47]
u = t=2u

On another hand none of these two parametrizations is equivalent to
v(t) = (cost,sint) because v is one to one in (0,27) but 7 and v,
wind twice around the unit circle and are not one to one. Being a
reparametrization bijective it doesn’t change the injectivity, so v, and
v2 cannot be equivalent to 7.

i) It is geometrically clear that v(t) = (cost, —sint),t € [0,27] is a
solution to our problem.
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ii) In general to describe a given parametrized curve 7(t),t€ |a, b
traversed in the opposite sense we put:

n(t) =~(=1),t € [=b, —d]

which is a parametrized curve named the opposite curve of =,
notated v~. Applying this method to the present problem we
have:

v~ (t) = (cos(—t),sin(—t)) = (cost, —sint),t € [—2m, 0]
But cost and sint are 2m-periodic functions, so a parametrization
equivalent to vy~ is
I'™(t) = (cost, —sint),t € [0, 27],
the parametrization we guessed at the start.

iii) Yet another way to obtain the opposite curve follows from the
following figure:
t t

a b
where t' = b— (t —a) = a+b—t. We see that as t goes from a to
b, t' goes from b to a and the opposite curve is:

v (t) =v(a+b—1t),t € [a,]

Using this method we obtain

v~ (t) = (cos(2m — t),sin(2m — t)) = (cost, —sint),t € [0, 27|
¢) Using the parametrization v, of a), the method of b) ii) and the 27-
periodicity we have:
vy (t) = (cos(—2t),sin(—2t)) = (cos 2t, —sin 2t), t € [0, 27]
We may as well use the parametrization v; in a) :
77 () = (cos(—t),sin(—t)) = (cost, —sint),t € [0, 4]

Or, if we prefer so, we can use the method in b) iii) and the parametriza-
tion 7, leading to:

vy (t) = (cos2(2m —t),sin2(2r — 1)) =
= (cos2t,—sin2t),t € [0, 27]
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We can connect the points through a segment
m(t) = (t,t),t € [0,1],
an arc of a parabola
Yo(t) = (t,¢%),t € [0,1],
segments in the axis directions

[ (o) ifo<t<1
73(t)_{ (1,t—1) ifl<t<2 °

among an infinity of options.

It’s easy to write a piecewise C! parametrization. First

(t) = ( i ) ,t € [0, 1] parametrizes the segment [( 8 ) , ( 1 )]

while, using the method of b) iii), we see that

1—-t¢

Yo(t) = ( 1+ ) ,t € [0, 1] parametrizes the segment [( 1 ) , ( 8 )]

Now define 3 = ;1 and then, to have a single interval for the parameter,
adapt 72 to the interval [1,2] and 73 to the interval |2, 3] :

2—t

Fg(t):(z_t>,te[1,2]

rgo=<i:§)¢ep3]

(t,1) if £ €[0,1]
V) =< (2-t2—1t) ifte[l,2]
(t—2,t—2) ifte[23]

Then

is a parametrization of the whole path. It is not diferentiable at t = 1,2
but it is continuous in [0, 3] and of class C* in each subinterval so it is
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piecewise C!.
A C! parametrization is

v(t) = (sin?t,sin’t),t € [0,37/2].

but the tangent vector 7/(t) = (2sint cost,2sint cost) vanishes for the
values of the parameter t = 0, 7 corresponding to the point (0, 0) and for
the values t = /2, 37 /2 corresponding to the point (1, 1). The velocity
vector vanishes there and the C' parametrization is not regular at those
points.

O

Problem 3: Differentiable parametrization of a path with sharp points.

a) Give a piecewise C! parametrization of the triangle with vertices P =
(1,0,0),Q = (0,1,0), R = (0,0, 1), traversed in the sense P, @, R.

b) Obtain a C! parametrization as well.

Solution:

P
X

a) As in the preceding problem we first parametrize the three segments

PQ,QR, RP:
1 0 1—t
PQ:v(t)=01-¢t)| 0 | +t| 1 |= t ,t€[0,1]
0 0 0
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0 0 0
OR: ) =1—-t)| 1 | +t[o|=[1-1¢ | ,tefoq
0 1 t
0 1 t
RP:wt)=(1—t)[ 0 |+tl0o]=] o |.telo1
1 0 1-—1t

We get a single interval reparametrizing v, and 3 and keeping v;:

(1 —u,u,0) fo<u<l1
y(w) =1 (0,2—u,u—1) ifl<u<2
(u—2,0,3—u) if2<u<3

But this parametrization is not diferenciable at © = 1,2. For instance
v.(1) = (=1,1,0) and +, (1) = (0,—1,1): left and right derivatives
are different at v = 1; the same thing happens at ©« = 2. So the
parametrization is only piecewise C!.

b) The useful idea to construct a C' parametrization is to enter the sharp
points with velocity zero (see the end of the preceding problem). The
function

sin v if0<ov<m/2

u(v) =< 1+sin’*(v—m/2) ifr/2<v<7
2+ sin*(v —7) ifm <v<37/2

has vanishing lateral derivatives at vg = 0,v; = 7/2,v9 = m,v3 = 37/2.
Have a look at the graph!

3
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Then the parametrization of the given path
I'(v) =7(u(v)),v € [0, 37/2]
is of class C! in [0, 37 /2] because at vy and at v3 we have

I (7/2) =~ (1) -u’(7/2) = 0
I (m/2) =44 (1) - ul(7/2) = 0

so I'" is continuous at v; = 7/2, corresponding to the point (). Similarly
one sees that I"” is continuous at v, = 7, corresponding to the point
R. This parametrization is not equivalent to v (u(v) is not a change of
variable because, despite being bijective, its derivative vanishes at four
points) but it is a C! parametrization of the given path.

Problem 4: Circumference.

Let S}% be the circumference with center (0,0) and radius R; parametrize:
a) Sk using an angular coordinate.
b) S} as the graph of a function.

¢) S} projecting the axis Oz on S} from the north pole.

Solution:

a) We know this one:
v(0) = (Rcos b, Rsin ), 0 € [0, 27]

This parametrized curve winds in the positive sense once around Sk
(the point (R, 0) is accessed twice) and is of class C°°.

b) Isolating y in the equation 2 + y*> = R? we obtain the function y =
f(z) = vV R? — z?; a parametrization of the graph of f is

m(x) = (x,VR* —2?),z € [-R, R]
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The image of this parametrized curve traverses once the upper semicir-
cumference in the negative sense; it is not differentiable at x = R nor
isit at x = —R.

an

A parametrization of the lower semicircumference is

’72(1') = (ZL’, —VR? — $2)>$ S [_R> R]
The image of this parametrized curve traverses once the lower semicir-

cumference in the positive sense; it is not differentiable at x = R nor
isit at x = —R.

c¢) Lets make a figure of the projection

N(O,R)

an
.

(x,y)

The equation of the line NP is:

(1)-(2)( )
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We compute the intersection point of NP with S} :

X = tu 2Ry
2R? =
Y = R—IR Y=t=—"_ 0" VIR
2 L R2 _  R@’-FR?)
X?+Y? = R b ¥y = “om
So the looked for parametrization is:
2uR 2 R?
W) = Ry, ) u € R

u2_|_R2’u2_|_R2

The intersection point can also be computed from the equations y =
—84 4+ R and 2° + y* = R%:

R? R?
x2+—2x2—2—x+R2 = R?
U U

leading to the same solution, of course!

This parametrization winds once in the positive sense around S} ex-
cept the north pole; parameters with | u |< R go to points in the lower
semicircumference and those with | u |[> R go to points in the upper
semicircumference (except V). In the usual case of the unit circumfer-
ence S! the parametrization is:

2u ur—1

M) =Gy v e R

Similar parametrizations are obtained projecting the Oz axis from the
south pole (0, —R). Or we can project the Oy axis from (R, 0) or from
(—R,0). It is also possible to project from the north pole a straight
line through the south pole, etc.

U
Problem 5: Ellipse.
Parametrize the ellipse E = {(z,y) : 2—3 + Zé—; =1,a>b>0}

a) Using an angular coordinate.

b) Projecting a coordinate axis on E from a vertex of the ellipse.
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Solution:

a) By analogy with the circumference we may suspect that
v(0) = (acosf,bsind),d € [0, 27]

could be the sought for parametrization of E. If we substitute x =
acosf,y = bsinf into the equation defining F we obtain the identity
1 = 1 showing that v(0) € E,V0 € [0, 2], so v(0) is on E. The point
is whether we traverse the whole ellipse or not; to answer this question
let us study the geometrical meaning of #. It cannot possibly be the
polar angle from the center of the ellipse:

y

P=(xy)

because then
x = |p|cosf,y = |p|sind

and substituting into the equation of £ we have

ab
Vb2 cos?0 + a?sin’ 6

2 2
E cos® 0 + p|

5 b—281n29=1:>|p|=
a

leading to the parametrization
B ab
Vb2 cos?  + a2 sin’ 0

which is not our favourite one. Nevertheless the analogy with the cir-
cumference strongly favours 6 being a polar angle from the origin; the

() (cos@,sind),




CHAPTER 1. CURVES

conclusion is that 6 is the polar angle of points not on the ellipse. Let’s
try with points of the circumscribed circumference; the following pic-
ture may emerge:

(aco9 ,a sim)
? : (acod bsinb )
E |

X

Those points are (acosf,asinf),d € [0, 27]; the first coordinate of the
projection on F is a cosf and we compute the second coordinate using
E’s equation:

a*cos’ y* )

a? b2

Then y? = b%sin?0 =| y |= b | sinf | and taking y = bsin @ all signs
are right. This is the geometric sense of § and we now see that our
parametrization covers the whole of F in a 'time-interval’ of 27.
By the way, what if we had used the inscribed circumference?

(bcos@,bsinB)

y
(acosB, b sib).
] -
%
X

~
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If we project horizontally, the point (bcos#,bsin@) of the inscribed
circumference goes onto the point (a cos @, bsin @) on the ellipse and we
have another geometric construction of the same parametrization.

b) Lets imitate ¢) of the preceding problem and project the Oz axis on
the ellipse E from N = (0,b):

y
N(O,b)

P(u,0)

(x,y)

The straight line through N = (0,b) and P = (u,0) cuts E at

Y = (1 — t)b >t=—— = b(fitciz)
x2 y? u? + a? y = 2.2
ate = 1 e

and we obtain the parametrization of the ellipse

2ua®  b(u® — a?)

u? +a?’ u?+ a?

7(u) = (

Jyu€eR

We can compare with the corresponding parametrization of the circum-
ference:

2uR?  R(u?— R?)

= e e R

),u€eR
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Problem 6: Moving along the ellipse v(0) = (acos 8, bsin§).

The point (acosf,asinf) moves uniformly along the circumference S} but
the corresponding point on the ellipse (a cosf, bsin f) moves with a noncon-
stant celerity |y (8)| = v/a2 sin 20 + b2 cos 26.

a) At what points of the ellipse has the celerity its maximums (mini-
mums)?

b) Is the angular velocity constant along the ellipse 7

¢) Is the areal velocity constant?

Solution:

This problem has such an astronomical flavour that it is sound thinking about
0 as time running.

a) We find the points of extremum of a function equating to 0 its deriva-
tive. The celerity is a differentiable function except when |y/(0)| =
0 < a?sin?0 + b? cos?0 = 0 < sinf = cosf = 0 but this is impossible.
So |¥/(0)| > 0, the celerity is a differentiable function and to find the
extremums we write

d
— |+ (0)] = a’> —b*)sinfcosh = 0
GO = e~ )

Assuming a # b this is equivalent to
: 1.
sin @ cosf = 5811129 =0

with solutions in [0, 27)
0=0,7/2,7, 31/2

that correspond to the vertices of the ellipse, A, B, C, D respectively:
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y

D

Assuming a > b the sign of the derivative is the same as that of sin 26;
we see that |7/(0)| increases in (0,7/2) and decreases in (7/2, 7). We
conclude that the celerity has a maximum at 6 = 7/2, that is at the
point B. Similarly we can see it has another maximum at D and min-
imums at A, C.

The angle ¢ the radius vector of the point (acos@,bsin#) makes with
the OX axis is:

bsin 6
acosf

b
tan p = & = arctan(— tan6)
a

(we must exclude the values of the parameter § = 7/2,37/2). The
angular velocity is the derivative of this angle

_dy _ a
df a?cos?0 + b2sin 26

w

which is not a constant.

Lets first compute A(f), the area of the region swept by the radius
vector of the point (acos@,bsinf) when the parameter varies between
0 and 6:
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(acosH,bsinB)

The upper semiellipse is the graph of the function

So the area seeked is

absin 6 cos 0 @ 2
Alf) = —M— b\/1——d
( ) 2 _'_/acose CL2 !

To evaluate the integral we make the change of variable

x = a cosu
dr = —asinudu

r = acosf, wu=40H
r = a, u=>0

For 6 € [0, 1] we have

2
/ b\/l—I—zdx = /b\/l—cos2u( asinu) du =
acos a

0
1— 2
= ab/ sin2udu:ab/ ﬂd
0 0 2

6 sin260

= g ——)
the area is
absin @ cosf 6 sin260 0
A(@)—f%—ab(i— 1 )—ab§

CURVES

U
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and the areal velocity is

d ab

—A0) = —,

de () 2
a constant. Notice the radius vector emanates from the origin; should
it emanate from a focus, a similar calculation shows that

A(B) — ab(g_sirfe)_l_(acos@—\/c;—lﬁ)bsinez
B abe bsin v/ a? — b?
-2 2

and £ A(6) is not constant.

Incidentally this shows that this parametrization does not describe
planetary motion, since the second Kepler’'s law stipulates that the
areal velocity is a constant (if the radius vector is taken from a focus,
where the Sun is).

O

Problem 7: Hyperbola.

We want to parametrize the hyperbola H = {(z,y) : 2% — y* = 1}.

a)

Prove that for every point in the right branch, (x,y) € Hy = HN{x >
0}, there is one and only one u € R such that

x = coshu,y = sinhu

(Notice the close analogy with the circumference.)

Parametrize H_ = H N {x < 0}, the left branch of the hyperbola.

Parametrize K, = {(z,y) : y* — 2% = 1,y > 0}, the upper branch of
the hyperbola y? — 22 = 1.

Parametrize K_ = {(x,y) : y* — 2> = 1,y < 0}, the lower branch of
the preceding hyperbola.

Let R be the region swept by the radius vector from the origin to the
point y(u) = (cosh u, sinhu), u € [0,a]. Show that the area of R is a/2.
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Solution:

) .

a) Reminding the graph of y = sinh u we see that for every y € R there is
only one u € R such that y = sinh u:

y

The x coordinate of P € H, is:
2’—y? =1 & r’—sinh’u = 1 & 2 = 1+sinh® u = cosh® u & |z| = cosh u

But z > 0in H,and then x = || = cosh u; we have the parametrization
of the right branch of the hyperbola:

v(u) = (coshu, sinhu),u € R
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b) If P € H_ then x < 0 and z = —|z| = — coshu and a parametrization
of the left branch of the hyperbola is

v (u) = (= coshu,sinhu),u € R

¢) Here for every z € R there is a unique u € R such that x = sinhu and
the y coordinate of a point of K, must satisfy

Yy — 22 =1 y> =1+ sinh*u = cosh’ u < |y| = coshu
and a parametrization of the upper branch of the hyperbola is

['(u) = (sinhu, coshu),u € R

d) Finally it is clear that a parametrization of K_ is

['y(u) = (sinhwu, — coshu),u € R

e) It suffices to subtract from % cosh u sinh u, the area of the triangle O PQ),

the area of the region 1P(Q) under the hyperbola
y

AP
o /<\/\\\75
1 Q X

the area of the region 1PQ) is
coshu u

/ Va2 —1der = {x=coshu}= / v cosh® u — 1sinh udu =
1 0

_ /u Sl i — (sinh2u B g) e sinh2u g
0

4 2/ 107y
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and the sought for area is

sinh 2u u> o
4 27 2

1
A = icoshusinhu— (

Problem 8: A method.

a) The orthogonal projection on the plane z = 0 of a parametrized curve
v(t) contained in the paraboloid z = 2?+y? is T'(t) = (e ' cost, e tsint, 0);
find ~.

b) Point a) suggests that if we are able to parametrize the projection
on the plane z = 0, then we can ’climb’ and parametrize the curve.
Parametrize the intersection of the sphere

Sﬁ:{(:zc,y,z):962—1—3;2—|-z2 b= 2

and the plane P = {(z,y,2) : x +y+ 2z = 0}.

Solution:

a

X
a) Being z = 22 4+ y? we must have

v(t) = (e "cost,e ' sint, e *(cos’ t +sin’t)) = (e ' cost,e 'sint, e )
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b) Eliminating z from the system
4yt 427 = 2 }
z+y+z =0
we have the projecting cylinder, that contains the intersection curve:
2yt (—r—y)? =2

that is
Py tay=1

The intersection of this cylinder with z = 0 is the projection of the
curve, a conic we want to parametrize. Completing squares

1 2 32
- =1
(x+2y) + 7Y

and the change of variables

u = T+3y
v o= Y

shows the ellipse

that we know how to parametrize:
2
t) = (u(t),v(t)) = (cost, —=sint), t € |0, 27
o(t) = (u(t),v(t) = ( 7 ), t €10,2n]
In the (z,y) coordinates we have

Y(t) = (x(t),y(t)) = (cost — sint, —sint), t € [0, 27]

775

and climbing to the plane we obtain finally

.
~(t) = (cost — sint, —sint, — cost — —sint)

ﬁﬁ V3
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Problem 9: Minimum distance.

Let v : [a,b] — R™ be a parametrized curve that doesn’t pass through the
origin. If v(#) is the point nearest the origin (does it exist? is it unique?)
and we assume /(to) # 0, prove that y(t9) and +/(¢o) are perpendicular. Can
we generalize this result? If the curve is on a sphere centered at the origin,
is the result still valid? Is the reciproque correct in this case?

Solution:

The continuous function d on the compact set [a, 0]

d: [a,b] — Ry
t  — d(v(t),0)

accesses the absolute extremums. This proves the existence of a point at a
minimum distance from the origin. A circumference centered at the origin
has all its points at a minimum distance (and a maximum distance as well),
showing that the extremum points need not be unique.

If ty is a value of the parameter giving the absolute minimum of d and,
moreover, it is an interior point of [a, b], we have:

d'(tg) =0
and then
d*(t) = ~(t) - (1) = 0 = 2d(to)d'(to) = 2y(t0) - 7' (to),

shows the orthogonality of v(to) and +/(¢y) at the minimum.

y

AT

o

If the absolute minimum is accessed at ty = a or at ty5 = b the orthogo-
nality may fail:
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y

QO
To

The result is true for each local extremum of d corresponding to parameter
values interior to [a,b]. For instance, for an ellipse centered at O the radius
vector is orthogonal to the ellipse in the vertices.

If a curve C is on a sphere centered at the origin, each point of C is a
local minimum (and maximum) of d and we have

Y(t) Ly (t), Vt € [a, b]
Reciprocally if y(¢) is a parametrized curve such that y(t) # 0, v(t) L+/(¢), Vt €
[a, b], we have

(P ((1),0) = 29(1) /(1) = 0

showing that the distance to the origin is constant and that 7 is on a sphere.

Note: There is a more geometrical way to prove the orthogonality of the
radius vector and the tangent vector, using the pattern of the tangent level
curve. The level curves of the distance function are circumferences centered
at 0. The extremums of the distance to the origin along the curve, are found
where the curve is tangent to the level curve. Then the tangent vector to the
curve is as well tangent to the circumference, whence the result (see Polya).

Analitically the pattern translates to the simplest case of Lagrange’s un-
determined multiplier method.

O

Problem 10:

Prove that the trace of the parametrized curve, expressed in polar coordinates
9

r(6) = 5 —4cosf

, 0€ 10,2



32 CHAPTER 1. CURVES

is an ellipse and obtain the cartesian equation.

Solution:

The traversed path is contained in an ellipse:

5r — 4r cos 6 = 9
5r = 9+ 4x
2572 = 81 + T2z + 1622
25(2? + y?) = 81 + 72z + 1622
(Ig§)2 +g_§ = 1,

the ellipse with semiaxes 5, 3 and center at (4,0); when 6 € [0, 271] we traverse
the whole curve.

1.2 Cycloids

Cycloids are curves with remarkable properties; we shall meet some of them
in the following problems.

Problem 11: Etymology.

Fix a point of light P to the tyre of a bycicle and look in the darkness the
trajectory of P, assuming the wheel turns without sliding on a flat ground.
The path followed by P is properly named a cycloid.

a) Make a sketch of the cycloid.
b) Parametrize it taking the ground as Ox axis.

c¢) Is the parametrization differentiable, regular ?
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Solution:

a) The cycloid looks like this
y

X

b) Take the turned angle as the parameter:

y
P(x,y)

R

O Q X
As there is no sliding OQ = R and the coordinates of P are:

xz(#) = R(0—sinb)
7(0) = { y(#) = R(1—cosh) JEeR

¢) Where the wheel ends a complete turn we have a sharp point; indeed
the direction of the tangent vector +/(0) = R(1 — cos 8, sin §) satisfyes

. sin 6

lim 20 _o
9—27— 1 — cos @

i sin 6 0

lim ——— =7

9—2x+ 1 — cos @

Using I’Hopital’s rule we have respectively

. cos

lim — = —
9—27— sin 0

. cos

lim = 4o

-2+ sin 0
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and the direction changes abruptly, in a discontinuous form. Neverthe-
less the derivative exists:

7'(2m) = (0,0)

and, as we have seen in preceding problems, it is precisely the vanishing
of the derivative what makes the differentiability possible; of course
the parametrization is not regular at the values of the parameter § =
n2mw, n € 2.

Problem 12: Parametrization of the cycloid by arc-length.

a) Compute the length of the arc of a cycloid corresponding to a complete
turn of the generating wheel.

b) Reparametrize by arc-length.

Solution:

a) The formula for the arc-length of a parametrized curve is L = f; |7/ (t)|dt
(see p.92). Let’s apply it:

7' (0) = R(1 — cos 0, sinf)
17 (0)] = Ry/(1 — cos0)? 4 sin20 = RvV2v/1 — cos
2w
L = R\/§/ V1 —cosfdf = {1 — cosf = 2sin2g} =
0

2 2
0 0
:Rﬁ/ \/§|sm—|d9:21-z/ sin —df = 8R
0 2 0 2
b) For 6 € [0,27] the arc-length parameter is

0 0
s(0) = / |9/ (¢)|dt = 2R/ sin Edt =4R(1 — cos Q)
0 0 2 2

s
—9 1- =
0 arccos( 4R)
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and the reparametrization is:

s , s
x(s) = R(2arccos(1 — @) — sin(2 arccos(1 — E))) =
= 2Rarccos(1 — ) — 2Rsin(arccos(1 - 25) cos(arceos(1 - 122))) =
= 2R arccos 1B sin(arccos 1R cos(arccos B =
s s s
— 2y _ 2 (1 22
2R arccos(1 4R> 2R(1 4R)\/1 (1 4R>
The other coordinate is:
s
y(s) = R(1 — cos(2 arccos(1 — E))) =
— R(1 — cos? 2 in? _ =
= R(1 — cos”(arccos(1 4R)) + sin“(arccos(1 1 )))
—R(1—(1—22 11— 52— 12—
2
=5 %R

O

Problem 13: Tautochronous property of cycloids (tauto=equal, chronos=time).

Consider in a vertical plane cartesian axes with Oy oriented down and the
arc of cycloid

v(0) = (6 —sinf,1 —cosf),0 <6 <27

Prove that a ball left alone with zero velocity from any point of the cy-
cloid under the action of gravity, arrives at the downmost point in a time
independent of the starting place.

Hint: Use energy conservation to show that the celerity after a fall of

deepness h is v/2gh.
Solution:

If a mass falls to ground starting from a height H the total energy is then
Er = mgH. When it has fallen a distance h the potential energy will be
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mg(H —h) and the kinetic energy will be %mv? From the principle of energy
conservation we obtain

1
mgH =mg(H — h) + §mv2 = v =1/2gh

Notice that this result is independent of the path followed by the mass.

Now assume a ball starts with null velocity from a point of the cycloid of
coordinate .

O

P

The celerity at a point with coordinate y is:

dt 1

ds
= — = N/2 A/ — :> - @@
YT IVI =0 = V29VY — Yo

We separate the variables

1
dt = ———=ds

\/@vy—yo

and integrate respect to t with limits 0 and T'(yo) (the time of arrival at P)
and respect to s with limits so (the arc-length of yo) and 4 (the arc-length

of P):
T(yo) 4 1
T(yo) = / dt= | — s
Wo) = | NN

The expressions of y, yg in terms of the arc-length are:

52

y=s—g= —%(52—85) = —%((5—4)2—16)
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2
S0 1

Yo = So — g = —é((So — 4)2 — 16)

|80—4| s—4
=1 /1 —-(—)2
(=)

1 2 _ S — 2
vy—yozﬁ\/(so—ll) (s —4) NG -

s—4

u

1 VB ! 1 _ f so—4
T(yO)_\/@|50—4| / \/@‘“_{ ds = (50—4)du}_

_2 1 /0 1 (59— 4)d
T Glse—4 ), Vice TP

so—4

We may safely assume that 0 < sy < 4; then =] = —1 and we have

2 2
—(arcsin 1 — arcsin0) = T_ T

2 [ 1
o) = —= | ——=du= 5 =

\/§ o V1—u \/5 \/g 2 \/?
a value independent of the starting point. This is then the tautochronous
property of the cycloids. Put it another way: two balls left alone from
different heights will arrive at the downmost point at the same instant, they
will collide at P. Should we have started with a cycloid generated by a

wheel of radius R the result would be T'(yy) = %\/ﬁ

T

Ball 2

Ball 1
®

At several science museums there is a gadget that allows the visualization
of this fact: two independent elevators leave two balls at the heigth we choose.
Then a switch liberates both balls at the same time and we can see the
collision taking place exactly at the downmost point of the cycloid.

O
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Problem 14: Huygens’s pendulum.

The period of a pendulum depends on the amplitude of the oscillations; the
formula T = QWﬂ is only an approximation that comes from sinf ~ 6,
quite a rough one for a clock. Using two solid cycloids Huygens constructed
a pendulum whose period was independent of the amplitude. In the following
figure the length of the rope is half the length of an arc of cycloid

Prove that the path of the suspended mass M is a cycloid, and explain
why the period is independent of the oscillations amplitude.

Solution:

Let us assume the radius of the generating wheel is 1 unit, and the length of
the rope is 4 units. The parametrization of the right hand side cycloid is

7(0) = (0 —sinf, 1 — cos )

with tangent vector

7(0) = (1 — cos B, sin f)
17 (0)] = V2v/1 — cos § = QSing, 0<6<2rm

In the figure the rope touches the cycloid from O to P, and the rest of the
rope is tangent to the cycloid. We choose as direction vector of the tangent
line the unit vector

1
VvV =
2 sin

(1 — cosf,sinf) = (sin =, cos )

0 2 2

2
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The tangent line through P is

T f —sind sin ¢
<y)_(1—0089)+)\(00s%)
0

Reminding that the arc-length parameter for a cycloid is s = 4(1 — cos 5),
we see that the point M traces the curve given for the value of A

0 0
)\:4—824—4(1—COS§):4COS§

So M is

r\ [ 0—sind —|—4cos€ sing \ ([ 0+sind
y ) \ 1—-cos# 2\ cosd )\ 3+cosb

Taking a new origin at O’ = (—m,2), or what is the same thing, making the
change of variables

X = o+
Y = y-—-2

we obtain a parametrization of the path followed by M:
I'0)=(0+sinf+m,3+cosd —2)

If we change the parameter to ¢ = 0 + 7 we get

[(p) = (¢ +sin(p — ), 1+ cos(p — 7)) = (¢ —sinp, 1 — cos @),

a cycloid.
The period of this pendulum is independent of the amplitude because of
the tautochronous property.

O

Problem 15: Papiroflexy.

a) Show that the orthogonal projection of a helix on a plane parallel to
the axis of the helix is the graph of a function sin.

b) Take a point of the helix and the tangent line there as the direction of
a projection on a plane orthogonal to the axis of the helix. Show that
the projection of the helix is a cycloid.
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Let us 'construct’ the helix by means of a film tranparency as explained in
problem 1. If we put a white paper parallel to the helix axis we will see
the sinus function of point a). If we put a white paper on a table and our
helix with its axis perpendicular to the table, then looking with one eye and
adjusting our point of view we can see clearly the cycloid of point b) with its
sharp points.

Solution:
a) If we consider the parametrization of the helix
v(t) = (cost,sint,t)

then the projection on the plane yz is the curve (sint,t), the graf of
the desired sinus function.

b) The tangent vector to the helix at the point of parameter ¢ is
7' (t) = (—sint, cost, 1)

Assume we fix the point (1,0, 0) whose parameter is t = 0. The tangent
vector is

7'(0)=(0,1,1)

and the tangent line

T cost 0
y | =1 sint | +A| 1
z t 1

From the third equation we see that the projection on the plane z = 0
takes place when A = —t and then

r =cost,y =sint —t
Changing the parameter to 7 = —t gives

T =COST,y =T —sInT,
then changing the orientation of the Ox axis produces

T = —COST,Yy =T —SInT,
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and, finally, choosing a new origin at (—1,0) we obtain
X=1—cos7,Y =7 —sinT,

a cycloid.

Problem 16: Not every curve has the tautochronous property.

Consider the helix v(¢) = (cost,sint,t) and a point mass that falls along it
under the action of gravity. Assuming that the point starts from a height
2z = 29 > 0 with vanishing initial speed, compute the time elapsed to arrive
at the height z = 0.

Solution:

The norm of the tangent vector is
7' (t) = (=sint, cost, 1), |/(t)| = V2

and measuring lengths from «(0) = (1,0,0) we have

s(t)z/ot\/ﬁdt:\/it

We know from the problem in p.35, that at a height z the celerity will be

ds
pri —v/2g(z — 2)
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Height z corresponds to the parameter ¢ = z and to the arc-length parameter

s = +/2z. Then

ds So— S, B
priai 2¢( \/5)— CVso—s,C =1/V2g

Separating variables and integrating

T'(z0) 1 /% ds
ﬁ:——/————
/0 C Js V50— 5

Finally
1 0 2 20
Tleo) = =2V = s)ls = Gvso =24/

that depends on z.

Actually cycloids are the only curves possessing the tautochronous prop-
erty (see L.Landau and E.Lifchitz, Mécanique, Editions en langues étrangéres,
Moscou, p.87).

Problem 17: Cycloid on a circumference =: epicycloid.

A "bycicle’ wheel of radius r turns without sliding on the exterior of a cir-
cumference of radius R. The path traversed by a point P on the wheel is a
curve named epicycloid.

a) Parametritze the epicycloid.

b) Show that if % = n € N the wheel returns to its starting position.
Compute the length of the path followed by the point P until that
happens.

e R
¢) What if =+ € Q\ N?

d) Same question when £ € R\ Q.
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Solution:

a) The arcs of circumference M N and M P have the same length because
there is no sliding, so
Rp =16

To compute P we need the angle

Q/’Q\}7:g0+9—g

The coordinates of P in terms of ¢ are:

r = (R+7’)cosg0—|—rsin(g0+9—g):

= (R+r)cosp —rcos(p+0) =
R
= (R+7r)cosp —rcos(l+ 7)90

R, .
y = (R+r)sing —r(l+ 7) sin ¢
and we have the parametrization of the epicycloid

R R
v(p) = ((R+r) cos o—r cos(1+7)g0, (R+r) sin p—r sin(1+7)gp), peR
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b) For ¢ = 27 we have 0 = %gp = n2m: the turning wheel returns to the

starting position in n complete turns. A way to visualize this result is
to stretch both circumferences as segments, one for the turning wheel
and another for the supporting circumference. The result amounts to
say that if ? = n € N then the length of the wheel divides the length

of the circumference, an obvious thing. Following this point of view it

is easy to examine what happens when 7 =n € N and translate that,

if so needed, to the world of the circumferences.
Now we compute the length of one of the n arcs of the epicycloid; write
the parametrization in the form

Y(p) = ((R+71)cosp —rcos(l+n)p, (R+7)sing —rsin(l +n)yp)
The tangent vector is
'(p) = —(R+7)sing+r(l+n)sin(l+n)p =
= —(R+r)sinp+ (r+ R)sin(l +n)p =
(R+r)(sin(l 4+ n)p —sinp)
y'(p) = (R+r)cosp—r(1+n)cos(l+n)p=
(R+r)cosy — (r+ R)cos(l +n)p =
(R4 r)(cosp — cos(1 4+ n)p)

and its length is

I(2',y) | = (R4+7)y/2—2(singsin(1+ n)p + cos g cos(1 4+ n)p) =
= R+r v/ 1 —cosny \/_R+r1/28in2g<p
= 2(R—|—r)|singg0|

The length of one arc is then

2w /n n
0

2w /n n
= 2(R+r)/ sin§g0d<p:
0

2 n 27r/n
— (R4 1)2(=cos X
( +7“)n( coszgp) o

R R
= 4i(—cos7r—|—1):8( )
n n
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The whole length up to the return event is

L=8(r+R)

In case £ € Q\Nlet £ = £ (irreducible), and assume to fix the scene
that p > ¢q. From the 'segment’ point of view

we may assume (using an adequate unit) that the wheel’s segment
measures ¢ while the circumference’s segment measures p. The first
return point takes place for the smaller integers m, n such that

and, being % irreducible, n = p,m = ¢ is the obvious solution. The
wheel has made p complete turns and has completed ¢ windings around
the circumference.

From the angle point of view we can say that there is a contact of P
with the supporting circumference whenever

0 = 0, 27, 2-2m, 3-2 co,om-2m,
227 3.

7T7
_ q q q a
p = 0, 2%5, 2 o 2%5, cen m-27r5,

The epicycloid closes when two contacts have the same ¢ (mod 27)
which happens for the first time when m = p. We have ¢ = 2mq, that
reveals the ¢ times that the wheel winds around the circumference, and
then 6 = p- 27w showing the p complete turns that the wheel has made.
The reader can fill in what happens when p < ¢.

If § € R/Q the contact points of P with the basis circumference form
a dense set. This means that there are contact points in every interval,
however small, on the circumference. Notice first that they are all
different; if we had two coinciding contact points then

m-27r%£n-27r%(mod27r)<:>EIN€N: (m—n)-27r%:]\727r<:>

@(m—n)-%:]\f

but this is impossible since /R is irrational.
Now, fix a positive integer £ and divide the circumference in k equal
angular sectors of amplitude 27 /k. Among the k+1 first contacts there
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will be two in the same sector (this is known as Dirichlet’s principle:
if we put k£ + 1 balls in k£ boxes, there will be two or more balls at
least in one box). Let those contacts correspond to ¢ = n - 275 and
@' =m-2m ; then a = (m —n)2m is a contact in the first sector and
the contacts

differ less than 27 /k.

Finally given € > 0, choose k such that 27 /k < ¢; then in any interval
of angular amplitude less than e there is a contact which was to be
proved.

Problem 18: Cycloid under circumference:=hypocycloid.

A wheel of radius r turns without sliding on the interior of a circumference
of radius R. The path followed by a point P on the wheel is a curve named
hypocycloid.

a) Parametrize the hypocycloid.

b) Show that if % = n € N the wheel returns to its starting position.
Compute the length of the path followed by the point P until that
happens.

¢) What if £ € Q\ N?

d) Same question when £ € R\ Q
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Solution:

O

a) The arcs of circumference M N and M P have the same length because
there is no sliding, so

Ry =10

To compute P we need the angle
——— ™
Q’QPZW—G—(W/2—¢):§+¢—0
Then

xr = (R—T)cosg0+rsin(g+g0—9):

= (R—r)cosp+rcos(p—0) =
5

)

= (R—r)cosp+rcosp(l —
,

: . R

y = (R—r)sinp+rsinp(l — —
,

gives a parametrization of the hypocycloid.
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b) To compute the asked for length we have

L
r

¥(p) = —(R—r)sing— (r— R)sing(l — =)

==

y'(p) = (R—r)cosp+ (r— R)cosp(l+—)

(', 9) |*= (R—7)?+(r—R)*+2(R—7r)(r—R)(cos ¢ cos go(l—?)jLsin(psingo(l—?)) =

=2(R—r)*(1 - cos(ﬁgo))

,
R . R
(2, y) |= V2(R — )4 /1 — COS(?QO) =2(R—1)| Sm(ﬂgp”
The length of one turn of the wheel is

2nr/R R r R )
l — 2 — ] — d = —2 — 2_ _ 7TT‘/R —
(R=n) [ Jsin(GHllde = —2(R =2 cos(5ol;

= —4(R — r)%(cosw -1)= 8%(R —)

The whole length up to the return event is

L:nSE(R—T) =8(R—r)

Let ? = g (irreducible). Assume p > ¢ and by the same reasoning
of the preceding problem we see that the hypocycloid closes when the
wheel has made p complete turns.

Exactly as in the preceding problem we may see that the contacts are
dense in the circumference.

O

Before leaving the cycloids we should mention the brachystochrone prop-

erty:

being given two points P, in a vertical plane what is the curve con-

necting P and @) along which the time of fall of a mass under gravity’s action
is minimum? A straight line segment? An arc of a parabola? As the reader
probably suspects it is an arc of a cycloid. Around 1620 Johan Bernouilli
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working on a challenge of Newton proved that fact using a heuristic argument
rooted in the refraction laws (!) (see [Pol| p.177).

Cycloids & co are a particular case of a bigger family of curves named
trocoids. The reader wanting to experiment vividly with those curves may
do so in

http://temasmatematicos.uniandes.edu.co

a nice work by Aquiles Paramo.
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Chapter 2

Vector fields

2.1 Fields

e A wheat field has a wheat spike at each point (cum grano salis).

e A scalar field in an open set U C R"™ has a scalar at each point x € U;
so it is simply a function that takes numerical values, a real function:

— R
= f(x)

f: U

e A wvector field in an open set U C R™ has a vector at each point x € U;
it is a function that takes vector values:

F: U —- R"
x — F(x)

A field (scalar or vector) is of class C* or C° if the function defining
the field is.

Geometrically a vector field assigns to each point x € U a vector F(x) that
we shall draw emanating from x:

ol
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Problem 19: Radial fields and central fields.

a) Find the general form of a radial field (:= that has at each point the
direction of the position vector) defined in R™ — {0}.

b) Find the general form of a central field (:— that has at each point the
direction of the position vector and has constant module on each sphere
centered at 0; briefly: it is radial and spherically simmetric) defined in

R™ — {0}.
Solution:
We shall often use the familiar 'physics’ notation r = (z,y,z2), r = |r| =
24+y?+ 22 In R itisr = (zq,...,2,),r = |r| = \/(1'1)2 T (2n)?

Then:
a) F(r) = f(r)r, f : R*\ {0} — R being an arbitrary function.
b) F(r) = ¢(r)r, ¢ : Ry \ {0} — R being an arbitrary function.

Force fields versus velocity fields

We can look at a vector field F(x) in an open set U C R" from two points
of view:

a) As a force field (gravitational, electric, magnetic or other), the vector
F(x) represents the force exerted on a unit particle (unit mass, charge
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or pole intensity, etc.) at the point x. We often integrate force fields
along curves.

b) As a wvelocity field, the vector F(x) represents the velocity of the par-

ticles of a fluid when they pass through x. We often integrate velocity
fields on surfaces.

O

Problem 20: Work and flux.

a) Let F be a constant force field; compute the work done by the field in

b)

moving a unit particle along a segment [p, q.

Let v be a constant velocity field; compute the volume of fluid that
crosses a rectangular surface R per unit time.

Solution:

a)

The force exerted on the unit particle is F and the work done by the
field is due to the component of the field in the direction of the segment.
Then

H

W= (F =)lpdl =F pq
pq|

Ne)

We must previously choose a sense of crossing the surface. Then we
shall count the volume that has crossed the surface as positive if it
does in the sense choosen and as negative if the volume crosses in the
opposite sense. To assign a sense we choose a unit vector n perpendic-
ular to the surface. In the following figure we show the two possible
orientations of R.
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Assume first that v is perpendicular to R and that it has the same
sense as n as shown in the first figure. The particles occupying now
positions on R will be a unit of time later at positions on the upper
face of the parallalepiped shown. The volume that has crossed R in a
unit of time is:

¢ = Area (R)|v| = Area (R)n - v

If n and v have opposite senses the formula will take that into account
and we shall obtain a negative value.

If v is not perpendicular to R but has the same sense as n, we have to
compute the volume of the following figure:

wich is

¢ = Area (R) - height= Area (R)n - v
and, as in the preceding case, the formula takes into account when v
and n have opposite senses, giving a negative value.

O

Observation:

The formula in a) is the foundation of the integration of a field along a curve.
The formula in b) is the foundation of the integration of a field on a surface.

2.2 Newtonian fields

Newtonian fields are an important example of force fields. A newtonian
field is a central field of the form F(r) = r%r; well known examples are the
gravitational field of a point mass, the electrostatic field of a point charge and

the fields from a magnetic pole. A basic reference for those fields is |Kell|.
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2.2.1 Newton’s law for a particle

A mass point M at the point q exerts on a mass point m at the point p
at a distance r a gravitational attraction of strength

Mm

)
7’2

F=G

directed along the line through p and q and oriented from p to q. Of course
the principle of action and reaction tells us that the particle at p exerts an
equal strength attraction on the particle at q. If we want to mentally isolate
the attraction of q on p we call q the attracting particle and p the attracted
particle (and so we avoid the wandering between two forces).

Then the attracting particle of mass M at q = (u,v,w) exerts on the
attracted particle of mass m at p = (z,y, 2) a force

_GMmr

F =

)
r2 r

where

r=z—-uy—v,z—c),r=r|=+v(@—-u)?+@y—v)>2+(z—c)?

P(x,y,z) m

a(u,v,w) M a
We shall write the preceding formula as

r

r
Note that the origin of r is at the source of the field (the attracting mass)
and its end point lies where we want to compute the exerted force. We shall
use this convention and we even give it a name: from the source to the point.
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Definition: The gravitational field at the point p = (z,y, z) created by a
point mass M at the point q = (u,v,w) is the force exerted on a unit mass
at p:

r
g(z,y,2) = —GMﬁ

If instead of a unit mass at p we have there a mass m, the gravitational
attraction is F = mg.

The constant G is the gravitational constant and is extremely small; that,
among other things, makes its precise determination difficult. The value of
G in the c.g.s system of units is G = 6.664 x 107%. It is probably the
worse known physical constant; recent results show discrepancies in the fifth
decimal place.

Let us define the attraction unit as the gravitational force exerted by a
mass point of 1g on an identical particle at 1em; then G = 1 and we get rid
of the constant. The equivalence is

1 attraction unit —6.664 x 10~3din

In the new unit we have

F=—Mm—
.

. r
8= M5

The gravitational field satisfies the superposition principle: the field cre-
ated at p by masses My, ..., M, at the points qi,...,qx is the addition of
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the fields generated at p by each particle:

k k
r;
g(l’,y,Z) = Zgl(xuya Z) = Z _Mzﬁ
i=1 i=1 i
m=1 P
gk
g AN
1 N
g M,
,/ I gZ *
’ /
M // M ‘I g
1./ 2

This field is defined in the open set U = R® — {qi,...,qs}

2.2.2 Newton’s law for extended bodies

Take two bodies, divide them in small elements (as is done in integral
calculus) and assume the mass of each element concentrated at a point in
the element. In that way we obtain two systems of particles.

Then the attraction of one body on the other is the limit of the attraction
that its system of particles exerts on the system of particles of the other body,
when the diameter of the elements tend to zero.

Remark that this law is not derivable from Newton’s law for particles for
the reason that, minute as can be the elements of the decomposition, they
never become point masses.

Linear density

Consider a curve C' and the same curve expanded to a tube of mass M.
Considering the mass concentrated at C' we obtain the concept of a material
wire, call it [.
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To calculate the density of the material wire at a point p € C, take
segments of the curve containing p; the average linear density of each segment
is A = %, m being the mass of the segment and L its length. The linear
density at p is

Problem 21: Gravitational field of a segment.

Consider a homogeneous mass segment (:=the mass of any piece is propor-
tional to the length of the piece; the proportionallity constant A is the linear
density). Compute the gravitational field due to the mass at a point of the
straight line containing the segment, but exterior to it.

Solution:

Take the segment on the positive Oz axis with its left end at the origin of
coordinates. Let’s follow the instructions given in Newton’s law for extended
bodies:

e Assume first that L < x. Divide the segment in elements [ug, ugi1]
of length Auj, = wugy1 — up and assume their masses Am;, = AAuy
concentrated at a point u) of each element:

0 U U L P(x,0,0)

e For every such mass point compute the gravitational field generated at
the point p = (2,0,0),2z > L exterior to the segment and add those
contributions:

(z uk,OO (1,0,0)
Ag:Z—Amk e Z )\Ak o)
k
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e We let the diameter of the elements tend to zero:

1,0,0 L 1,0,0
g(x,0,0) = lim Z—Aﬁmk:/o L0
k

Aup—0 < (x —u)?
. (U,0,0) u=L __ ( AL — _L
Me—whi= = Oy 00 =ty 00

e Similarly we obtain the field at p = (z,0,0),z < 0 adding the contri-
butions of the elements

N A, &= 0,0) . (1,0,0)
Mg = —Amim Ty = AN T,

and following the preceding line we arrive at

M

g(z,0,0) = (m

,0,0)

Both results are summarized in the formula

M
0,0),z<0or L <z

g(x,0,0) = (—m, )

Problem 22: Gravitational field of a mass distribution.

Consider a continuous mass distribution in a region R C R3; that is to
say that we are given the density of the distribution x(x,y, z), a continuous
function. Compute the gravitational field generated by the distribution at
an exterior point p = (z,y, z).

Solution:

We use Newton’s law for extended bodies:
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P(xy.2)

e Divide R in elements AV’; being x continuous, the mean value the-
orem for integrals applies, so that the mass of an element will be
X (uy,, v, wi,)AV for a certain point (u, v, wy) in the element. Con-
sider the mass of the element concentrated at that point.

e For every such mass point compute the gravitational field generated at
the point p = (z,y, z) and add those contributions:
r(u,, v, w,
3 Xl o Ay U e )
k

e (u, Vs wp) P

where r(uj, vy, w,) = (v —uj,y — v}, 2 —wy). The A in front of g
reminds that we are still in the elements level.

o We let the diameter of the elements tend to zero:

w
g(x,y,z /// U, v, W) ru,v, >dudvdw

r(u, v, w)[3

or in components:
g(zr,y,z /// u, v, W) (x—uwy-vz-w dudvdw
V(@ —u) + (y— )2+ (z — w)?)?

Now the A has disappeared since we are now in the ‘real’, continuous
world.
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2.2.3 Electrostatic field
Problem 23: Electrostatic field.

By analogy with the gravitational field, write formulae for:
a) The electrostatic field of a point charge.

b) The electrostatic field of a system of point charges.

c¢) The electrostatic field of a charge distribution.

Solution:
Coulomb’s law gives the atraction/repulsion that a charge ¢ at q exerts on a
charge ¢’ at p
r
F=eqqd—
r

Now ¢, ¢’ can be negative and we don’t need the minus sign that is required in
Newton’s gravitational law. To convince oneself of that it suffices to examine
next figure

F _
) /T{ F//IO
r //// ////
v F +(c;
q q - .\
p/ F,/p
_‘,’/ — .///
a q

Choosing adequate units, as we shall assume, we have e = 1. The electro-
static field produced at point p by a charge ¢ at point q is the force exerted
by this charge on the unit positive charge at point p.
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a) Coulomb’s law gives
r
E(flf, Y, Z) = qﬁ

) { 0 ey

Va 7
Va 7

+, =
q q
The force exerted on a charge ¢’ at p is F = ¢E.

b) If the charges ¢i,...,q are at the points qu,...,qg, the principle of
superposition gives:
-y Tk
L qZT‘k?’
1

¢) For a continuous distribution with density function x, using a Coulomb’s
law for extended charges, the electric field is written thus:

(x—u,y—v,z—w)

E(z,y, 2 /// U, v, W) N T R TET A O w)z)gdudvdw

or in vector form

/// v, w) ;‘;’;‘; dudvdw—///

2.3 Velocity fields

2.3.1 Fluid

The movement of a fluid is a 'material’ model of some usual more abstract
concepts such as: flux of a vector field through an oriented surface, unipara-
metric groups, associated fields, solution of a system of differential equations
etc. Moreover the model gives an intuitive view of a certain derivative of a

field.
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Assume a particle P of the fluid occupies the position (xg, yo, 20) at the
instant ¢y (which we call initial instant). The positions successively occupied
by P as time goes by form the trajectory of P, a curve that passes through
(x0, Yo, 20) at the instant ty:

z(t) = x(wo,Yo, %0,t)
y(t> = y(x07y07'207t)
Z(t> = Z(x(]uyOvZOvt)

Defining;:
¢($0, Yo, 20, t) = ($(x0a Yo, 0, t)a y(x07 Yo, 20, t)7 Z(x07 Yo, 20, t))a

we synthetise all the trajectories in a unique function that we shall want to
be differentiable, the flow:

6: R¥*xR — R3
(%0, Y0, 20,1) +—  P(x0, Yo, 20, 1)

e The flow gives the trajectory of a point P:
yp: R — R3
t = p(t) =o(Pt)
Notice that vp(tg) = P.

e The flow generates a transformation during the time t (starting at t =
to):
¢ R® — R3
Q@ = Q) =9(Q,1)
Notice that ¢, (Q) = Q or ¢y, = Id gs.

Besides being differentiable we want ¢ to be such that if we compose a trans-
formation during the time ¢ with a transformation during the time ¢’ we
obtain a transformation during the time ¢ 4+ ¢ :

(¢t' © ¢t)(@) = ¢t+t'(Q)

If ¢ has this property it also satisfies the commutative property ¢y o ¢, =
¢t (o] ¢t"
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Problem 24: Trajectories and transformations.

a) Show that the function ¢(xg,yo, 20,t) = (zo€',yoe™" 20),t0 = 0 is a
flow.

b) Show that the trajectories are plane curves (and the movement of the
fluid is then called planar).

¢) Find the position at the instant ¢ = 0.1 of the particle that was at
(2,3,1) at the instant t = 0.

d) What was the position at ¢ = 0 of a particle that is at (1,2,3) when
t=>57

e) Find the transformation during the time ¢ = 4.

Solution:
a) The function ¢ satisfies
1) ¢(xo, Yo, 20, 0) = (20, Yo, 20)-
ii) ¢ is differentiable.

iii) The law of composition:

dv (D1(0, Y0, 20)) = w(@oe’, yoe ™, 20) =
= (woe'e" ,yoe e, 20) = Priw (w0, Yo, 20)

b) The z-component of ¢ is constant; the movement takes place in the
plane z = zj.

C) ¢(27 37 1, 01) = (260'1’ 36—0.17 1)

d) Just solve the system

1 = x9€°
2 = ype
3 = 20

that is
Ty = 6_5,y0 = 265,20 =3

e) ¢4(I7 Y, Z) = ¢($, Y,z 4) = (.T64, y€_47 Z)



2.3. VELOCITY FIELDS 65

2.3.2 Velocity field of a fluid

The velocity at the instant ¢ of the particle that for ¢ = ¢, was at
(70, %0, 20) 18

d dx d dz
_¢ = —(flf(], Yo, <o, t)v _y(x(]v Yo, Z0, t)v —(LU(), Yo, 20, t))

dt (dt dt dt
Let’s denote by
v(z,y, 2, t) = (X(z,y,2,1),Y(2,y,2,t), Z(2,y, 2,1))

the velocity of the particle that is at (z,y, z) at the instant ¢, a vector field
called the velocity field of the flow.

O

Problem 25: Velocity field.

Compute the velocity field of the flow

?(20, Yo, 20, 1) = (zo€', yoe ™", 20), to = 0.

Solution:
The velocity at the instant t of the particle that for t = ¢, was at (o, Yo, 20)

is
do
dt
Now we find the position for ¢ = 0 of the particle that is at (x,y, z) at the
instant ¢. To this end solve the system (xoe’, yoe™, 20) = (x,y, 2) to obtain
xo = xe ' yo = yet, 2o = z. Then

= ('Toetv _yoe_t7 O)

v(z,y, 2) = (e 'e!, —ye'e™,0) = (z,—y,0)
This velocity field is independent of ¢ and the field is called stationary.
O

Problem 26: Nonstationary velocity field.
Compute the velocity field of the flow

QS(:EanO)ZO)t) = ($0 + t>y0 + tz,Zo),to =0.
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Solution:

We proceed as in the preceding problem

d¢

— =(1,2t,0

dt ( ) ) )’

that does not depend on (zg, o, z0) and the velocity field is
v(z,y,2) = (1,2¢,0),

an example of a nonstationary field.

Problem 27:
Compute the velocity field of the fluids

a) ¢($0, Y0, 20, t) — (:Uo-gyo et + xo;yo e—t’ :co-2i-y0 et — xo;/o e—t’ ZO), to = 0.

b) é(xo, Yo, 20,t) = (xo +sint, yo + 1 — cost, zy), to = 0.

Solution:
a) First

d¢ ZL’Q‘l"yot To— Yo _y To + Yo t To— Yo _y
_— — - 0
i T 5 ¢ ct5 0

and now we compute the position at ¢ = 0 solving the system:

T = zo+Yo et + o —Yo e—t

y = €
Z = 20

t To—Yo ,—t .
— 3 e ;

xo%yo
2

adding and subtracting the first two equations:

ro+yo = (v+yle™
ro—Y = (z— y)et

and the velocity field is:

V(x,y7 z,t) = (%we_tet X g yete—t’ x —2F ye_tet I x g yete_t,O) _

= (y>$70)
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b) Now we have

d
d_(f = (cost,sint,0)

that is independent of the initial position. Then:
v(z,y, z,t) = (cost,sint,0),

a nonstationary field.

Observation:

The data of a first order system of ordinary differential equations is a vector
field; the solution is a flow (at least under suitable conditions) that has the
given field as its velocity field. For instance:

Problem 28: Flow generated by a field.

In the system 2 = x the given field is v(x) = x. Solve this system in R? and

obtain a flow that has v as its velocity field.

Solution:

In components the system is:

@ =Y

that is easily solved because the equations are uncoupled. The solutions of
the first equation are z(t) = zge' and those of the second are y(t) = yoe'.
Each curve y(t) = (zo€', yoe') is a solution of the system. The flow is then

¢(x07 y07t) = ('Toetvyoet)7 tO =0

Problem 29:

In the system & = (—y, ) the given field is v(x) = (—y, ). Solve this

system in R? and obtain a fluid that has v as its velocity field.
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Solution:

In components the system is:

24 o=
Now, in contrast with the preceding problem, the equations are coupled. Tak-
ing into account that x(t), y(¢) must be differentiable functions satisfying the
system, we see that ‘fl—f, % are differentiable functions as well. Differentiating
the first equation we obtain
d*x
dt?
the harmonic oscillator equation; we know that the solution is

—= —x’

x(t) = Acost + Bsint
and we obtain —y(¢) differentiating x(t):
y(t) = Asint — Bcost

Let (zo,yo) be the position at ¢t = 0; then A =z, B = —y, and the solution
is
x(t) = (xgcost — ypsint, xgsint + yo cost)

The flow generating the field is

(0, Yo, t) = (wg cost — yosint, xgsint + yo cost), to =0

2.4 Field derivatives

There are several differentiation operators acting on fields. The operator

V (nabla)
o o0 0

v = \5 53 5
(8x oy 8y)
is useful when writing the derivatives of fields. Let U C R3 be an open set;
define:
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o If f: U — R is a differentiable scalar field

Vf= (%, g—ch, %) the gradient of f, a vector field.
Pf  0Pf  O*f ,
Vif = 922 + e + 522 the laplacian of f, a scalar field.

o fF: U — R F = (X,Y,Z) is a differentiable vector field

i j k
rot F=VxF=|0d, 0, 0. | therotational of F, a vector field.
XY Z

divF =V .F =0,X+0,Y + 0,7 the divergence of F, a scalar field.

For fields in R? there are gradient, laplacian and divergence operators, but
the rotational is not defined.

Problem 30: Gradient.
Remind the notation r = (x,y,z), r = |r|; compute the gradient of the
following scalar fields:

a) f(z,y,2z)=r

b) f(z,y,z) =logr (logarithmic potential)

c) flz,y,z) = % (newtonian potential)

d) f(z,y,2) = T,in,n:2,3,...

e) f(z1,...,3,) = = (generalized newtonian potential in R")
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Solution:

It is useful to have in mind the derivatives

2
O, = - — 2 or=2 or="2.
2\/x2+y?+ 22 T r r
a)
1 r
Vr=—(z,y,2) = — =: e,, a central field.
r r
b)
1 1 1
Viegr = —(z,y,2) = % =-I= —e,, a central field.
r r rror
c)
1 1 r 1
v(;) = _ﬁ(xvyaz> = _ﬁ = _ﬁer,

precisely the gravitational field at point r of a unit mass at the origin.

d)

1 1 1
V(T_n) = _”m(%%Z’) = —nmer, a central field.
e)
1 1 2—n
V(,rn—2) = (2 - In’),r_n(xlv cee 7xn) - Tn—l e,

Notice that from a) we may deduce that Vo(r) = ¢/(r)e,.

Problem 31: Rotational and divergence.

Compute the rotational and the divergence of the following fields:

a) F(z,y,2) = (z,9,0)

f

b) F(z,y,2) = (—y,z,0)
) F(z,y,2) = (2,9, 2)
d) F(z,y,2) = (y,2,2)
e) F(z,y,2) = (z,2,y)
)
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Solution:
a)
i j k
VxF=|0, 9, 0. |=(0,0,0)
z vy 0
V-F =0,z + 0,y + 0,0 =2
b)
i j k
VxF=|0, 0, 0.|=1(0,0,2)
—y x 0
V- F =0,(—y)+ 0,2+ 0.0 =
)
i j k
VxF=|0, 0, 0, |=(0,0,0)
x Yy =z
V- F=3
d)

v = (bz — cy,cx — az,ay — bx)
i j k
VXxv= Oy Oy 0. = 2(a,b,c)
bz—cy cr—az ay—bx

V-v=0

71
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Problem 32: Leibniz’s rule (uv)’ = v'v + uv'.

Let f, g be numerical funcions defined in R? and let F, G be vector fields in
R3; observe the following schema

Vi  — V(fg), V(F-G)
V-F — V-(fF), V-(FxG)
VxF — Vx(fF), Vx(FxG)

and then show:

) V(f9) = (Vg + f(Vg)

) V-(fF)=Vf-F+fV-F

¢) VX (fF) = (Vf)xF+ f(VxF)
)V
Y
)

a

b

d (FxG)=(VxF)-G-F-(VxQG)
e x(FxG)=(V-GF-(V-F)IG+(G-V)F—-(F-V)G

f) VF-G)=(F - V) G+ (G-V)F+F x (VxG)+ G x (VxF)

Solution:
Let F = (X,Y,Z) and G = (P,Q, R).
a)
V(fg)=(0:(f9),0,(fg),0:(fg)) =

= (gamf + famgagﬁyf + faygagﬁyf + fayg) =gV [+ fVyg
We may say that Leibniz’s rule is satisfied.

V-(fF) = 0:.(fX)+0,(fY) +0.(fZ) =
X0 f+YO,f+Z0.f + f(0, X +0,Y +0.2) =
= Vf-F+fV-F

and we have Leibniz’s rule satisfied again. Notice that once we know
that this is so, then the formula is easy to remember.
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c)

Both terms of the formula are additive in F. Then, as we can write any
field in the form F = Xi+ Y j+ Zk, it suffices to prove the equality for
the fields X1, Y, Zk; for instance if F = X1i we have

i j k
Vx (fXi)=det | 0 9, 0. | =1(0,8.(X),—0,(fX))
FX 0 0

Observe that in those simple cases we can calculate thus:

Vox (fXi) = (0ud+ 0yj + 0:k) x (fXi) = =0,(fX)k + 0.(fX)j
We do so in the next derivation; the second term is:

(V) x (Xi) + f(V x (Xi)) =

= (02fi+0,fj+ 0.fk) x (Xi) + f((O:i + 9, + 0:k) x (Xi)) =

= 0.(fX)j-9,(fX)k
We proceed in the same way with Yj, Zk and so we have proved the
formula. Again Leibniz’s rule is satisfied.

As in ¢) both terms in the formula are additive in F and G. Now we
must consider all possible couples of fields choosen among Xi, Yj, Zk

and Pi, Qj, Rk.
If there is a repeated basic vector, such as Xi and Pi, the left hand
term vanishes and for the right hand term we have as well
(VxF)-G=(VxXi)-Pi=((0,X)j— (0,X)k)-Pi=0
Choose now a couple such as Xi and @Qj; the left hand term is:
V- (Fx G)= V- (XixQj) = V- (XQk) = 0,(XQ)

and the right hand term is:

(VxXi)-Qj—Xi-(VxQj) = ((0:X)j—(0,X)k)-Qj —
and we have Leibniz’s rule for those two fields. Obviously the same is
true for all other couples and Leibniz rule works for any two fields. In
applying it we have to be carefull; if we start the differentiation with

(V-F) x G, we see that it has no sense (because V - F is a scalar) and
again the the formula is then ’evident’.
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e) Once more both terms are additive in F and in G and we can proceed
as in d). If there is a repeated basic vector, such as Xi and Pi we have:

V x (Xix Pi)=0
and the right term is
(V-PI)Xi— (V- Xi)Pi+ (Pi-V)Xi— (Xi-V)Pi=
= (X0,P)i— (PO, X)i+ (PO, X)i— (X0,P)i=0
For a couple such as Xi and Qj we have:
V x (Xix Qj) = V x (XQk) = 9,(XQ)i - d(XQ)j

and

(V-Qj)Xi— (V- X1)Qj+ (Qj- V)Xi— (Xi-V)Qj =
= X(9,Q)i — Q(0:X)j + Q(9,X)i — X(9,Q)j =
= 0,(XQ)i - 0:(XQ);

We proceed in the same way with the other couples and so we have
proved the formula. In this case Leibniz’s rule is not satisfied.

f) Following the same line of the preceding case, for F = Xi and G = Pi
we have:

V(Xi-Pi)=V(XP)=0,(XP)i+0,(XP)j+ 0,(XP)k
and the right hand term is:
(Xi-V)Pi+ (Pi-V)Xi+ Xix (Vx Pi)+ Pix (V x Xi) =
= (X0, P)i+ (P, X)i+Xix (0,P)j—(0,P)k+Pix (0,X)j—(0,X )k
= (X0, P)i+ (PO, X)i+ (X0,P)j+ (X0.P)k+ (0,X)j + (PO, X)k
= 0,(XP)i+0,(XP)j+ 0., (XP)k

For couples such as F = Xii G = Pj we have:

V(Xi-Pj)=V(0)=0
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and the right hand term is:
(Xi-V)Pj+ (Pj-V)Xi+ Xix (V x Pj)+ Pj x (V x Xi) =
= (X0,P)j+ (PI,X)i+ Xix (0,Pk—0,Pi)+ Pjx (—0,Xk+0,Xj) =
= (X0, P)j+ (Po,X)i— (X0,P)j— (P9,X)i=0

So Leibniz’s rule is not true in this case.

Observation:

The language of differential forms allows shorter and clearer proofs of many
of the preceding facts. You may want to look at Algebraic and differential
forms by the same author.

O

Problem 33: Rotational and divergence.

Compute the rotational and the divergence of the following fields:

a) F(r)=r

b) F(r) = lr

c) F(r) = —4r

d) F(r) = —24r

e) F(r) = (2 + y* + 2%)(3i + 4j + 5k)

f) F(r) = s (y2, 22, 2y)
Solution:

The first four fields have the form F(r) = f(r)r and from the preceding
problem, points b) and c¢), we have:

Vx(f(r)r):for+f(r)V><r:f’(r);><r+O:0

Ve (F)r) = (Vf) v+ fV 1 = ()= v+ 3f(r) = rf'(r) + 3£ (1)
We obtain
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Vx(lr)=0
V-(lr)=3
b)
V x (—;r) =
1 1 1 2
Vi =g -it=—
¢) .
r 2 1 1
Vi) =t =0
d) .
r 3 1

F(r) =1%(3,4,5)
We can apply Leibniz’s rule:

V x (r%(3,4,5)) = (Vr?) x (3,4,5)+1°V x (3,4,5) =
- 27’; x (3,4,5) =r x (6,8,10) =
= (10y — 82,6z — 10z, 8x — 6y)

The divergence can be computed directly:
2 2 2 € ) <
V-F = 0,(3r*)+0,(4r*)+0,(5r%) = 6r—+8r—+10r; = 62+ 8y+10z
r r
or we may use Leibniz’s rule once more:

V-F =20 (3,4,5) + 12V - (3,4,5) == 62 + 8y + 102
T
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f)
1
F(r) = 5(yz 2z, 2y)
1 1 1
Vx (5(yz 2z, 2y)) = V(ﬁ) x (yz, 2z, 2y) + 5V X (yz, 22, 2y) =
2r 1
=~ X (yz, zx,xy) + ﬁv X (yz, zx, xy)
We evaluate both terms:
i j k
V x (yz,zx,xy) = | 0y 0, 0, |=0
yz zr xy
. 9 i j k
_2ﬁ X (yz,zx,xy) = —al Ty oz |=
yz zr xy
2
= —=(x(y® = 22),y(z" —2%), 2(2® — 7))
and then
2
V x F(r) = ——4(:c(y2 —2%),y(2* — 27), 2(2* — y?))
r

The divergence is:

1 1 1
v . (ﬁ(yz,zx,:ﬂy)) = V(T_Q) (yz, 2z, 2y) + T—QV - (yz, 2z, xy) =

2r

= —5 (yz, zx, xy) = —ﬁ?)xyz

Problem 34: Around the vector product.

Let A, B, C, D be vectors in R? and E a vector field in R3; prove the following
formulae:

a) (AxB)-(CxD):det<A'C A'D)

B-C B-D
b) Ax (BxC)=(A-C)B— (A -B)C
¢) Vx (VxE)=V(V-E)- VE



78 CHAPTER 2. VECTOR FIELDS

Solution:

a) The left hand term
#(A,B,C,D) = (A x B) - (C x D)

is a linear function in each entry. And so is the right hand term

A-C A'D
w(A,B,c,D):det<B_C B'D)

Since both terms are linear in each entry to prove the desired equality it
suffices to verify it on a basis, the canonical one i, j, k say. We can save
work if we observe that both functions are alternate in A, B and alter-
nate in C, D for then we know that (i,j,j, k) = —(j,1,j, k) = —(i,j, k., j)
etc. In brief, we only have to check the following combinations:

(Lj.1J) Gkij) (.k1ij)
(L,j.ik) (kik) (,kik)
(L,j.J: k) (k] k) (k] k)

Let us do it for the first:

cee e i-ii-j\ 10\
Qﬂ(l,‘],l,J)—det(j‘i j-j)_det<0 1)—1

The other cases are similar.

and

b) If B x C =0 then B = AC and both terms vanish. If B x C # 0 then
A x (B x C) is orthogonal to B x C wich tells us that A x (B x C) €
(B, C):

Ax(BxC)=aB+bC,

To find a, b it seems reasonable to make the scalar product with B and
C:
aB-B+0C-B = (Ax(BxC))-B
aB-C+bC-C = (Ax(BxQ))-C
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Using the cyclic permutability of a triple product
(PxQ)-R=(QxR)-P=(RxP)-Q,

we can change the independent terms of the system to

B B-C
(A><(B><C))~B:(B><A)-(B><C):det(A_B A-C)
C-B C-C
(A><(B><C))-C:(CXA)-(BXC):det(A‘B A-C)
The determinant of the system is
B-B C-B
A_det<B-C C-C)
and applying Cramer’s rule we obtain:
B-B B-C
a_ldet det A-B A.C C-B -
A C-B C-C a
det AB A.C C.-C

:idet<(B-B)(A-C)—(A-B)(B-C) (B-C))
A (B-C)(A-C)—-(A-B)(C-C) (C-C)

1 (B-B)(A-C) (B-C)\ 1 B
_Zdet<(B‘C)(A‘C) (C_C))_Z(AC)A_AC

In a similar way one obtains b = —A - B and b) is proved. There are
much shorter proofs, but this one only needs endurance.

The laplacian of F = (XY, Z) is the field
V?F = (V2X, V2Y, V2Z)
Both terms in the formula

Vx(VxE)=V(V-E)-VE
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are linear in E and it suffices to check the equality on terms of the form
f(z,y, 2)i, g(x,y, 2)j, h(z,y, 2)k. For instance if E = gj the left hand
member is

V x (V% gj) =V X (=0.,9,0,0.9) = (0*29, =0 229 — 0*..9,0%,.9)
and the right hand member is

V(V : g.]) - Vzgj = V(@ ) (82mg + 82yyg + 82zzg)j =
(82xyg, w9 2yq) — (0,809 + P yyg + 0%..9,0) =
(82:cyg> azxxg a2zz.ga a zyg)

and they coincide whenever there is equality of mixed second order
derivatives.

2.5 Fluid expansion; divergence

Next we give a 'physical’” interpretation of the divergence using a fluid as
a model.

In the going by of time any region of the fluid changes its form. Lets
think about a fluid region R, at the instant ¢t = ¢y being colored. At a later
instant ¢ the coloring will show R, a different region; what is the time rate
of change of the region’s volume in terms of the velocity field?
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Problem 35: Movement of regions in a fluid.

Consider the flow ¢(xg,yo, 20,t) = (zo€e',yoe™" 20),t0 = 0, and for t = 0 a
region Ry. Find the tranformed region R at time ¢, the volume of this region
and the time rate of change of the region’s volume, in particular at t = 0,
when:

a) Ry = {(z0,v0,20) : 22 +y2 = a* 0 < 2z < 1}, a straight circular
cylinder of radius a and height 1.

b) Ry = {(x0,40,20) : 0 <29 < a,0 <yo<a,0< 2 < a}, acube of side
a with a vertex at the origin.

¢) Ro = {(z0,v0,20) :| w0 |< 1,]| yo |< 1,] 20 |< 1}, a cube of side 2
centered at the origin.

d) Ry = {(z0,v0, 20) : T3 + y2 + 23 = a*}, a sphere of radius a centered at
the origin.

Solution:

The point that was at (xg,yo, 20) at the instant ¢ = 0, is at x = e,y =
yoe !, z = zg at the instant ¢. To find the equation of the transformed region
we make the substitutions zg = xe™t, 1o = ye', 2 = 2:

a)

that we can rewrite as

ZL'2 N y2
(aet)? ~ (ae™")?

=1,0<2<1

Y

t

showing an elliptic cylinder with volume V(t) = wae'ae™ = ma?; then

& = 4 (1a?) =0 and in particular £|,_o(7a?) = 0.
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b)
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z z
R + z=1
a exp(t)
a exp(-t) y
X instant t=0 X nstant ¢

We proceed as in a) :

nge_tga,()gyetga,ngga

nggaet,ogygae_t,ogzga
a parallelepiped with volume V (t) = ae'ae™'a = a*; now 4 = 4 (4*) =
0 and 4|,_o(a®) = 0.
Analogously

|ze™ [< 1] ye' [<1,]2[< 1
ol yl<et] 2]

a parallelepiped with volume V(t) = efe™ = 1 and & = 4(1) = 0,
Llimo(1) =0 .

In this case
(we ") + (ye')? + 2* = a?

22 . y? 52

(ae')? ' (ae)? ' a2

an ellipsoid of volume V() = imactae'a = 27a® and

=1

3 3
dVv d 4
% = ﬁ(gﬂ'a ) =0
d 4 4
£|t=0(§7m )=20

Why is it that all derivatives vanish?
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Problem 36:

Do the same as in the preceding problem for the flow

¢($0, Yo, 20, t) = ('TO + tv Z/Oeta ZO)v tO = 0.

Solution:
a)
(z—t)>2+(ye )P =a*0<2<1
—t 2 2
-t ¥ _,
o2 (ae)?
an elliptic cylinder centered at (¢,0,0) with volume V() = maae’ =
ma’e’ and derivative 4 (ma’e’) = Ta’e’ and
d
%h:o(ﬁazet) = ma’.

ng—tga,ogye_tga,ogzga

t<z<a+t,0<y<ae',0<z<a

a parallelepiped with a vertex at (¢,0,0), volume V(t) = aaela = a’e!

and derivative 4 (a®¢’) = a’e’ which at the instant ¢ = 0 is
dV 3
— |0 =a
dt =0

|x—t|§1,|y|§et,|z|§1

a parallelepiped with volume V (t) = 8¢’ and 4 (8e') = 8¢’ and

d
%|t:0(86t) = 8.
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an ellipsoid with volume V (t) = i7maac’a = 4ma’e’ with & (4ra’e’) =
sma’e’ and then

—limo(sma’e) = =ma

dt |t—0( 3 ) 3

O

In points a), b) an d) of the preceding problem the time rate of change
of volume at the instant ¢t = 0 depends on the bigness of the figure we color
(it depends on a). To get rid of this fact we center our attention on

1 dV|
Vodt "
Then we have, respectively:
1 dV Ta?
2 ——t=0 = — =1
ma? dt ma
14V a®
a0 !
1 dV| 8 1
gdt """ 8
1 dV §7TCL3
4—3_|t=0 =1_5=1
§7TCL dt gﬂ'a

Relation of 47|, with the divergence of the field v(x)

Consider the flow

¢($0, Yo, 20, t) = ($(x0a Yo, 0, t)a y(x07 Yo, 20, t)7 Z(x07 Yo, 20, t))a tO

and a region R, at the initial instant ¢y. Let

¢t($0a Yo, ZO) - (l'(l’(), Yo, 20, t)a y(an Yo, 0, t)a Z($0a Yo, 20, t))

be the transformation during time t, Ji(xq) = det(g—ﬁ, %, %”(xw) the ja-
cobian determinant of the transformation, and R(t) = ¢(Ry) the tranformed

region. Then the change of variables theorem for integrals gives:

V(t) = Vol (R(t)):///}%dxdydz:// RO|Jt(X0)|dx0dy0dzo
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Assuming J;(x0) > 0 in R we have

av d(Jy(x
—t = ///RO 7( id(t 0))dl’0dy0d20

e Let’s compute the integrand; we have:

A (x0)) _
dt

Pdr 0pr O ¢ 0P 0 O¢r 01 Py
dtdxy’ dyo’ Bz o0 T t(8 o Otdyy” Oz Bz, (o0 0 t<8xo Ao’ 815320)‘ G0

As we want to compute E |(xo,t0) let us work for t = ty; for instance

Oy - P(xo + h, Yo, 20, to) — A0, Yo, 20,t0)

= det(

P h -
— }]-LIE)IE-) (I0+h7y07203t02L_ (ZEo,yo,Zo,to) _ (1’0’0)
and analogously:
9¢ 0¢
age=to = (0:1,0), 5ty = (0,0,1)

e For the second derivatives notice that %kxwt) is the velocity at the
instant ¢ of the particle that was at x¢ at the instant ty; then

0
a(it|(xo to) — (X(Xo,to),Y(Xo,to),Z(Xo,to)),
the velocity field at xq.
e Thus
X X X
= 00 1 2 0 1 0 92X
d(.J Ox 9yo 0z
dSix0) e[ B 1 0 Jaee | 0 o0 Jiaet | 01 2| =
dt ' 74 ) 7]
50 01 0 50 1 00 =
_(6X+8Y+6Z)|
T 0w Oy 0z O
and

0X o7
RYPALS dxodyod
‘t v // Ro 8:170 ayo aZO)|( 0,t0) ToAYoa Lo
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Now the mean value theorem for integrals asserts there is a point P € Ry

such that
dV B oxX oY oZ

= owy T gy 0z
Finally letting V' — 0, at each point x5 € Ry we have

hmiﬂ—a_X_l_a_Y_Fa_Z—
v—oV dt N 81’0 8’3/0 82’0 N

PV

V-v

and we see that the divergence of the velocity field of the fluid is the instan-
taneous time rate of change of volume per unit volume.

O

Problem 37:

Check this last result in the two preceding problems.

Solution:

a) The velocity field of the flow ¢(zo, yo, 20,t) = (zo€’, yoe ™, 20),to = 0 is
v(x) = (z, —y,0) by problem 25, and its divergence is V-v=1—1=10
that agrees whith problem 35.

b) For ¢(zo,vo, 20,t) = (zo + t, €', 20), to = 0 we have

do t
— = 1
dt ( » Yot 0)

and the velocity field is v(x) = (1,,0); then V - v = 1 in agreement
with problem 36.

O



Chapter 3

Integration of fields over curves

3.1 Integration of scalar fields

. Let v : [a,b] — U be a C' parametrized curve in the open set U C R"
and let f : U — R be a continuous function. The integral of f along 7 is

/fdl /f (t)|dt

If C is a curve in the open set U C R™ the integral of f along C'is

/fdl /f (t)|dt

v : [a,b] — U being a parametrization of C of class C!; this definition
makes sense because it is independent of which one among the equivalent
parametrizations of C' we choose (see problem p.90).

We can as well integrate on a piecewise C! curve: we simply integrate on
each of the subintervals where the curve is C! and add the results.

Taking f = 1 we obtain the length of the curve; to have the true geometric
length we use regular parametrizations.

b
- / Iy (8t

Note that as |7/(t)] is the celerity, |7/(¢)|dt is the length of that part of the
curve traversed during the small time interval dt. We get the total length
adding (i.e.: integrating).

87
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Problem 38: Scalar field.

Compute [, fdl in each of the following cases (v is a parametrization of C):
a) f(z,y,2) =x+y+ 2,7(t) = (cost,sint, t),0 < t < 27.
b) f(x,y,2z) =z,7(t) = (tcost,tsint, t),0 <t <T.

) flz,y) =22 —y,y(t) (t47t4)7_1 <t<lL

d) f(x,y) = 2* + y?, C the square with vertexs (£1,0), (0,41) traversed
in the positive sense.

e) f(x,y,z) =x+y,C the part of the circumference

?+yt+2? = R
y =z

in the first octant.

Solution:

a) v'(t) = (—sint,cost, 1),

()] = V2
2
/(l’ +y+2)dl = / (cost + sint 4 t)V2dt = 2n°V/2
c 0

b) v/(t) = (cost — tsint,sint + tcost, 1),

17/ (t)] = \/(cost — tsint)? + (sint +tcost)? + 1 = V2 + 2

T T
1 12 1
/ zdl = / tV2 + t2dt = 5/ 2V2 + t2dt = 55(2+t2)3/2|0T = g[(2+T2)3/2_23/2]
C 0

0

c) (1) = (48°, 4%),
()] = 4v216 = 4v/2t]?

v — _ ' 4 3_ L _
/C(z y)dl /_(2t £ 4y/3| 4\/5(2/0tdt) NG

1
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d) We traverse the square in the order P = (1,0),Q = (0,1), R = (—1,0), S

(07_1>'
Q(0,1)
Y
2 yl
R(-1,0) P(1,0)
A Ya
S(0,-1)
Observe that if 7, parametrizes the segment [P, Q)] then 73 = —y;

parametrizes [R, S|; analogously, if 7o parametrizes the segment [Q, R]
then v, = —v2 parametrizes [S, P]. We have:

wo-e () (1)- (7 osee
ao=ee(2) () () osee

n(t) = ( o ) L) = ( . )
O =V2 Bt =v2

Now we can compute the integrals:

and

/(:):2+y2)dl:/01[(1—t)2+t2]\/§dt:\/5/01(2t2—2t+1)dt:¥

and, taking into account that the squares in the integrand eliminate
minus signs, we also have [ (2% +y?)dl = ¥ On the other side

/(x2+y2)dl:/01(( 024+ (1—)2)V/2dt = f/ (2P —21+1)dt — 2f
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and we also have [ (2% +y?)dl = 22 Finally

/@P+fmh:§@
c 3

e) Take the parametrization

ol

R R '
Y(p) = (ﬁ cos @, ﬁcosgo,Rsmgo),O <p<

v (p) = (—% sin ¢, —% sin , Rcos ¢)

R? R2?
| (¢) |= \/7 sin 2 + 781n2<p+R20082<p =R

z

A\
R/ ~1--__ y
X
We obtain
w/2 2R w/2
/(:c +y)dl = / — cos pRdyp = \/§R2/ cos pdyp = V2R?
¥ 0 \/§ 0

Problem 39: Independence of the parametrization.

/Cfdl

Prove that
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does not depend on the parametrization of the curve C.
Solution:

Let y(t),t € [a,b] be a parametrization of C, t = h(7) a change of variable

h: a0

and I'(7) the corresponding reparametrization: y(t) = I'(h(¢)). Then

7'(t) = T'(h(2)) ' (t)

To use the change of variables theorem for integrals in one variable notice
that as h is a diffeomorphism it has a nonvanishing derivative. Then if
R > 0, h is increasing, h(a) = ¢, h(b) = d and if ¥ < 0, h is decreasing and
h(a) = d, h(b) = c. Now apply the theorem:

(- [ wonmone-{ . 2 40, -

{ff@%@M((WW@ﬁifﬁ>0}
Jo FO ()T (R(8))| W (t)dt if B <0

In the first case |h/(t)| = A'(t) and

[_/f VA (t)|dt = /f (t)|dt

In the second case |h/(t)] = —h/(t) and

f—/ f(r (R(E) K1) /f (h(E) I (t)dt

z/ﬂ((MWHDWW@WZ/f@WWW%@W@WZ

/ ) ()t
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3.1.1 Arc-length
Let 7 : [a,b] — R™ be a regular parametrized curve; the function

s(t) :/ |7 (t)|dt, ¢, t € [a,b]

measures the length of the arc of the curve from the point v(¢) to the point
v(t) and is called the arc-length parameter of the curve:

y

Y(c) s(t)>0

Notice that the arc-length parameter has a positive value for t > ¢ and
a negative value for t < c¢. If we choose ¢ = b then all the values of the
arc-length parameter will be negative, while they will all be positive if ¢ =
a. Think about the curve as a deformed interval of R with its own origin
(the point 7(c)), its positive points and its negative points, as shown in the
preceding figure.

If we assume 7 to be regular then §'(t) = |y (t)] > 0, the arc-length
parameter is a strictly increasing function and so it is inversible. Substituting
t = t(s) into v we obtain the arc-length reparametrization.

Problem 40: Reparametrization by arc-length.

Compute the length and reparametrize by arc-length:

a) A circumference of radius R.

)

b) The arc of the helix v(t) = (cost,sint, t) for 0 < ¢ < 2.

¢) A complete turn of the helix v(¢) = (acost,asint, bt) for 0 < t < 2.
)

d) The arc of a spiral y(t) = (e* cost,e'sint), 0 <t < T.
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Solution:

a) Take the parametrization
v(t) = (Rcost, Rsint), t € [0, 27]

7 (t) = (—Rsint, Rcost), |¥'(t)] = R.
Then )
L= / Rdt =27R
0

t
s(t):/ Rdt=Rt=t=—
) R

Substituting ¢t = t(s) into the parametrization I' we obtain the reparametriza-
tion by arc-length :

[(s) = (Rcos%,Rsin %), s € [0,27R]

7'(t) = (=sint,cost, 1), |7/ (t)] = V2

2
L= V2dt = 270/

0

s(t):/ot\/ﬁdtzt\/i;»tz%

The reparametrization by arc-length is:

I'(s) = (cos( ). %), s € [0,27v72)

), sin(

<
<

v (t) = (—asint,acost,b), |[¥(t)] = Va2 + b?
2m
L= / va? 4 bidt = 2nva? + b?
0

t
= | Ve Rdt =V Pt =t =——
s() /0 ¢ ¢ Va2 + b?
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The reparametrization by arc-length is:

s . s s
I'(s) = (acos(a27+b2),asm(\/a2 — 62), b\/a2 = 62), s € [0,27Va? + b

Notice that if v/a? + b?> = 1 the helix is already parametrized by arc-
length.

d)
v'(t) = e'(cost — sint, cost 4 sint), |7/ (t)| = e'V2

/ V2eldt = ( —1)
:/ V2edt = V(e — 1) = t = log|

The reparametrization by arc-length is:

Nﬁzg%

+1)

Sl

+ 1)(Cos(log(% 1)), sin(log(% + 1))

Problem 41: Parameter arc.

Discuss the following assertion: a regular parametrized curve 7 : [a,b] — R"
is parametrized by arc-length iff |y/(¢)| = 1, that is to say iff the celerity
along the curve is unity.

Solution:

a) For (t) to be parametrized by arc-length it should be a reparametriza-
tion by arc-length of a certain parametrization «(7), 7 € [¢,d]. If that
is the case we have

=/Wﬂﬂ&@ehﬂ
13

dt , dr 1
ar 20T G T e

and
V() = a(r(t) =+ (t) = o/ (7()7'(¢)
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and we obtain

7 (8)] = |a'<f<t>>|m 1

From a physical point of view we have a 'clock’ s (the arc-length) that

runs so as to have a displacement along the curve equal in measure to
the time’ elapsed. Now it’s clear-cut that the celerity will be 1.

Reciprocally, assume that |y/(¢)] = 1; then the arc-length parameter
from ¢ € [a,b] is

t
s(t):/ Y (@)|dt=t—c=>t=s+c

and the new parametrization I'(s) = v(s + ¢) just shows that we take
the origin of the new measure of lengths at the point of the curve
corresponding to ¢ = ¢. We may reasonably say that the curve is
parametrized by arc-length. In the particular case that 0 € [a,b] we
can take the parameter arc s(t) = fg |7/(t)|dt and then s = t, the curve
is parametrized by arc-length.

O

Problem 42: Length of a graph.

If f

: [a,b] — R is a C' function, the length of its graph is that of the

parametrized curve y(t) = (¢, f(t)), t € [a,b].

a)

b)

Show that the length of f’s graph is

L:/ VI (@)t

Compute the length of the graph of f(¢) = cosht over the interval [0, 1].

Solution:

a)

Y (t) = (L), 17 ()] = V1+(f(t)?
b
L= / NI
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b)
1 1 1
L = / \/1+sinh2tdt:/ vV Cosh2tdt:/ coshtdt =

0 0 0
1 1
= ginht|l =sinhl = =(e— =
sinh t|; = sin 2(6 e>

O
Problem 43:

Let C' be a plane closed curve that has a regular parametrization and let ¢
be the angle the tangent vector t makes with the Oz axis. Prove that

/Cosgbdl = / sin ¢pdl = 0
c c

Solution:

Let’s make a figure

Let v(s) be a parametrization of C' by arc-length, defined in [0, L] (L the
length of C); in this way the tangent vector t = +/(s) will be unitary and
cos ¢ and sin ¢ will be easily computable. We have:

cosp(s) = t(s)-i=(2'(s),4'(s)) (1,0) = 2'(s)
/ cosp(s)ds = / 2'(s)ds = z(L) — x(0) = 0 (C'is closed)
c 0
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Analogously

sing(s) = t(s)-j=(2'(s),4'(s) - (0,1) = ¢/(s)

L

/Csin o(s)ds = i y'(s)ds = y(L) —y(0) = 0 (C'is closed)

Problem 44: A curve in polar coordinates.

a) Show that the integral of a continuous function f(z,y) along the curve
given in polar coordinates by

T:T(Q),eléegeg

is
o dr
f(r(0)cos,r(0)sinf)y/r(0)? + (== )2db
A df

b) Compute the length of a cardioid 7 =1+ cosf, 0 < 0 < 27.

¢) Compute [, arctan(¥)dl along the curve r =26, 0 < 6 < 2.

xT

d) Find a formula for the curve r = r(t),0 = 0(t).

Solution:

a) Have a look at the following figure
0 y

O,

=
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In cartesian coordinates we have

v(0) = (r(0)cosh,r(f)sinh)
Y (0) = (r'(0)cost —r(0)sinf,r'(0)sind + r(0) cos )
RO = Vi

and
/ dr
/fdl f (rcosf,rsinf) (d9)2d9

b) We make a figure and use the preceding formula
y \
/ X
2m 2m
L = / \/(1 + cos 0)? + sin® 0df = / v/ 2(1 + cos )df =

= 2f/ mde_zf/ \/2(:082 )df =

= 4/0 cos( )d9—8sm( )|0—8

c¢) Still the same formula

2
/ arctan(%) dl = / arctan(tan 0)v46? +4df =
c

0

= / 20Vl + 622d6 = = (1+92)3/2\2

2
= 5(53/2 -1)
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d) In cartesian coordinates we have the curve

v(t) = (r(t)cos(t),r(t)sinb(t))
V() = (r'(t)cosO(t) —r(t)0'(t)sinO(t),r () sinO(t) + r(t)0'(t) cos O(t))
YO = Vi

and the formula is

to
/fdl:/ f(rcos@,rsin@)vVr'2 4+ r202dt
C t1

3.1.2 Averages

We start with the elementary idea that the average of two numbers a, b

is “T“’ and develop several associated ideas.

Average of n numbers

The average of the numbers yq,...,y, is

it
(y) = L

We can think those numbers as a finite quantity of magnitudes discretely
distributed:

If we form rectangles of basis 1 and heights y;, the total algebraic area (:
areas below the axis counted as negative) is

A=1-y1+---+1-y,
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From the definition of the average we obtain:

A=yt +yn=n(y)

that tells us that (y) is the height of a rectangle with basis n that has the
same algebraic area:

<y>

Average of a function

Let us draw a magnitude continuously distributed on the segment [a, b]:

y(X)

a

|-
X Vb X
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We have a bar at each point of the segment; that is we have a function y(x)
defined in [a,b]. By analogy with the discrete case we define the average of
the function y(x) on [a, b] by

) [P y(a)de
WI=6 " ha

where loosely speaking (i) is the 'number of indexes’; the length of the
interval is a measure of this number. /' >_" is the corresponding analog to
the sum of the discrete case; the integral of y(z) does that. The analogy
takes roots if we notice that in the discrete case we can write y;,...,y, in
the form y(1),...,y(n), a function defined in {1,2,...,n}.

Geometrically (y) is the height of a rectangle with basis [a,b] that has
the same algebraic area as that under the graph of the function:

y y

=—p. y> -

The first mean value theorem for integrals tells us that if y is continuous
there is ¢ € [a, ] such that (y) = y(c): the average value is accessed.

Average on a curve

The average of a function f defined on a curve is a concept close to the
preceding one. It is clear that we should define

=1 [ 1
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Problem 45: Average on a curve.

Let v(t) = (sint,cost,t), t € [0,27] be a parametrization of an helix; com-
pute the average of f when

a) flv,y,2)=x+y+z

b) f(z,y,z) =cosz

Solution:

a)

2m
/($+y+z)dl = / (sint+cost—|—t)\/cos2t+sin2t—|—1dt:
c 0

t2
= \/§§|g7T = 27°V/2

27
L = /1dl: V2dt = 27v/2
C

0

2124/2
=7

272

2
/coszdl:/ costV2dt = 0= (f) =0
c 0

3.1.3 Averages with weights
Discrete case

To assign weights mq, my to the numbers x;, 25 is something like counting
the number 1 “m; times” and the number x5 “my times” (we have written “
” because in general my, ms need not be integer numbers). From this point
of view the average should be defined as

w2 re maa 4 mas

14+ ™) 414 14+ ™2) +1 my + my

(T)m
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Geometrically, we put weights (or masses) mq, my at the points of the line
with coordinates x1, xs.

The point that equilibrates the fulcrum of the figure is called the system’s
center of mass.

X
Xl g

X
2

m A m X
2

The center of mass coordinate x, must satisfy the fulcrum law:
(Tg — x1)my = (z2 — 34)my
or

mixy + MaZo
Tg=—"—"—
my + Mo
We see that the coordinate of the center of mass coincides with the average
value with weights, a somewhat remarcable result.

O

Problem 46: Center of mass.
Define the center of mass of
a) k points in a line.

b) k points in space.

Solution:

a) Consider masses my, ..., my at the points with coordinates x1, ..., z.
Then
. mixy + - -+ My

m1+~-~+mk

(T)m

b) Consider masses my, ..., my at the points with position vectors xy, . . ., Xj.

Now
. miXy + -+ mEXg

m1+-~-+mk

(X)m
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Continuous case

If a material wire has linear density A (see p.57), its total mass is

M:/)\dl
c

Notice that any kind of density (lineal, surface, volume, probability, etc.)
ends up being integrated, like in the preceding formula. Speaking about
densities notice also that we can think about the velocity as being the density
of space with respect to time.

Consider a material segment [a,b] (we could equally well say ’consider a
mass distribution on the segment [a,b]’). By analogy with the discrete case
we define the center of mass of the segment through

_ISa() [P aM(z)da
OI0) [P A(x)dz

(T)A

A(z) being the linear density of the segment and the denominator its total
mass.

O

Problem 47: Center of mass of a segment.

Compute the center of mass coordinate of a material segment whose linear
density A is proportional to the distance from one end.

Solution:

Take the origin of coordinates at the end where the density vanishes:

@) A=KX L

X

Then A(z) = Kz and

L L2
M:/ Kadry = K—
0 2
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L 3
/ xdex:KL—
0 3

KL 2
_ 3
b=z =3k

If we have a material wire C' in R? with linear density A, the center of
mass coordinates are

(25 = fc zdl )y = fc yAdl (2)y = fc zZAdl
fc Al fc Al fc Al
or, expressed vectorially:
B fc xAdl
= T

Problem 48: A special density.

Compute de center of mass of a material wire extended along the circumfer-
ence of radius R and center at (0,0) if the linear density is A\(x,y) = |z| + |y|.

Solution:
Parametrize the circumference

v(t) = (Rcost, Rsint), t € [0, 27]
Then

27 27
M = / Adl :/ (|Rcost|+|Rsint|)Rdt = R2/ (| cost|+]| sint|)dt = 8 R
c 0 0
and the center of mass coordinates are
1 1 2 ‘
(x)\ = Y /C:)s)\dl = M/o Rcost(|Rcost| 4+ |Rsint|)Rdt =0

and, analogously (y), = 0.
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Problem 49: Center of mass of a material wire.

Let C' be the parametrized curve

v(t) = (0, Rsint, Rcost), t € [0,7], R >0

a) Compute the average of each coordinate.

b) If the curve is a material wire with constant linear density A = 2,
compute the total mass and the coordinates of the center of mass.

¢) Same question if the density is the restriction to C' of the function
ANz, y,2) =2 +y+ 2

d) Same question if the density at each point is the double of the arc-length
measured from the point (0,0, R).

Solution:

The curve is a semicircumference in the plane yz:

a) From the picture we see that (z) = (2) = 0. Let’s see this analytically:

~(t) = (0, Rcost, —Rsint), |y (t)| = VR2cos2t + R?sin®t = R
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and we obtain

and

and

/xdle

c

/ydl:
c

Rsint Rdt = 2R?

— >

/zdl = Rcost Rdt =0
c

L = 7R

2R?> 2R

<f>—0><y>—ﬁ—7><z>—0

/m2dl =0

c

/yzdz = 4R?

c

/del =0
c

M = /2dl:27rR
c

(0 = (2 =0, (ghr = g = =

g 3
Rsint(Rsint + Rcost)Rdt = %

/

g 3

= /Rcost(RSinthRcost)Rdt:%
0

(x+y+z)dl:/ (Rsint + Rcost)Rdt = 2R?
0
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d) The arc-length parametrization is

n@:mﬁmm%JMﬂ%msemRﬂ

Then
/x)\dl = 0
c
Rm s
/y)\dl = / Rsin(=)2sds = 2n R?
c 0 R
Rm S
/z)\dl = / Rcos(=)2sds = —4R?
c 0 R
Rm
M = / 2sds = 7° R’
0
and 2R 2R 4R3 4R
- _
Wh=0h= e =T Ph =g =

Problem 50: A mass.

Find the mass of a material wire ¢ extended along the intersection of the
sphere 22 + y? + 22 = 2 and the plane x +y + 2z = 0 if the linear density is
the restriction to the wire of the function \(z,y, z) = z°.

Solution:

We give two solutions:

a) Project the curve on the plane z = 0, parametrize the projection and
‘climb’ to the curve; see p.28. There we met a parametrization of c.

1 2 1
v(t) = (cost — —=sint,—sint, —cost — —=sint),t € [0, 27]

V3 V3 V3

1 2 1
Y(t) = (—sint — —=cost,—= cost,sint — — cost)

V3 V3 V3

and then

|'(t) |= V2
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The mass is

27 1
M = / (cost — — sint)?Vv/2dt =
0 V3

27
1 2
= / (cos’t + = sin®t — — costsint)V2dt =
0 3 V3
1 44/2

= V2(r+=7) = iﬂ'

3 3
The intersection curve is a meridian of the sphere. If we take new
coordinates (Z, 9y, z) such that the plane z + y + z = 0 becomes the
plane z = 0 then we will see the intersection curve as a circumference
of radius 2 centered at the origin and this we know ho to parametrize.
We must choose €3 = %(1, 1,1) and we can find €;, €, because they
are perpendicular to €3 and unit vectors. The matrix of the change of
basis appears to be:

C:

o §|H§|H
SINS-S-
S-S

The parametrization of ¢ in the bar coordinates is

I'(t) = (V2cost,V2sint,0), t € [0, 2n]
I'(t) = (—V2sint,v2cost,0)
Tt = V2

The linear density must satisfy A\(z,7, 2) = 2?; the change of coordi-
nates gives

and

Then

1 1 11~ 1 2 2
M = /c(§x2+ 6g2+§§z2 + %igj— —ITZ— ——=yZz)dl =
4v2

2m

1 1 1

= ~2cos’t + ~2sin’t + —=2sint cost)V2dt = ——
/0 (2 oS —|—6 sin +\/§ sint cost)V/2 5
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O

3.1.4 Gravitational field of wires
Gravitational field

If we have a material wire C' with linear density A we can use Newton’s
law for extended bodies (see p.57) to compute the gravitational field at a
point; we arrive at

r
=— [ A=dl
g(r,y, 2) /C =

where in the integral (z,y, z) is where we want to know the field, (u, v, w) is
a variable point in the material wire, r = (r —u,y —v, z—w) and r = |r|. We
are still applying the convention ’from the source to the point’ (see p.55).

O

Problem 51:

Let C be a material wire with the form of an arc of a circumference of radius
R. Assuming the linear density A to be constant, compute the gravitational
field at the center.

Solution:

This is clearly a bidimensional problem; take the circumference in the zy
plane with its center at the origin and an arc of angle 2a.

y

R (u,v)

20
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Parametrize that arc by

7(0) = (Rcos, Rsinb), 0 € [0, 2q]

The field at the center is
2(0,0) = — / N0
c

and its components are:

A D A
X:/cﬁwﬂ:ﬁ/o Rcos@Rd@zﬁsnﬂa

200
/ —5vdl = Rsin 0§ Rdf = i(1 — cos 2a)
0 R

The module of the field has a value

2\ 2\ 2\
igl> = 3 (1 —cos2a) = |g| —%\/QSinza: §|sina|

The angle of g with the Ox axis satisfies

Y 1—cos2a 2 sin 2a sin «v
tan f = — = — = — = =tana = 3 =«
X sin 2« 2 sin o cos « COoS (v

where we can see that 3 is half the total amplitude of the arc as was ex-
pectable from the symmetry.

Problem 52: Gravitational field of a circumference at points of its axis.

Let C be a material wire that has the form of a circumference and constant
linear density A. Compute the gravitational field at the points of its axis.
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Solution:

L P(0,0,Z)

A parametrization of the circumference is

v(t) = (Rcost,Rsint,0),t € [0,27]
dl = Rdt

The gravitational field at a point in the axis is

(—u, —v, 2)

ng@:—Lx—7T—w

If g =(X,Y,Z) it is clear by symmetry that X =Y = 0; the only
nonvanishing coordinate is

z 2m z 2r Rz M
Z — [ Za=— Rdt = 2\2F = 2
(07 07 Z) /C’ r3 /0 ( /ug ¥ 02 ¥ 22)3 d3 a3 z

where d = VR? 4+ 22 and M = \27 R is the wire’s mass.

As a check note that for z = 0 we have d® = R3*and Z(0,0,0) = 0.

Problem 53: Gravitational field of a segment.

Compute the gravitational attraction of a material segment C' with constant
linear density, at points of space exterior to the segment.
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Solution:

Put the segment C' on the Oz axis, C' = [0, L]:

and parametrize it by y(u) = (u,0,0),u € [0, L], dl = du.

The gravitational field created by the segment at points out of the segment

L J—
o) =~ [ 5= [T,
c 0

is
3 3
To compute the components of g = (X,Y,Z) put d = /y>+ 22, dy =

|(z,y,2)] = Va? +d?, d, = \/(z — L)? + d? we can see those magnitudes in
the figure. We have:

2)

X = — L)\ i du = —\(z —u)?+d*) V2L =
= et °
1 1
— M — - —
(dL do)

As a check we see that this component of the field vanishes on the

bisector plane of the segment x = é, as expected by symmetry.
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- y
/ (e —wp @™

L 1
= -\ d
y/o ((z —u)? + d?)3/2 !

We must end up with an integral of the form

/ dz _{z = tant }_/ 1 ‘ 1 g —
(224132 Ydz = Zmdt? T ) cos?t (tan?t+1)320
= /costdt:sint = :
2241

We now use this result to find Y:

[t = 5 | gt Gl
u = — =
o Gowrr e T F ), et T e -

1 ; 1w
= _ —_—d = ——
d2 % (’U2 + 1)3/2 d? /12 +1
B 1 (:)3 -L =
A2 d dy
and finally we obtain the Y component of the field:
y xr—L =
Y =)\= - —
d2( dr, dy

¢) Analogously .
z T — T

S L A

e We have solved the problem and we now give more geometrical content

to the solution. The triangle PQL is rectangle at () and

L — L
LQ _ = cos oy, oy = Z(axis segment, line d)
dr, dr,
The triangle POQ is rectangle at () and
0Q _

— = cos o, ap = Z(axis segment, line d)
dr, do
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The radial part of the field is g, = (0,Y, Z) because in terms of a unit

radial vector e, = % we have
rz—L z . 1
e )\ —_ )= —=
gp ( dL do)dep

1
= A(cosay — cos ao)aep

The module of this field is constant on a circumference with center at
(2,0,0) passing through P. It is a radial field, type "2’ . If we put
gs = —)\(i — dio)(l, 0,0) the whole field can be written as

g:gs+gp

e At points of the segment’s axis we have dp, =| x — L |,dy =| x |. There
is no radial component and we obtain

1 1
g(z,0,0) = (—A - ,0,0
(@.0.0) = (“N=77 = 77700
Now if z > L
B 1 I, r—(x—L)
B _)\x—(x—L) AL
B x(x — L) x(x — L)
L M
- z(zr—L)
o Ifx <0
1 1 M

X(ZL’,0,0) :—)\(L—_x‘l';) = m

that coincides with the result in problem on p.58.
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Logarithmic field
Problem 54: Field of an infinite wire.

At each point in free space (:— points free of masses) find the limit position
of the gravitational field generated by a material segment of constant linear
density A, when we make the length of the segment go to infinity. This is
the field of an infinite wire. Notice a complement to the present problem in
p.120.

Solution:

Let a segment extend between the points (—L/2,0,0) and (L/2,0,0) and let
d=\y?+22, di=/(x+ £+ 2 doy = /(z — £)2 + &2

y

e
e / 2
-
- /

e /

(-L/2,0,0) (L/2,0,0) *
Z

From the preceding problem we know that the field g = (X, Y, Z) gener-
ated by the segment is

X = “AN—-—
(d2 dl)
L
Yy ZL’—E l"l‘g
Y = A2 -
d2( ds dy )
L L
z xr—35 T+3
7 = A= 2 2
d2( ds dy )

Let the field of the infinite wire be gg = (X, ), Z). To compute it we let
L tend to infinity; as limy,_.4 . dy = lim_,4. ds = o0 we have:
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a)
11

X = lim X = lim —A\ —) =0
LEIC}O LEIolo (d2 d1>
and the field is perpendicular to the wire, a reasonable result by sym-
metry.
b)
L L
o T A R T
Vo= Jim Vo= fim A (- )"
Yo L L
— A2 lim (—— - =
25 " 2g,)
Lets compute first
L 1
Lhm — = Lhm = Llim =2
—00 —00 —00 x 2
SV TR G-b+ &
L 1
Lhm = Llim - > =] =2
—00 —00 —00 T 2
Then
y=_n<
2
¢) Analogously
z
Summing up
y oz
ge(z,y,2) = =2A(0 )

) 199 19

da?’ d?
Let us focus the attention on the plane perpendicular to the wire through
the origin; put r = (y, z) and then

r 1r

0,y,2) =L(r) = —2\— = —2\——

gr(0,,2) = Lir) = —2A % = 22

a central field analogous to the newtonian field but now of the form % . The

point mass 2\ generating this field is named a logarithmic particle (because
its potential is logarithmic).
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A

N | P

Problem 55: Logarithmic field.
Find the field generated at p by a logarithmic particle of mass m at q. Show
that this field has zero divergence in R?* — {q}.

Solution:

Let q= (au b)vp = (:L’,y),r = (.T—CL,y— b),’f’ = |I'|,L = (X7Y) Then

R e e
o y—b
Yioy) = —me oy
The divergence is
P bR (g bR (a o)
WX = (= a) T (7 D (0P (s D
0y — @@’ +-b?-204-b* _ (z-a)—(y-b)’
y (e —a) T (v D) (e 0P+ (y D
divL=0
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Problem 56: Field of a logarithmic circumference.

Let C' be a material circumference with constant linear mass density A con-
stituted of logarithmic particles. Compute the field at points exterior to the
wire.

Solution:

First at all we parametrize C'

7(0) = (Rcosb, Rsinb), 0 € [0, 27]

(u,v)

./f>\
(X,y) J

The field is L(z,y) = — [, )\(x_szy_”) dl; by symmetry we need to compute

only

L(:L',O):—/ AWdl,x>0:
C

)
D
\ (x,0)
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On the circumference we have

r? = (z—u)?+0?=
= (r— Rcosf)*+ R*sin®f =
= 2+ R?> —2zRcosf

r—Uu

X(2,0) = —/C)\ Sl =

2 z — Rcosf 0 f0<z<R
= —\ Rdf = ;
/0 22+ R? — 2xRcosf { ~M ifR<ua

where M = A2n R. This integral is best evaluated using complex variable
techniques (do the substitution z = ¢ and integrate along the unit circle
using the residue theorem).

On another hand:

—v n —Rsinf
Y(,00) = — | A—dl=— A Rd6
(,0) /c 72 /0 (x — Rcosf)? + R%sin®f

= 0 (we integrate over a period an odd function respect to )

We obtain

0 if 0<r<R
L) =10 ={ )t 32

T

Problem 57: Infinite wire in R*.

As the field of an infinite wire in R3 generates in R? a logarithmic field we
might suspect that the gravitational field of an infinite wire in R? generates
the ordinary gravitational field in R3.

Assume a newtonian gravitational attraction in R* = {(z,y, z,u) : 2,9, 2,u €
R} to be of the form ’T%’ and take an infinite material wire of linear density

A along the axis (0,0,0,u). Show that the field in R? (the hiperplane u = 0)
has the form ’%’. Compare with p.116.

r2
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Solution:

We denote by G’ the gravitational constant in R*and assume the attraction
between two point masses m,m’ to be

mmr

F=-G

r3 or
Then the field at a point (z,y, z,0) of the hiperplane u = 0 is:

e}

g(x,y,2,0)= —G'/ T%)\dl, r= (2,9, 2 —u),r =|x| = Vd> +u2, d* = 2*+1°+2

[e.e]

Let us first compute the integral

¢ 1 @ 1
/0T4du /07(d2+u2)2du

Using Hermitte’s method write

1 _i(Au+B)+C’u+D
(2 +u2)?2  du d>+u?’  d?+ u?

and after finding the indeterminate coefficients A, B, C, D we obtain

1 d (1/2d*)u 1/2d?
1 a e
(2 +u2)?2  du d?+ u? d? +u?

Then

/ du = (g + 5 arctan 1)fs =
—au = —_— arctan —
0 202 d? +u? 243 0

1 a L 1 ‘ a
= ———— + — arctan—
2d? d? +a? 243 d

“1
li Cdu— — =
N NPT

and due to the evenness of the integrand

0
1 1 7
A = gms

We have obtained
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Then, as the symmetry already shows, the fourth component of the field
vanishes and we have

g(x7 y7 Z? 0) = _G,/ iAdl =

If r = (z,y,2) we can write

AT T
= -G —=

and we see that the field induced in R? has the form of the familiar newtonian
gravitational field.

O

3.2 Integration of vector fields

Let v : [a,b] — U be a C' parametrized curve in the open set U C R"
and F a continuous vector field in U. The line integral of F along v (or
circulation of F a long ~, or work done by F) is

[y Poa- [ ORI

The boldface in dl reminds us that it is a wvector element of line. For a
rigorous study of that concept see |Jan|, pp.169,173.

Two parametrizations v and I' are positively equivalent if the change of
variable h : [a,b] — [c,d] doing the reparametrization satisfies A/(t) > 0. An
oriented curve C' is the collection of all positively equivalent parametrized
curves.

Let v : [a,b] — U be a parametrization of the oriented curve C; then
A = 7(a) is the origin and B = 7(b) the end point of the oriented curve.
Now let & : [a, b] — [c, d] be a change of variable with £'(¢) < 0, t € [a, b]; then
the equivalence class of the reparametrized curve I' is that of the opposite
curve C~. It has the origin at I'(c) = y(k~'(c)) = v(b) = B, the end point
of C, and the end point at I'(d) = v(k71(d)) = v(a) = A:
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B B

Let C' be an oriented curve in the open set U C R"; the integral of F along

Cis
/F~dl:/F~dl
C v

v : |a,b] — U being a parametrization of C'. This definition is independent
of the parametrization choosen (positively equivalent); see p.128.

3.2.1 Medley
Problem 58:

Let F(z,y,2) = zi + yj + zk. Compute the line integral of F along the
following oriented curves:

a) v(t) = (t,t,1),0 <t <1

b) ~v(t) = (cost,sint,0),0 <t < 2.

2

¢) The arc of parabola y = z*, 2 = 0, from z = —1 up to x = 2.
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Solution:

a) [ F-dl= [(t,t,t) (1,1, 1)dt = [ 3tdt = 3.

y4
(1,1,1)

I
|
|
|
|
|
|
|
|
~ |
|
|
|
|
h

b) [[F-dl= fozw(cost, sint,0) - (—sint, cost,0)dt = 027r 0dt = 0.
V4

B

c¢) Parametrize the arc of parabola by ~(t) = (¢,¢%,0),—1 < t < 2 and
then

2 2
/F-dlz/ (t,t2,0)-(1,2t,0)dt:/ (t+2t%)dt =9
¥ -1 -1
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Problem 59:

Let R > 0 and C the semicircumference
(r—RP+y*=R* y>0

traversed from (2R, 0) up to (0,0). Let F be a vector field with direction and
sense the same as those for going from (x,y) to (0,0), and constant module

c. Compute
/ F-dl
c

Solution:

We make a figure

E C

s
-

,/\/’9//2 \l,’/\/e
(RO) (2R0) *
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0 is the polar angle of points of C as seen from the center of the circum-
ference. The field is

g . 0
F(z,y) = —c (cos§,sm§)

and a parametrization of C' is

v(#) = (R+ Rcosf,Rsind), 0 € [0, 7]
7v'(0#) = (—Rsin6, Rcosf)

The circulation is

/F-dl = —c/ (cosg,sing)-(—Rsin@,Rcos@)d@z
c 0 2 2

= —CR/ (— cos b sin 6 + sin b cosf)df =
; 2 2

= CR/ sin€d9:2c
0 2

Problem 60: Agnesi’s curve.

A straight line r passing through the origin cuts at the point A the circum-
ference S

2+ (y — R/2)* = R?/4

and cuts [, the tangent line to S at (0, R), at the point B. The lines through
A and B and respectively parallel to Ox and Oy cut in M. The path followed
by M as r varies is Agnesi’s curve.

a) Parametrize Agnesi’s curve.

b) Find the line integral of F(z,y) = (y,z) along Agnesi’s curve between
(—R,R/2) and (R, R/2).
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Solution:

Y'(0,R) B

a) Let y = max be the equation of r. Geometrically we see that m = 0
must be excluded for both lines are paral.lel. From the figure as well,
it is easy to see that

lim,, 1o M(m) = (0, R)

Now:
y coordinate of A

22+ (y— RJ2)? = R2/4}:>y: m?

Yy = mx

x coordinate of B

Parametrization of the curve

1 m?

- ,m}%),m € (—o0,+00) \ {0}.

y(m) = (
If we prefer to use an angular parameter m = tan# we have
['(§) = (Rcot, Rsin®0),0 € [~7/2,7/2] \ {0}.

Notice those formulae give I'(£7/2) = (0, R) that equals the limit
point.
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b) The point (—R, R/2) corresponds to a value of the parameter ¢, = 37/4
and the point (R, R/2) corresponds to 6y = m/4. On another hand

') = (—R%, 2Rsin 6 cos )

sin
We have:

w/4
/ F.dl = / (Rsin® 6, Rcot ) - (—R%, 2R sin 6 cos 0)do =
C 3w /4 sin“ 6

w/4 w/4
= Rz/ (2cos?0 — 1)df = RQ/ cos 20df = R*
3

/4 3r/4

Problem 61:

Let C be an oriented curve and F a vector field. Show that the definition

[F-a= [Faw) o

Y

does not depend on the positively equivalent parametrization ~ used.

Solution:

Let v(t),t € [a,b] be a parametrization of C, 7 = h(t) a change of variable
such that A/(t) > 0
h: [a,b] —  [e]d
t — T=h()"’

and T'(7) the corresponding reparametrization. Then ~(t) = I'(h(t)),~'(t) =
I(h(t))R'(t) and by the change of variable theorem for integrals we have

/FF~d1: /ch(r(T)) T(r)dr :{ T hfzg)dt }:

b
_ / F(L(h(t)) - I’ (h(t)) 1 (1) dt =

_ /abF(fy(t)) ()t = /VF dl
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If W(t) <0 we have

/FF-dlz /ch(r(T)) T (F)dr :{ T hfzg?dt }:

showing that

[
Notation
Writing y(t) = (21(t), ..., z,(t)) and 7/(t) = (2L, .., 92 one has
b
dxq dx,,
F-dl = Fi,. .. F)- (=2, ..., =2)dt =
/ JRGIS A NC
b
= /Fldm1+-~-+Fndmn
C
[
Problem 62:

Evaluate the following line integrals:
a) [ wdy — ydz, y(t) = (cost,sint), ¢ € [0, 2n].

b) [.yzdx + zxdy + xydz, C the triangle P = (1,0,0),Q = (0,1,0), R =
(0,0,1).

¢) [,adz, C the arc of the curve resulting from the intersection of the
sphere 22 + y? + 22 = 1 and the cylinder 22 + y? = y satisfying x >
0,y >0,z > 0 (Viviani’s curve).
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Solution:
a)

2
/:de —ydr = / (costcost — sint(—sint))dt = 2w
o 0

b) We are not given an orientation on the curve; we use the one given by
PQR. Let us integrate along each side; on the segment P() this is

T 0 1 1—1¢
y |=t|l 1 |+0-=t] 0 | = t ,t€0,1]
z 0 0 0

1
/yzda:+zxdy+xydz:/ 0dt=0
c 0

along QR we have

x 0 0 0
y |=tlo]+a-01]|=|1-t],te0q
2 1 0 0

1
/yzda:+zxdy+xydz:/ 0dt=0
c 0

etc. and the integral vanishes.

Alternatively we may observe that the segments lie in the coordinate
planes. Thus PQ is in the z = 0 plane and the integral amounts to
fc xydz that vanishes because dz = 0.

¢) Taking into account that the cylinder is 22 + (y — 1)* = ()% and that

the curve lies in the first octant we obtain the following figure:
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.

i) This problem is related to the one in p.28. So we first parametrize
the projection of the curve on z = 0 using polar coordinates.

(0,1/2)s

O X
In the figure we see that d = sint and a parametrization is
s
y(t) = (sintcost,sin’t), t € [0, 5],
and ’climbing’ to the sphere we obtain a parametrization of Vi-
viani’s curve

['(t) = (sintcost,sin®t, \/1 — (sin®tcos?t +sin*t) =
= (sintcost,sin’t,cost)

Now we can integrate

w/2 /2
/ xdz = / sint cost(—sint)dt = / —sin®tcost dt =
c 0 0

sin?’t /2
3 0

1
3
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ii) Alternatively we may identify the points in the first octant of the
sphere through its spherical coordinates
xr = singpcosf
= singpsinf
Z = Ccosp
with ¢ € [0, 5], 6 € [0, 5], take into account that the points of C
satisfy 22 —y 4+ y? = 0, and obtain the relation
sin? ¢ cos? @ — sin psin f + sin? psin®H = 0
or
. S B sinpg=0=¢=0
sin(siny —sinf) =0 = { Sin g — sinf = o — 0
The case ¢ = 0 corresponds to the north pole; when we integrate
one point doesn’t matter. The case ¢ = 6 leads to the same
parametrization:
['(§) = (sinfcos®,sin® 0, cosh), 6 € [0, g]
O
Problem 63:

Let C be the intersection of the cylinder 22+y? = 1 with the plane z = az+by.
Find a, b with a® + b?> = 1 such that

Solution:

Iz/yd:c+(z—x)dy—ydz=0
c

Still using the method in p.28 we parametrize C' by:

7(0) = (cos 8, sin b, acosh + bsinb), 6 € [0, 27]

7 (0) = (—sinf, cosf, —asin 6 + bcos )
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Computing [ :

2
I= / (sind, (a—1) cos 0+bsinf, —sin 0)-(— sin , cos O, —a sin O+b cos 0)db =
0

_ /%(a ~1)d6 = 2r(a— 1)

and we see that it suffices to take a = 1,0 = 0.

Problem 64:

Compute the integral
dz + dy

Je lzl + 1yl
C' being the square with vertexs (1,0), (0,1), (—1,0), (0, —1).

Solution:

Take the segments C7, Cy, C3, Cy with the orientation of the figure:

Q(0,1)
Y, yl
R(=1,0) P(1,0)
Vs Ya
S(0,-1)

Remind (see p.88) that if v, parametrizes C, then —v; parametrizes Cf;
and the same happens with Cy and C4. Then
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Parametrization of C}

w=(3) =00 () (4)= (7 )= ()

Parametrization of Cy

o= ()=o) e D)= (2 ) ()

Now compute the integrals

/ dx + dy Vo—dt +dt
C

= 7:0
2+l o [1—t+ [t

/dx+dy B /1 dt—dt

o 12+ 1yl o [t=1]+]—1

/dx+dy B /1 —dt — dt __2/1 dt
¢, |2+ lyl o |—tl+[1—1 o t+(1-1)

/d:)s+dy [t dt+at _2/1 dt
o 1zl + 1y o [tf+1]t=1] o t+(1-1)

Adding the partial results:

I=0

Problem 65: Dependence on path.

Evaluate the work done by the field F(z,y,2) = (y,0,0) in moving a unit
mass point from (0,0,0) up to (1,1,0) along:

a) The polygonal line with vertices at (0,0,0), (1,0,0), (1,1,0).

C

)
b) The polygonal line with vertices at (0,0,0), (0,1,0),(1,1,0).
) The parabola y = 2%, 2 = 0 from (0,0, 0) up to (1,1,0).

)

d) Show there are paths joining (0,0,0) to (1,1,0) along which the work
done by F is as big as we please.
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Solution:
a) Parametrize the path piecewise:
y!
R(1,1,0)

[ ]

— e - - - - >

P(0,0,0) Q(1,0,0) X

[P> Q] : Vl(t) = (ta()?O)a te [0’ 1]
[Q,R]: 7(t) = (1,t,0),te0,1]

and compute the work integrating:

1 1
W:/ (0,0,0)-(1,0,0)dt+/ (,0,0) - (0,1,0)dt =0
0 0

b) Now
Y
| R(1,1,0)
Q(0,1,0) | .
P000) X
[PvQ] 71(t> Ovt S [ ) ]

135
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and integrate the field:

1 1
W:/ (t,0,0)-(O,l,O)dt+/ (1,0,0) - (1,0,0)dt = 1
0 0

¢) The path is
R(1,1,0)

y A

P(0,0,0) X
which we parametrize by
v(t) = (t,%,0), t €[0,1]

and the work is

1
W = / (t,0,0) - (1,2t,0)dt = 1/3
0

d) Consider the path in the figure

YA
2 I
R(1,1,0) »
P(0,0,0) L X

In the vertical segments dx = 0 and the field doesn’t do work along
them. Along the horizontal segments the work is

L 3
—2L—1=2="2L
W 2 2

a value we can make as big as we please taking L big.
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3.2.2 Scalar potential

We say that a vector field in an open set F = (Fy,...F,) € CY(U),
U C R™ has potential V € C*(U) if

F=VV
or, in components,
ov
Fi=—i=1,...,n.
‘ 8@

V' is a bit like a primitive of F; a single function alone has the information
about the n component functions of the field. Fields that have a potential
function are named gradient fields.

If F € C'(U) has a potential V, being of class C* we can invert the order
of derivation:
or; 0*V B 0*V _ OFj
8xj N 8$18£U] N 8$]8$Z n 82@
We shall name that necessary condition for the existence of a potential the
mized derivatives condition; when U C R? we may summarize it as rot F = 0.
U C R3 is called simply connected if any closed curve in U can be “filled’
with a surface contained in U. Then the necessary condition is a sufficient
one as well:

F is a gradient & rot F =0

The previous equivalence remains true for U C R2. In this case we call U
simply connected if it has only one 'piece’ and, moreover, it has no holes.
Then the mixed derivatives condition is a sufficient one for the existence of
a potential.

Let U C R3 be open and F € C}(U); the following conditions are equiva-
lent

a) F has a potential V.
b) [, F-dl =0, for every closed curve C' C U.
¢) fc F - dl depends only on the endpoints of C.

Fields satisfying the third condition are called conservative fields; the equiv-
alence above says that gradient fields and conservative fields are the same.

O
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Problem 66: Finding the field from a potential.

Find the fields that have the following potentials:

a) V(z,y) =logi r=(z,y),r =| r|logarithmic potencial.

b) V(z,y,2) =L r=(x,9,2),r =| r | newtonian potencial.

o

) V(ar,...,2,) = 225r~ "D n >3, r = (21,...,2,),7 =| r | generalized

newtonian potential.

Solution:

O

The line integral of a gradient field F with potential V' is particularly
simple. Observe first that if v is a parametrized curve

d ov ov ., ,
%V(V(t)) = o +ot Bz, n = VV .-y

and then
b
JFea = [Fa)-v-
— [ 9Vew) -
= [ Ve =viae) - Vo)

which reinforces the idea of the potential being a primitive of the field.
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Problem 67:

Let V(z,y,2) = £; compute

r?

a) [, VV-dl, C being the arc of the circumference with center at (0,0, 0)
joining (1,0,0) to (—1,0,0).

b) fQ r3VV - dl, Q being the boundary of the square Q = {(z,y,2) : 0 <
r<l,y=0,0<z<1}

Solution:

a) We need only the end points:

/VV-dle(—l,0,0)—V(l,0,0):—1—1:—2
C

b) A figure:
y4

L

X
e
Now we must do some computations

T 7“2 — ZL’2 Ty Tz
r

) - ( 7"‘3 7_57_5)
1
= ﬁ(y2 + Z2a —XY, _IZ)

G = r?’V(;) = (P + 2% —ay, —x2)

V(
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The field we want to integrate is G(x,0, 2) = (22,0, —xz) because Q C
{y = 0}. We parametrize the boundary of () and integrate:

7 (t) = (0,0,%),t € [0, 1] /1(152,0,0) -(0,0,1)dt =0

Yo(t) = (t,0,1),t € [0,1] /1(1,0, —t)-(1,0,0)dt = 1

() = (1,0,1 — 1), € [0,1] /1((1—75)2,0,75—1)-(0,0,—1)dt:1/2

1
() = (1= £,0,0),¢ € 0,1] / (0,0,0) - (—1,0,0)dt = 0
0
Finally
/T3VV~dl:3/2
Q

Problem 68: Integral of conservative fields.

a) Compute the line integral [, ydz+xdy along the segment joining (0,0)
to (2, 3).

b) Compute the line integral [, zdz +ydy+ zdz along the segment joining
(0,0,0) to (1,2,3).
Solution:

We need not parametrize C because both fields have a potential that we can
find by inspection:

a) V(z,y) = xy is a potential function of F(x,y) = (y,z). Then

/ ydz + zdy = V(2,3) — V(0,0) = 6
C

b) V(z,y,z) = 3(2? + y* + 2%) is a potential function of F(z,y,2) =
(x,y,2). So

/ zdx + ydy + zdz = V(1,2,3) — V(0,0,0) = 7
C
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Problem 69:
Show that the field defined in R?\ {0}

F =
@9) = (s )

satisfies the mixed derivatives condition but does not have a potential.

Solution:

It satisfies the condition:

OF,  _  —a?—1242? g2
oy gx2+y2)2 = G122 orFs B or
OFy __ x?4y?—22 _  y%—z? = or - o

el @122 (@422 Y

If F had a potential its integral along any closed curve should vanish. But
consider the curve:

v(t) = (cost,sint),t € [0, 27],

and the line integral

2m 2m
/F~dl:/ (—sint,cost)-(—sint,cost)dt:/ dt =21 #0
v 0 0

We see that F cannot have a potential; note that F is defined in R?*\ {0}
which is not simply connected for it has a hole at the origin.

O

To obtain a potential of a gradient field it suffices to compute its line
integral along a curve that connects a choosen fixed point with the point
where we want the potential. This is possible when U is a connected set; if
it is not we apply the procedure to each connected component.

Problem 70: First method to find a potential.
a) Show that the following fields have a potential and find it.
i) F(z,y) = (y° + 22y, 2zy + 2°)
i) F(z,y,2) = (y+ 2,2+ z,2 +y)

b) If the field F = (P, Q) defined in the whole of R? has a potential, find
a potential that takes the value 0 at p = (a,b).
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Solution:

a) The fields are defined in the whole of R? or of R3. As they are simply

connected sets, it suffices to show that they satisfy the mixed derivatives
condition.

i) We have:
0,(y* + 2xy) = 2y + 2z = 0,27y + 2?)

and so F has a potential. Using the origin as the fixed point we
may integrate along a segment:

() = (tz,ty),0<t <1
V() = (2,y)

Viz,y) = /0 ((ty)? + 2(tx) (ty), 2(tz)(ty) + (tx)?) - (2,y)dt =
= (yPx +22%y + 229 + 2%y) /1 t2dt = zy* + 2%y

ii) Now we have:

Oyly+2)= 1 =0,(2+12)
O(y+2)= 1 =0d.(z+v)
D(z+z)= 1 =09, (x+vy)

To find a potential we proceed as in i)

v(t) = (to,ty,tz),0<t<1
7' (1) (z,y,2)

and
1
Viz,y,z) = / (ty + tz,tz + to, tx + ty) - (z,y, 2)dt =
0

1

= 2(aty+yz+zx)/ tdt =
0

= xy+tyz+zz
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b) To obtain the value 0 at p = (a,b), we choose p as the fixed point:

() = 1-tp+ix,0<t<1
V() = x—p

and obtain
Vi) = [ (P 50,0001~ p ) - (x— pli =
= (x—a) /Ol(P((l —t)p + tx)dt + (y — b) /Ol(Q((l —t)p + tx)dt
Tn particular if p = (0,0) we obtain the formula
V(z,y) = x/ol P(tx)dt+y/01 Q(tx)dt

We can use this method in the case of n variables.

O

If we want the potential of a conservative field in a rectangle, the
following paths are useful:

y

(ay)
(x,y)

(a,b

and we have a potencial

Vi = [ Pl [ Qs

The path
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(x.y)

(a,b (x,b)

produces the potential

Vi) = [ Plabide+ [ Qs

Both integrations coincide because the integration depends only on the
end points.

Problem 71: Second method to find a potential.

a) Let F = (P,Q) € C}(U),U C R? being an open set, a field that satisfies

. . . .. o opP
the mixed derivatives condition a—g = By Let fP(x,y)d:L' be any

primitive of P respect to x defined in U. Show that in any neighborhood
of each point there is a function C(y) such that

/P(:B, y)dz + C(y)

is a potencial for F.

b) Decide whether the following fields have a potential, and in the affir-
mative case compute it:

i) F(z,y) = (y* + 2zy, 2° + 2y)
i) F(z,y,2)=(y+ 2,2+ z,2+y).
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Solution:

a) Let (a,b) € U and choose an open rectangle K centered at (a,b) and
contained in U; we find a potential V in K.

y

X
If [ P(z,y)dz is an x-primitive of P, any other primitive will differ
from it in a constant that depending on y. The function fax P(u,y)du+
fby Q(a,v)dv is an z-primitive of P as well as a potential for the field;
SO

/ Pla, y)dz — ( / " P, y)du + /b " Qa, v)dv) = —Cly)

and then

/ Pla,y)dz + Cly) = / " Plu,y)du + /b " Ola, v)dv

is a potential.

b) Both fields satisfy the mixed derivatives condition and as we have seen
in a) they have locally a potential.

i)
0,V = v +22y=

Viz,y) = /(y2 + 2zy)dx + C(y) = y’z + 2°y + C(y)

To compute C(y), we impose the other condition V' (z,y) must
satisty:
9,V = 2*+2ay=
ur + 22+ C'(y) = 2>+ 22y = C'(y) =0 = C(y) = const
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We have obtained the potencial
V(z,y) = y*x + z*y + const

ii) 0,V =y+z=V(z,y,2) = [(y+2)dz+C(y, 2) = (y+2)z+C(y, z)
To compute C(y, z) we impose two conditions V (z,y, z) must sat-
isfy:

0V = z4+2r=2+0,C(y,2) =2+2=0,Cly,2) ==
2.V = z+y=2+0,Cly,z) =x+y=0,C(y,2) =y

And now we have a similar problem to that in a):

Cly,z) = /zdy+D(z) =2y + D(2)
y+D'(z2) = y= D'(z) =0= D(z) = const
The potential is:

V(z,y,z) = (y + z)x + zy + const

Problem 72: Integral of conservative fields.

See whether the following integrals are independent of C"
a) [, (sinye”s™¥, xcosye¥™) - dl, between (0,0) and (1, 7).
b) [o(zy?2?, a%yz®, x*y?2) - dl, between (1,1,1) and (1,2,3).
and in the affirmative case compute them.
Solution:
Both fields are conservative:
a) V(z,y) = e**Y is a potential and we have

/(sinye“iny,xcosye“my) -dl = V(l,7m)—-V(0,0) =
c
= 1-1=0
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b) V(x,y,z) = % is a potential and we have

/(:ByQZz,nyzQ,a:Qsz) dl = V(1,2,3) -V (1,1,1) =
c

1 35
= 1 _— = —
8 2 2

Problem 73:

Compute the line integral
I= /(m2 —yz)dx + (y* — x2)dy + (2* — 2y)dz,
c

C being the arc of the circular helix parametrized by y(t) = (acost, asint, 2tt),
from the point A = (a,0,0) up to the point B = (a,0, h).

Solution:

2

Let us see whether F(x,vy, 2) = (2% — yz,y* — 22, 22 — xy) has a potential:

i ; k
rot F = det Oy Oy 0, =(0,0,0)
22 —yz yr—az 22 —ay

and being a differentiable field defined in all of R?® it has a potential. We
compute it integrating along the segment v(t) = (tx, ty,tz),t € [0, 1]:

1
V(Z’,y,Z) = / t2($2—y2,y2—l’2,22 —l’y)([[’,y,Z)dt:
0

1
= g(x?’ + 1y + 2% — 32y2)

Then 1 1
I = V((I,O,h) — V((I,(],O) = g(ag + h3 . CL3) _ ghg



148 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVES

Problem 74:

a) See whether the following integrals are independent of C:
i)
I= / (2zyz + sinx)dx + x22dy + r*ydz
c
ii)
J = / ydzx + xdy + xyzdz
c

b) Same question if C' C {(z,y,2) : z = 0}.

Solution:
a)
i) rot (2zyz + sinz, 2% 2%y) = 0, V(x,y,2) = 2’yz — cosz is a
potential and there is independence of C'

ii) rot (y,z,zyz) = (xz, —yz,0) doesn’t vanish everywhere and there
is dependence on C.

b)
i) The field has a potential and that fact doesn’t depend on where
C is.
ii) Now we are in the plane z = 0 and 2(y) =0 = a%(x); a potential
exists, namely V(z,y) = xy and there is independence of the
integral on C'.
U
Problem 75:

Consider the plane z = 0 in R? and another plane 7 passing through the Ox
axis. Being given X = (z,y,2) € R3,

a) Compute X', X7 the orthogonal projections of X on z = 0 and 7
respectively.
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b) Show that the field
F=X +X"
has a potential and find it.

Solution:

a) Clearly X'(x,y,2) = (z,y,0); to find X” let the equation of 7 be
ay +bz=0,a> +0* =1
and select an ON basis of 7, for instance
(1,0,0),(0,b,—a)
Then the projection is

X7 (SL’,y,Z) = ((I,y, Z) : (17070)>(17070) + ((:L’,y,z) : (07 b? _a))(ov b? _a> =
= (z,b(by —az), —a(by — az))

The field is

F(z,y,2) = (2z,y+b(by — az),—a(by — az))

b) Let us see first whether it can have a potential:

i j K
rot F =det | 0, Oy 0, = (—ab+ab,0,0) =0
20 y+blby —az) —a(by —az)
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and, moreover, the field is everywhere defined and so has a potential
V(z,y,z). We compute it

0,V =2r =V =2+ ¢y, 2)
Now we impose the other two conditions to V' and obtain

0,V = y+0bly—az): 0,0 =y+blby —az)
0.V = z—alby —az): 0.0 =—a(by — az)

Integrating the first equation

ey, 2) = (145 — abyz + (2)

and substituting into the second

—aby +'(z) = —a(by —az)
Y(2) = a’z
2
— 2=
Finally
y? 2
V(z,y,z) =2* + (1+ bz)E —abyz + a25
U
Problem 76:

a) Let F be a nowhere vanishing conservative field in R3. The field lines
are those curves tangent to the direction of the field at each point.
Show they can’t be closed curves.

b) Let f € C}(R3) and C be a curve orthogonal to the level surfaces of f
(at critical points of f there is no orthogonal direction, so we assume
that C' passes through no such points). Show that C' cannot be closed.
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Solution:

a) Let C be a closed field line; being | F |# 0 we have

0</|Nﬂ
C

and we can arrange the orientation of C' to have

O</\NM:/F¢ﬂ:/FM
C C C

But F being assumed conservative we have fc F.dl = 0, a contradiction.

b) The curve has the direction of F = V f at each one of its points and F
doesn’t vanish. Then we can apply a).

O

Problem 77:

Let F be a vector field with fixed direction but whose module and sense at
each point depend on the distance to a fixed reference plane orthogonal to
the direction of F, and the dependence is C*.

a) Show that F has a potential.

b) Is the result true if the dependence on the distance is only C°?

Solution:

Choose the Oz axis in the direction of the field and choose the origin in the
reference plane. Then

F(*Ta Y, Z) = f(Z)(O, 0, 1)

a) If the dependence is C, so is the field; moreover it has rot F = 0 in R3.
It follows that F' is conservative.

b) A potential is:

Ve, ) = / )t
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Problem 78: Potential of a central field.

For a central field F find a potential. Apply the result to find potentials for
the following fields

a) The gravitational field of a point mass m at the origin.
b) The electrostatic field of a point charge ¢ at the origin.

¢) A central field with center at the origin that satisfies Hooke’s law.

Solution:

Consider a central field F(r) = f(r)r, f being a continuous function and
assume it defined only in R?\ {0}. Let us try to guess a potential; it has to
do with f(r). What about f as a potential?

It does not work first at all because of the derivative of f that isn’t even
assumed to exist. What if we take a primitive of f? Let o(r) = [ f(r)dr
(recall that f is continuous); in this case

and we are nearer. As £ is the gradient of 7 we guess that V(r) = [rf(r)dr

will be a potential. Let us try:

a) The field is g(r) = —m%, so f(r) = —m=% and we have V(r) =

—m [ r&dr=m?!

r

b) Now E(r) = ¢% and by analogy with a) V(r) = —¢+. In electricity
texts one sees V(r) = g% but E= —-VV.

¢) The field is F(r) = —kr, f(r) = —k and V(r) = —$kr?.
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Problem 79:

Let F have potential V'; prove the following are equivalent:

a) F(r)

g(r)r (F is radial).
b) F(r) = h(r)r (F is central).

¢) V(r) = f(r) (V is spherically symmetric).

Solution:
b)=-a): Evident.

a)=c): It suffices to show that V' is constant on each sphere Sg. Two
points in the sphere can be connected by a curve in the sphere 7 : [a, b] — Sg:

S
R

and we prove V' is constant on «y. Differentiate V' on ~;

WO = V) ) =

= g0y (®) -~ () =0
because () and /() are a radius vector and a tangent vector to the sphere
respectively; they are orthogonal.

¢)=b): From V(r) = f(r) compute F.

(L

ox; r T
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Problem 80: Energy conservation.

Let F = —VV be a vector field and consider a mass point m in that field
submitted to Newton’s law. Let x(¢) be the movement of the mass point.

a) Show that the energy E = im | %(t) |* +V/(x(t)) is constant.

b) Show that if the particle moves on an equipotential surface then the
celerity is constant.

c) If y(¢) is a trajectory of F looked upon as a velocity field show that
V(y(t)) is nonincreasing.

Solution:

a) Write E = imx(t) - x(t) + V(x(t)) and differentiate

dE 1 . .. .
—o = om2X(t) k(1) + VV(x(1)) - %(1)

Newton's law is m% = F(x(t)) = —VV (x(t)) and substituting

U = x(t) - (~VV(x(1) + YV (x(1) = 0

and F is constant along the movement.

b) If the mass point moves on an equipotential surface, being the energy
constant, the kinetic term is constant and so is the celerity.

¢) The law of the trajectory is now y(t) = F(y(¢)) and

%V(Y(t)) = VV(y(®)-y(t) = VV(y(t) - F(y(t)) =
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3.2.3 Vector potential
A vector field F € C}(U) in the open set U C R? has a vector potential

AecC¥U)if

Not every vector field has a vector potential because taking the divergence
of both terms in the preceding expression gives div F = div (rot A) =0, a
necessary condition for a vector potential to exist. A field such that divF # 0
can’t have a vector potential.

An open set U C R” is star shaped if there is a point p € U that can
'see’” all the points in U, that is for every x € U one has [p,x] C U .

For such sets the necessary condition is sufficient as well, that is:

F has vector potential < div F =0

Let U C R? be an open set and F € C!(U); the following conditions are
equivalent:

a) F has a vector potential A: rot A =F.
b) [ [4F-dS =0, for every closed surface in U.
¢) [ J4F -dS depends only on 9S.
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First method for vector potential calculus
Problem 81:

Consider the closed ball U = {x € R®: |x| < R} and F € C}(U) such that
div F = 0. We want to prove that

Alx) = /0 F(x) x (1x)dt

is a vector potential for F. Show:

a) If M € C'(U) and N(x fo (tx)dt then rot N = fo (rot M)(tx)dt.
b) V x (F(tx) x (tx)) = 2tF(tx) + 124 F(tx).

¢) rot A=F.

d) A, A, are vector potentials (of the same field) < A; = A+ V f locally

(f an arbitrary function).
e) Find a vector potential of F = (0,0, 1).
f) Find a vector potential of F = (0,0, 1) satisfying divA =2z +y — 1.

g) Find a vector potential of F(x,y, 2) = (2z, —y, —2).

Solution:

a) Let us check the first component; using Leibniz’s rule for the differen-
tiation of integrals depending on parameters we have

(I"OtN)l = 8yN3—82N2
1
8yN3 = /8yM3(tx)dt
0
1
azNg = /8ZM2(tX)dt
0

and

(I‘Ot N)l = 8 M3 - 8 Mg)(tX)dt

0
1
= / (rot M),
0
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We can proceed in the same way with the other components.
b) We use the formula (see p.72)
Vx(FxG)=(V-GF—-(V-FIG+(G-V)F-(F-V)G
thus
Vx(F(tx)x(tx)) = (V-(tx))F(tx)—(V-F(tx) )tx+(tx-V)F (tx) — (F (tx)-V)tx
Compute the different terms

= 3t
= tdivF =0
tx-V = tx0, +tyd, +tz0,
V = Fi(tx)0, + Fy(tx)0, + F5(tx)0,

and obtain

V x (F(tx) x (tx)) = 3tF(tx) + (tz0, + tyd, + t20,)F(tx)
—(F1(tx)0, + F(tx)0, + F3(tx)0.)tx

The first operator acting on the first component of F(¢x):
(tz0, + tyd, +120,)Fi(tx) = t*(@(0uF1)ix + Y(0,F1)ix + 2(0.F1 ) i)

that we can write as

d
t2EF1(tX) = t2((8xF1)txl' + (ayFl)txy + (azFl)txZ)a

and analogous results for the other components Fy, F5. The other op-
erator is

(F(tx) 05+ Fo(tx)0y+ F5(tx) 0, )tx = t(Fy (tx), Fy(tx), F3(tx)) = tF(tx)
Finally
V x (F(tx) x (tx)) = 2tF(tx) + tQ%F(tx) =

d 2
5 (EF(x))
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(rot A)(x) = /0 V x (F(tx) x (tx))dt =
= /0 %(ﬁF(tx))dt = (t*F(tx))|; = F(x)

d) If A; = A+ Vf where f is an arbitrary function, then A; is a vector
potential:
rot A} =rot A +rot (Vf)=rot A

Reciprocally if A, A; are two vector potentials
rot(Aj —A)=rot Ay —rot A=F—-F=0
and A; — A = Vf for some f.

e) div F = 0 and we use the formula just proved:
1
Ax) = / (0,0,1) x (tx, ty, tz)dt =
0
! 1
= / (—ty,tz,0)dt = =(—y,x,0)
0 2
f) We look for an f such that A, = 1(—y,z,0) + V[ satisfies

1
div A, :div(i(—y,:v,O)jLVf) =Vif=20+y—1

that is called a Poisson equation; the variables are separated and we
easily find:
3

3 2
.y _z

Finally
1
Al - 5(_y7 z, 0) + (I2, y_7 _Z)

g) Now F(z,y, 2) = (2, =y, —2)
i j kK
F(tx) x (tx) =det [ 2tz —ty —tz | = (0, —=3t%xz, 3t*zy)
tr ty tz
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1
A(x) = /0 (0, =3t%xz, 3t?zy)dt = (0, —xz, 1Y)

Second method for vector potential calculus

Let U C R? be a star shaped open set and let F = (P,Q, R) € C'(U)
be such that div F = 0; then we know that F has a vector potential A =
(X,Y,Z). Write the components of the equality rot A = F and obtain the
partial differential equations system

0,2—-09.Y = P
0.X — 0,7 = Q
8,y —9,X = R

We know that an arbitrary gradient can be added to A; using that fact we
can assume that X = 0; then

a2 = -Q\ _ Z = [, -Qy 2)dt+¢(y,2)
2.Y = R Y = fmiR(t,y,z)dt—l—i/J(y,z)

To find ¢, we impose Y, Z to satisfy the first equation 0,7 — 0,Y = P; we
have

v [T 0Q( Yy, 2) 8w(y,z>_/x8R(t,y,z> Ny, z),
0,7 8ZY_/ 9 dt + o (m P dt + 5 )=

zo 0

_ dp 0P _(/””(OQ(t,y,z) N 8R(t,y,z))dt) _

8y 82 8y 82
o ov [P, 0c v )
Oy 0z " e  Ox dt = dy 0z +P(x,y,2) — P(wo,y,2)

In the middle line we have used that div F = 0. Then the first equation is
satisfied if
dp Oy

@—5 _P(x07yvz)

Choosing 1 = 0 we obtain the solution

Py, z) = /y P(x,t, 2)dt

Yo
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and a vector potential is

x x Y
A=, / Rit.y. 2)dt. / Oty 2)dt + / Plao,, 2)dt)
x0 o

Yo

Problem 82: Vector potentials.

Find a vector potential for each of the following fields:

Solution:

Let A = (X,Y, Z) and choose X = 0; then rot A = (%—5 — 9 oz ox)

a)
%—Z:x = Y:fxdx—l-go(y,z):g—z—i-go(y,z)
6—52—2 = Z=—[zdr=—xz
We impose the first condition
0z oY 0y N
_— = L —— = = —UYz
dy 0z Vi, TV TR Y
and obtain the vector potential
2
x
— (0. = —yz. —
0,5 — yz,—22)
b)
g—z =1 = Y=z+¢(y,2)
P2 =0 = Z=0
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The first equation is

0oz oy Oy B
and
A =(0,z,0)

¢) div F # 0 and F cannot have a vector potential.

d)
2_3; =—z = Y=—[zdr+p(yz)=—2z+¢y,z2)
a_f_—y = Z_——fyd:c———xy
and 0z oY (%%
T =riatr— =25 =
Jy 0z e 0z T=e=0
Finally

A = (0,—xz,2y)

3.2.4 Newtonian and logarithmic potentials

We know that
1
U(r) = m—
(r) mr

is the potential of the gravitational field created by a mass point m at the
origin. As the field has the superposition property, the potential has it as
well. We use the same principle for continuous distributions (see [Kell]).

O

Problem 83: Potential of wires.
Find the potential of
a) A material wire with constant linear density A.

b) A homogeneous material segment with constant linear density A with
origin and end points at (0,0, a), (0,0,b).

¢) A material circumference with constant linear density. Find the poten-
tial at a point of the axis.
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Solution:

a) Using superposition in the continuous case we have

U(l’,y,Z) :/)\ldl,’l“:| (I—U,y—U,Z—W)|
c T

and if y(t) = (u(t),v(t), w(t)),t € [a,b] is a parametrization of C' then

b 1
U(z,y,2) :/a )\Wv (t)dt

b) A figure:
q) P(X,y,Z)

X y

Parametrize the segment putting v(¢) = (0,0,t),t € [a,b],dl = dt and
let d? = 2 + y? where d is the distance from (x,y, 2) to the axis. Then

Ulz,y,z) =

\ b 1 dt—{t_z = u V=
o VJE+(z—t2 = dt = du’
b—z 1
- A —d

We compute a primitive function of the integrand

= dsinhwv dcosh v

1 U
SR y
/ Va2 Fu? du = dcoshvdv \/ d2(1 + sinh? v)

B coshv . uw
= /Coshvdv—v—smh pi

dv =

that is
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and isolating v

V2 2
v = log% = log(u + Vd? + u?) —logd
The potential is
b—z 1

U(x) =X —_—
W= Ve

_ 2 EAY
Ulr.y.2) — Alogb z2+4/d*+ (2 —0) _
a—z+\/d*+ (z —a)?
b—Z—l-db

du = A[log(u + Vd? + u2) — log d]’~

163

d, and d, being the distances form (z,y,z) to the end points of the

segment.

c) A figure:
P(0,0,z) 1

A parametriztion of the wire is v(¢) = (Rcost, Rsint,0),t € [0, 27] and

then
2
U(o,o,z):/AldzzA/ Lpar = 2rmat = st
o . d d_ ' d

the same potential as that of a mass M at the origin.

Problem 84:

Check that U(z, y) = log  is a potential for the field L(x,y) = —% generated

by a logarithmic particle of unit mass at the origin.
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Solution:
oU 0 1 1.z T
R L
ou 9 1. Ty vy
8—y_T8y(r>_r( r2)r_ r2

Problem 85: Logarithmic circumference.

Let C' be a circumference made of logarithmic particles; find the potential at
points in the plane of the circumference. The following integration formula
may be useful:

2m 1 /1 — e2
/ 10g(1—ecos€)d9:27rlog%,0§e<1
0

Solution:

Letr = (z —u,y —v),r=|r|

(u,v)
;

‘/

(x,y)

Because of the symmetry it suffices to compute U(z,0), z > 0. Parametriz-
ing the circumference by

v(0) = (Rcosb, Rsinf), 0 € [0,2n],dl = Rdo
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we have
Ulx 0)—/>\lo Ya - )\/%lo ( ! ) Rd6 —
’ c o 0 g V(2 — Rcosf)? 4+ R2sin’ 6
1 2w
= —§AR/ log(2* + R* — 2xR cos 0)df =
0
1 2m 2xRcosf
= = 1 2 (] — 22 -
2)\R/0 ogl(a? + B) (1~ 25D g
1 2m 2 2xRcos 6
= —=A 1 2 2)do log(l — ————)db
5 R(/O og(z* 4+ R?) —i—/o og( $2+R2)
If e = %, then 0 < e < 1 and we are allowed to use the formula:
1 1++v1—¢e2
U(x,0) = —§AR(27T log(2® + R?) — 27 log %)
A short computation gives
1+ V1 —e? _}(1+|1’2—R2 |)
2 2 z? + R?
and then
U(z,0) = —%(lo (z° + R?*) + 1o 1(1 + w)) =
T T s 3 2+
M 1 | 22 — R? |
= ——1 LR (14— =
- logl(a? + B3 (1 + L)
M. 2’ + R+ | 2° - R?|
== g 2

Two cases are in view:

a) Interior points 0 <z < R

M 1

U(z,0) = ——log R*> = M log —

(x,0) 5 log &5

The potential is constant in the interior; the field vanishes there. This

situation is analogous to that of a material sphere in R3® which has
vanishing newtonian field in the interior.
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b) Exterior points R < z

M 1

U(z,0) = ——loga* = M log —
2 x

or, for any exterior point
1
U(r) = Mlog—,r = (z,y),r =| r |

r

and we see that it is the same potential as that of a logarithmic particle
of mass M at the center.

O

Dipoles

We want to describe the potential generated by two equal point masses
of contrary sign (!) —m,m when they approach along a line. In the limit we
have a dipole and the line is the dipole axis.

-m d m

and if we let d — 0 we shall have U(P) — 0. To avoid that we define y = md,
the dipole moment, and maintain it constant in passing to the limit. Writing
the potential of the two masses in terms of the dipole moment we have

S E
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Put —m at point Q = (—g,0,0) and m at point Q' = (g,0,0); then

d
r(z,y,z) = \/($+§)2+y2+z2

o) = e Dpegee

and noticing that '(x,y,2) = r(z — d,y, z), we obtain the potential of the
dipole at point P = (z,y, 2):

1 1

. r(x—d,y,z _7’:(:, 2 0 1
Ule,y,2) = lim p =000 T = ()

We have an x-derivative because to simplify we have choosen ) and @)’ along
the z-axis. The potential of a dipole with moment ;1 and axis u (a unitari
vector from the negative mass point to the positive one) is

0 1
U=p—(-
'uau(r)
which we shall write as well as
1
U= MV(;) -u

Problem 86: Field of a dipole.

a) Compute the field of a dipole with moment p and axis u = (1,0,0).

b) Do the same for u = %(1, 1,1).

Solution:

a)
0 1 0,1 x
Uzua—u(—)zu%( ) =—n—

r r r
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and the components of the dipole field are

¥ — ou rd—3r?ty =3
O H 70 -k 7o
ou —3r*iy 3y
y = &=y S
oy 76 7D
7 - 8_U__ —37“2%93__335_,2
0z H ré 7D
b)
0 r 1 1 1
T (D= e (1) =
U “au<r) hs \/3(, 1) ur3\/§(f€+y+2)

and the components of the field are

w3 1
X = —(—— _
Tyt )
w3y 1
Y = —_— = —
Tty ) )
w3z 1

Problem 87: A wire of dipoles.

Let C be a segment of length a constituted of dipoles with constant linear
density of moments p with all the axes in the segment’s direction.

Solution:

Take the segment along the Oz axis; with the notation as in the figure we
have r = (z,y,z — w)
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z d P(X,y,2)
(0,0,a) —Z

(0,0,w) ,

(0,0,0)

X

The potential of the dipole segment is

Ulw,y,2) = /'uﬁu r Jdi = / 8w r

/ “ 0 \/x2+y+z— ))
w=a H K
- o= L L
\/x2+y +(z—w)2 dy  do

Bar magnets have two poles and the interaction between poles follows
Newton-Coulomb law with the intensity of the poles substituting the charge.
Both poles of a magnet have the same intensity and opposite signs. The
segment going from the negative pole to the positive one is called the axis of
the magnet.

Cutting a magnet in two pieces we have two poles in each piece, with
moreless the same intensity. We infer that a magnet can be seen as formed
by microscopic magnets with aligned axes. At the endpoints the forces among
poles are not compensated and we have the two poles of the magnett.

If we represent the microscopic magnets through dipoles, the result of the
preceding problem shows that our point of view is consistent.

O

Problem 88: Logarithmic dipole.

Define the logarithmic dipole for the potential theory in the plane. Compute
the field of this dipole.
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Solution:

By analogy with dipoles in space we define the potential of a logarithmic

dipole as
0 1
Ulr) = Ma—u(IOg ;)

Assume u = (a,b),a* +v*> = 1. Then

U= V) = ) (log 1), oog )

Ox r r
Ty u
and the field is
ou 2z a, p 9 9
97 - (‘g;(aﬁf +by) + ﬁ) = —ﬁ(a(y —a7) — 2bzy)
ou
e —ﬁ(—me +b(2* —y?))



Chapter 4

Surfaces

4.1 Surfaces

A parametrized surface of R? is a diferenciable function defined in a region
D C R? with values in R3:

a: D CR?® — R3
(u,v) = au,v) = (z(u,v),y(u,v), z(u,v))
Z
\
e S

K\/u X/—)y

e The parametrization is reqular at those points of D where

Oy Oyx
rank Oy Ouy | =2
Ouz Oyz

171
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This condition says that the vectors d,a, 0, are linearly independent.
If p € a(D) corresponds to a regular point, the plane

T, = p + (0w, Opa)

is called the tangent plane at p, and the vector N = J,a X J,«
is the normal vector associated to the parametrization. We call the
parametrization regular if it is everywhere regular

e The parametrization is simple if it is injective.

We will use mainly regular and simple parametrizations.

Problem 91: Spherical parametrization of a sphere.

Parametrize the unit sphere
S?={(z,y,2):2*+y*+2* =1} CR®

using spherical coordinates and find out if it is differentiable, regular and
simple.

Solution:

Using the spherical coordinates = colatitude, = longitude (see the figure
below) a parametrization of the sphere is:

alp,0) = (sinpcosb,sinpsinb, cos )
D = {(¢,0);0<¢p<m0<0<2m}

which is differentiable at every point of D (in fact it is differentiable in R?)
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2T

e Geometrically we see that « is injective in D= (0, 7) x (0, 27), the inte-

rior of D, but the image «(D) excludes the 'Greenwich semimeridian’
G = {(singp,0,cosp) : p € [0, 7]}
« is a bijection of [o): (0,7) x (0,27) onto S% — G.

e The tangent vector to the meridians is d,c and the tangent vector to
the parallels is Oga:

J,ac = (cospcosb, cospsinb, —sin )

Ogpov = (—singsind,sinpcosb,0)
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The normal vector associated to the parametrization and its norm are:

N = J,a x dga = (sin*p cos b, sin *psin 6, sin ¢ cos p)

IN| = (sin + sin2pcos 2p)/? = | sin ¢| = sin ¢

We see that whenever 0 < ¢ < 7 we have |N| # 0 and then N # 0: the
vectors d,a and Oy are linearly independent and the parametrization
is reqular at interior points of D. Note that N points to the exterior
of the sphere as can be seen writing (remind that sin¢ > 0)

N = sin p(sin ¢ cos @, sin ¢ sin 0, cos ) = (sin @)a(p, 0)

a:D— S%is a map (or local chart see [Jin]) of S? it being understood
that a map need not cover the whole sphere, as happens with ordinary
geographical maps. A collection of maps that cover the whole sphere
is called an atlas.

Now if we want an atlas of the sphere we need more maps apart from
«. For instance if we define the colatitude ¢ with respect to the Oy
axis and take the negative Ox axis to measure longitudes, we have the
parametrization

B(p,0) = (—sinpsinb, cosp,sinpcosh), (p,0) € D = [0, 7] x [0, 27]

y

defined in D= (0,7) x (0,27). This new parametrization doesn’t cover

the semimeridian G’ = {6 = 0}. Then a, 3 are an atlas of S*:
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Problem 92: Cartesian parametrization of the sphere.

Parametrize the sphere S? as the graph of a certain function and find out
wether it is regular and simple.

Solution:

From the sphere’s equation 22 + 32 4+ 22 = 1 we can isolate several functions:

a) In Dy = {(z,y) : 2 +y? < 1}

flz,y) = 1 — (2% +y?)
g(z,y) =— V1-(22+y?)
fxy) aixy)
y
y

4 x
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b) In Dy = {(z,2) : 2% + 2* < 1}

h(z,z) = /1— (224 22)
k(x,2) = —/1—(22+2?)
Z y4

k(x,2) Nh(xl)
_ﬁ ;
X

¢) In Dy ={(y,2) : y* + 22 < 1}

X

Wy,z) = V1—(y*+2?)
m(y,z) = —v1—(y*>+2?)
m(y,Z V4 Z I(yiz)y
y
X X

Let us use as a model

OZ(ZL',y) = ($7y7 f($7y)) = ($7y7 1- (IQ + y2))a (ZL’,y) € Dl
e «is a parametrization of the upper semisphere (excluding the equator),

differentiable in D, and « is clearly injective; it is a bijection of D,

onto 5%\ S2.
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e The tangent vectors to the coordinate curves are

dya = (1,0, —— 2 )
V1= a2 — 2
oy = (0,1, Y

Ny

and the associated normal vector and its norm are

T Yy
N - ) 71
<\/1—x2—y2 \/1—:172—y2 )
1
IN| =

/T— 22 — 2

We see that the normal vector N points to the exterior of the sphere;
again |IN| # 0 and the parametrization is regular.

We can proceed in the same way with the other maps; altogether they are
an atlas of S2.

Problem 93: Stereographic projection on the sphere.

The stereographic projection from the north pole N = (0,0, 1) of the plane
7 = {z = 0} on the unit sphere S? sends each point P of 7 to the intersection
point P’ of the straight line through P and N with the sphere. Compute
the equations of the projection so obtaining a parametrization of S? (whose
domain is D = R?).

Solution:

First make a figure:
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We find the projection in two different ways:

a) The line uniting P = (u,v,0) and N is

X(t)=N+t(P—N) = (tu,tv,1 —t),t € R
We look for the point X (t) € S?

2
t2(u? 4 v? -t =1=t=0,t=
(u+ %) + ) ’ 1+ u? + v?
the P’ coordinates are:
2 2 2 21
a(u,v) = ( . - Wy ), (u,v) € R2

1+u2+0v2" 14+u2+02" 1+u2+02

It is geometrically clear that « is injective and that it’s trace is S? — N.
The tangent vectors to the coordinate curves are

5 - (2(1 — u? +v?) e — 4uv 4u )
Y N w2+ 022 (T w2+ 02)2 (1 + u? + v2)2
—4uv 2(1+ u? — v?) 4
av = ( )

(T+u2+02)2 (1+u2+02)2" (1+u?+ 02)2
and the associated normal vector is

21 20 u? +v? —1
(14 u?+0v2)3" (1 +u?+02)3" (1 +u2+0v?)3

N = 4 )
But N = 0 can only happen if v = v = u® + v> — 1 = 0 which is
impossible, and we conclude that the parametrization is everywhere
regular.
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b) For another derivation we remind the equations of the projection, from
the north pole, of the Ox axis on S

2t t2—1
141271+ ¢t2

() = ( );teR

Take polar coordinates in the plane:

u = pcosf

= psinf
From the formula of v we see that the point (p,0) is projected on

2p pP—1 2
0, es
(1+—p2’ 1%—p2)

Then P = (pcosf, psin @) is projected to

2 2 —1
(%Cose,ipsmep 5) =
1+p 1+ p? 1+ p?
y 2u 2v u? + v? —1> c g

I+u? 402 1+u> 402" 1+ u?+ 02

Problem 94: Parametrization of an ellipsoid.

By analogy with the angular coordinate in the parametrization of the ellipse
and with the spherical coordinates, parametrize the ellipsoid:

2 2 2
E:{(x,y,z).I—+‘Z—2+Z——1,a>b>c>0}

Find out if the parametrization is regular, injective.

Solution:

The analogy suggests the parametrization

a(p,0) = (asinpcos, bsin psin b, ccos ), (p,0) € D = [0, 7] x [0, 27},



180 CHAPTER 4. SURFACES

a C* function such that a(p,0) € E because

(asinpcosf)?  (bsinpsind)?  (ccosp)?
. + + =
a b? c?
= (sin ¢ cos 0)% + (sin @ sin #)? 4 (cosp)? =
= sin?p 4 cos g = 1

a) « is injective in D= (0,7) x (0,27) because if (z,y,2) € a(D) there is
a unique ¢ € (0,7) such that z = ccos¢. Then the equations

r = asinpcosl }:> cos) = asz"fw}

B : . . oy
y = bsinysing sinf = Feng

produce a unique 6 € (0, 27) satisfying them.

b) To see wether it is exhaustive we take a look at the geometrical meaning
of the coordinates ¢, f. Cutting E with the plane x = 0 we obtain an

ellipse e:
2 2

Y z
ptae=!

V4 V4

E e
C C
b
a b
X y y

whose right part (y > 0) we parametrize by

Y(¢) = (bsinp, ccos @), ¢ € [0, 7]

¢ being the colatitude in the circumscribed circumference (see Problem
5). Cutting F with the plane z = ¢ cos ¢ we obtain the ellipse €:

ZL'2 2

E—l—ﬁ+cos2gp:1
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22 Y2
(asin p)? - (bsinp)2 !
z
E y 3
a .

We parametrize e taking 6 € [0, 27] as a parameter:
['(#) = (asin ¢ cos B, bsin psin §)
And taking into account that € is in the plane z = ¢ cos ¢ we obtain the

parametrization «. If

N =(0,0,¢),S = (0,0,—c),G = {(asinp,0,ccosp) : 0 < p < 7}

we see that « is a bijection from [O) to £ —{N,S,G}.

The matrix of the tangent vectors is

acospcosf —asinpsinf
bcospsinf  bsin p cos
—csinp 0

Whose minors are A} = %b sin 2, Ay = besin? g cosf, Ay = acsin® @ sin 6.
A, vanishes only for ¢ = 7; but for that value Ay = bccos), Az = acsind
don’t vanish simultaneously. The parametrization is everywhere regular.

O

Problem 95: Cones.

A cone S with directrix a plane curve C' and vertex at p = (a,b,c) € R?
consists of the half lines emanating from p and passing through the points

of C.
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a) Parametrize S.

b) Parametrize the cone with vertex p and directrix the parabola y* =
2px, 2z = 0.

c¢) Parametrize the cone with vertex p and directrix the ellipse :1—22—1—2—2 =1.

Solution:

Here are several cones:

B A%

a) Let C be given by

V(t) = (2(1),y(1), (1)), t € [a, 0]
The points of the cone are X = (1 — s)p + (), and in components

a(s,t) = (1 —=s)a+ sz(t), (1 —s)b+ sy(t), (1 —s)c+ sz(t))
(s,t) € Ry x[a,b

b) Parametrize the parabola, y(y) = (g—;, ¥,0), y € R and obtain a parametriza-
tion of the cone:

a(s,y) = (1—s)a+ sy—, (1 —=39)b+ sy, (1—s)c)

2p
(s,y) € Ry xR
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c¢) Parametrize the ellipse, v(0) = (mcosf,nsiné,0), 6 € [0,27] and ob-
tain the parametrization of S:

a(s,d) = ((1—s)a+ smcosh, (1 —s)b+ snsin, (1 — s)c)
(s,0) € R, x[0,27]

Problem 96: Cylinders.

A cylinder S with directrix a plane curve C' and generatrixs parallel to a
given vector v consists of the lines that pass through the points of C' and are
parallel to v.

a) Parametrize S.
b) Parametrize the cylinder with directrix v(t) = (¢,¢2,0) and generatrixs
parallel to v = (1,2, 3).
Solution:

Here are several cylinders:

a) Let C be parametrized by v(t) = (x(t),y(t),0); then the points in the
cylinder are
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or, in components:
a(s,t) = (z(t) + svy, y(t) + svg, 2(t) + sv3)

b) Using a) we have
afs,t) = (t + s,1% + 2s,3s)

Problem 97: Parametrization of a ruled surface.
Let p > 0 and consider the straight lines

r: y=0, z=p

r: x=0, z=—p

Parametrize the surface S consisting of the straight lines that pass through
a point of S* = {(z,y,0) : 2% + y?> = 1} and cut r and 7.

Solution:

r y=0,z=p

y

I\ (XanO,ZO)

r x=0, z=-p

Let (a, b, 1) be the director vector of [, one of the lines in the surface, and
(70, %0,0) a point in S*. The parametric equations of the line are:

r = xg+ Aa
y = Yo+ pl
z = A
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The line [ cuts the line y = 0,2 = p and we have

A= p 1
=b=—-
Moo=~y } P
The line [ cuts the line x = 0,z = —p and we have
A = —p 1
A = —xg }j&—;xo

The points in the surface are of the form
1 1
(2,9, 2) = (0, 0,0) + t(z—gil?o, Yo 1),teR

As (70,90,0) is a point in S* we can write it in the form (cos#,sin#,0)
and we obtain the parametrization of the surface

a(6,8) = (1 + ) cosb, (1= L) sing, 1)t € R, 6 € [0, 27]

p p
U
Problem 98:
Let S be the parametrized surface
. T
a(u,v) = (ucosv,usinv,u + Incosv),u € R,v € (—5, 5)
Fix two values uy, ug and consider the curves ;(t) = a(u;,t),t € (=%, %),i =

1,2. Show that the length of the arc of I'(1) = «a(7,v), 7 € R, v fixed, limited
by the intersections of I' with ~; and 7 is independent of v.

Solution:

A figure:
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—-TU/2

Let 71 and 75 the values of the parameter corresponding to the intersec-
tion of I' with v, and 75 respectively. To compute the length of the above

mentioned arc we have

['(r) = (rcosv,Tsinv, 7+ Incosv)
() = (coswv,sinv,1)
[T'(r) | = v2

and

L= [V = Vi )

We want to see that 7, — 71 doen’t depend on v. The points of intersection

are given respectively by

U1 cos ty
Uy sin ¢y

u; + In cos t;
and

U9 COS Ty
Ug SN o

U9 + 10 cos ty

T COSV
71 Sin v

7 + Incoswv

To COSV
Ty SIn v

T9 + Incoswv
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From the first and second equations we obtain 77 = u} and similarly from
the fourth and the fifth we have 73 = u2. Then 7, = +u; and 75 = Fus,.
On another side the third and sixth equations give

Ty —T1 = Uz — Uy +Incosty —Incost; =
cos ty
= Uy —u;+1In
cos tq

Now from the first and fourth equations we find

costy, T u tus  uy
0< ==. == .

costy T us  tuj  ug
because the quotient is positive. Then

To—T1 = Us—u;+1Inl=

= U2 — U

that is what we wanted to see. The argument fails if u; or uy vanish (they
can’t vanish both because we have two curves); we leave to the care of the
reader to fill in this black hole if he wants to do so.

O

Two parametrizations

a: D CR® — R3
(u,v) = au,v) = (z(u,v),y(u,v), z(u,v))

and B: D CR? — R3
(s,1) — (s, t) = (X(s,1),Y (s, 1), Z(s,t))

are equivalent if there is a differentiable bijection h with differentiable inverse
h~! (a diffeomorphism, a change of variables)

D oD
B\ S a
]RS

such that 0 = a o h. A surface S consists of all the equivalent parametrized
surfaces. The common trace of all those equivalent parametrizations is called
the geometrical surface S (we shall call it ).

O
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Problem 99: Equivalent parametrizations.

Show that the two following parametrizations are equivalent:

a: [0,27] x [0,1] — R3
(u,v) —  (cosu,sinu,v)
g: [0,7] x[0,1] — R3
(u',0") —  (cos2u/,sin2u/,v")
Solution:
Clearly

h: (0,2m) x (0,1) — (0,m) x (0,1)
(u, ) = (u/2,0)

is a diffeomorphism showing the equivalence:

B(h(u,v)) = B(u/2,v) = (cos 2§,sin 25,1)) = a(u,v)

Problem 100: Lower semisphere.

The parametrization v(u) = (3%, Z;ﬁ), u € [—1,1] of the lower unit semi-

circumference S!, gives the parametrization of the lower unit semisphere

S2

2r 2r r?

. -1
OK(T, 9) = (m COSH,THSIHQ, 7’7% (T, 9) € [0, 1] X [07271']

We also have the spherical parametrization of the same surface
Blp, N) = (sinpcos A\, sinpsin A, cos @), (¢, A) € [1/2,7] x [0, 27].

Show they are equivalent.



4.2. SURFACES OF REVOLUTION 189

Solution:

We want to find a diffeomorphism h = (h!, h?)

h: (0,1) x (0,2mr) — (w/2,7) x (0,2m7)
(r , 0) —  h(r,0) = (¢, A

such that a = o h. It is geometrically clear that 6 = X so h?(r,0) = 6 and
we have to find out A, which amounts to express ¢ in terms of (r, ).

We must have
r2—1

r2 41

r2—1

7

cos p =

= arccos
i (oo

Then )

0

re+1

and we should check that it is a diffeomorphism. Cearly h is a bijection (the
variables are uncoupled and each component of A is a bijection). To see h is a
diffeomorphism it suffices to show that the jacobian determinant det h’ # 0,
because then the inverse function theorem applies. We have

h(r,8) = (arccos(

det(h () =det | 711 O )= 2 <
CARE = 0 1) T

So both parametrizations are equivalent.

4.2 Surfaces of revolution

Problem 101: Surfaces of revolution.

Let C' be a plane, simple, regular curve in the half plane y = 0,z > 0.
Parametrize the surface of revolution S obtained revolving C' around the Oz
axis and decide if it is regular and simple. As an application parametrize:

a) A right circular cylinder.

b) A right circular cone with radius R and height h.
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¢) A right circular cone with an angle 2« at the vertex.

d) A torus (doughnut) is the surface of revolution obtained revolving
around the Oz axis the circumference with center at (a,0,0),a > 0
and radius b, 0 < b < a in the zz plane. Parametrize it.

e) A circular paraboloid.
f) An ellipsoid of revolution.

g) The surface obtained revolving the graph of z = f(y), f : [a,b] —
R, a > 0 around the Oz axis.

Solution:

meridian
/

x()\ parallel

Let
v(t) = (x(t), 2(t)), t € [a,b],z(t) >0

be a parametrization of C' (in the plane y = 0); then
a(t,0) = (x(t) cosb, z(t)sinb, z(t)), (t,0) € D = [a,b] x [0, 27]

is a parametrization of S, differentiable as many times as v is. The parametriza-
tion is injective in D and a(D) is S except for the meridian corresponding to
6 = 0. Notice that 6 still controls the "longitude’ and that ¢ controls the ’lat-
itude’; the curves 6 = const are the meridians of S and the curves t = const
are the parallels of S.
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The tangent vectors to the coordinate curves are

Oyav = (2'(t) cosO,2'(t)sinb, 2/ (t))
Opae = (—x(t)sinb, z(t) cosh,0),

and the associated normal vector and its norm are
N = O x Opa = (—x2' cosl,—xz' sinb, xz')
IN| = (22?4 222™)Y? = o224 272
We see that the parametrization is regular for

=zxVva'c+ 24>
N /2 12 O

due to the regularity of the revolving curve.

a) Consider the cylinder generated by revolving the straight line {y =
0,z = R, R > 0} around the Oz axis. The straight line in the xz plane
is

x(t)=R,z(t) =t
and we obtain the cylinder’s parametrization

a(t,f) = (Rcosf, Rsin6,t), (t,0) € R x [0, 27]

b) A circular right cone with basis the circumference 2 +y?> = R, 2 =0
and height h is obtained revolving the segment z = —%x—i—h, 0<z<R
around the Oz axis. The segment is

x(t) =t, 2(t) = —%t+ h,t € [0, R]

and we obtain the parametrization of the cone
a(t,0) = (tcosh, tsinb, —%t + h), (t,0) € [0, R] x [0, 2]
with vertex at (0,0, h).
¢) Now tana = R/h and the parametrization is
v(t) = (¢, (cot a)t + h)
a(t,0) = (tcosb,tsinf, —(cota)t + h), (t,0) € [0, htana] x [0, 27]
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d) A torus is obtained revolving the circumference (r—a)?+2% = b* y = 0
(with 0 < b < a) around the Oz axis. Parametrizing this circumference

v(t) = (a4 beost,0,bsint), t € (0,27)
we obtain the torus parametrization
a(t,0) = ((a+bcost) cosb, (a+bcost)sin b, bsint), (t,0) € [0,27]x]0, 27]

z

X

e) The circular paraboloid is obtained revolving the parabola z = 2%,y = 0
around the Oz axis. Then S admits the parametrization

aft,0) = (tcosf,tsind, t?), (t,0) € Ry x [0,27]

V4
z=¥ y
X
f) Let’s parametrize the generating semiellipse: z(t) = acost,z(t) =

bsint, t € [—m/2,7/2]; then the ellipsoid of revolution is

a(t,0) = (acostcosf,acostsinb, bsint), (¢,0) € [—7/2,7/2] x [0, 27]
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g) Let’s parametrize the graph of f: v(t) = (¢, f(t)), t € [a,b]. Then
a(t,0) = (tcosf,tsind, f(t)), (t,0) € |a,b] x [0, 27]

Problem 102: Hyperboloid.

Using the parametrization (cosh u, sinhu),u € R of the hiperbole 2% —3? = 1
(see problem 7, curves) to parametrize the hyperboloid

H={(a,y,2): >+ — 22 = 1}

Solution:

The intersection of H with the plane y = 0 is the hyperbola C' with equation

2?2 — 22 = 1 parametrized by & = coshu, z = sinhw. The intersection of H

with the plane z = c is the circumference 2% +y? = 1+ ¢?; this shows that H
is a surface of revolution generated by revolving C' around the Oz axis. The
parametrization of H is then

a(u,d) = (coshu cos @, coshusin @, sinhu), (u,0) € R x [0, 27]
« is everywhere regular because the generating curve C' satisfies:
v(u) = (coshu,sinhu)
7 (u) = (sinhu,coshu)
| 7/(u) > = sinh®u + cosh® u = 2cosh?>u —1 >0
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Chapter 5

Integration of fields over surfaces

5.1 Area of a surface

Let a : D — R3 be a differentiable, regular and simple parametrization
of a surface S and let N = J,a x 0, be the normal vector associated to «;

define
Area(S):// IN|dudv
D

dS

X
One can see that this definition is independent of the parametrization

(see problem p.??). Then defining the scalar element of area dS =| N | dudv
(see interesting comments in [Jdn| p.173,185), we may write

Area(S / / 1dS

195
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O

Problem 103:

Using spherical coordinates compute:

a) The area of a sphere of radius R.

b) The area of the region R on the unit sphere S? limited by two meridians
0 = 0, and 0 = 0y where 05 — 0, = 7/6, and the parallels corresponding
toz=0,z=1/2.
Solution:

a) In the parametrization of the sphere by geographical coordinates the
element of area is

dS = R?*sin @dpdd.

7r 2
A = / / R?sin pdpdf =
o Jo

= 2TR? / sin pdp = 41 R?
0

Then

b) Take as region R the one limited by the parameters values ¢ € [7/3,7/2],0 €
[0, 7/6]

z
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Then

w/2 w/6
A :/ / sin pdpdf =
w/3 JO
T

— w2 _ T
= g(— COSSO)Lr/g ~ 12

Problem 104:

Joining each point of the helicoid v(t) = (cost,sint,t),t € R with the point
(0,0,1) in the Oz axis we obtain a surface called the helicoidal ramp; compute
the area of a complete turn.

Solution:

—

A parametrization of one turn is
a(s,t) = (scost, ssint, t),(s,t) € D =1[0,1] x [0, 27]

The associated normal vector and its norm are:

as = (cost,sint,0)
oy = (—ssint,scost,1)
N =a,x o = (sint,—cost,s)

IN| = Vits?
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We compute the area:

A = //\N\dsdt:
D

27 1 - .
= / /mdsdt:{ s = sinhu }:
0 0

ds = coshudu
arcsinh 1 arcsinh 1 24 —ou
2
0 0 4
mee e —arcsi T, o
= 5(7 _ 5 + 2u) Z;grcsmh 1_ E(smh Qu + 2u) g;grcsmh 1

and reminding that sinh 2u = 2sinh u coshu = 2sinhuy/1 + sinh? « and
that arcsinh 1 = log(1 4 /2) we obtain

™

2(2 1-4/1+1+ 2arcsinh 1) =
(V2 +log(1 + V2))

A

Problem 105: Two cylinders.

Let C; and Cy be two right circular cylinders of radius R and axis Ox and
Oy respectively. Compute the area of the region S cut by the solid cylinder
C in the surface of Cs.

Solution:

Let C be the solid cylinder; a figure of the upper half of S is:



5.1. AREA OF A SURFACE

The equations of the cylinders are

Ci: y*+22< R?
Cy: 22422= R?

and the projections of the points of S on z = 0 satisfy

y? -1 <0e |yl < |zl

and thus the projected points are the triangles POQ and P'OQ’

Q ’ /Q
7
7
7
R R
@] /Z
P P

199
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Parametrize the part of the region cut in C5 having z > 0 :

Oé(l’,y) = (ZL’,’y,vR2—l’2)

Jd.a = (1,0, = x2)
d,a = (0,1,0)
N = O x et = (——0,1), |N| = "
VR 2 R

and consider the points of S that lie on D = POQ (this is a quarter of the
total surface); that area will be

R oo
Area = ———dedy=R | dz | ——=dy=
//D\/R2—x2 ! /0 /_va2—x2y
R 2z
— _ 2 _ r2)|8 — 9p?
R/O mdm—QR( VR?—2?)| =2R
Then the total area is Area(S) = 4-2R? = 8R>.
U

The graph of the differentiable function f : U C R? — R is a surface S
admitting the differentiable, regular and simple parametrization

a(z,y) = (v,y, f(z,y)), (v,y) € U.
Then

N = (1,0, fm) X (07 17fy) = <_f907 _fy71)
N = 1+ ()2 + ()

and the area of the graph is

avea(s) = [ [ i (f+ () dady

Compare with the formula that gives the length of the graph of a differen-
tiable function f : [a,b] — R: Length(C) = fab V14 (f")2d.
O
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Problem 106:

Compute the area of that part S of the paraboloid z = 22 + y? that lies on

the annulus D = {(x,y) : 1 < /2?2 4+ y% < 2}.

G s
A 5

S is the graph of the function f(z,y) = x? + y* and using the above
formula we havande

Area(S) = // V14 4(22 4 y2)dxdy = {polar coords} =
D

o 2 2
= / dé’/ V14 4dr2rdr = 27% / 8rv'1 4 4r2dr =
0 1 1

2
_ %g(l T 47”2)3/2\? _ %(173/2 _ 53/2)

Problem 107:

Compute the area of the bounded region S of the paraboloid 2z = 2% + 1/
that lies outside the cone z > /22 + 9.

Solution:

A figure:
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C Z

1 7z=2

The paraboloid cuts the cone along

1
z:E(:):2+y2)= 24yt =ty =2,2=2,

the circumference C'in the figure. The paraboloid is the graph of the function
f(z,y) = 3(2* + y?) over the disc D of radius 2. Being given that 9,f =
x,0,f = y, using the formula results in

Area (5) = // V' 1+ 22 + y?dedy = {polar coords} =
D
o p2 2
= / / 7’\/1—|—7’2drd9:27r/ rvV1+ridr =
o Jo 0

1 1
= 2mo(1+ r?)32 3= 27r§(53/2 —1)

Problem 108:
Compute the area of S, the region of the cone 22 = 22 + 42, z > 0 limited by
the planes z =0,z + 2z = 3.

Solution:

Lets do a figure
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Eliminating z we get the projecting cylinder of the intersection E of the
cone with the plane x + 2z = 3:

?+yt =

322 + 4y +62—-9 = 0
and completing squares

3(z° +2r)+4y* -9 = 0
3((x+1)2—1)+4y* -9 =
3z +1)+ 42 —12 =

If we make the natural change of variables {X =z + 1,Y = y} we obtain
the equation of E’:

3X2+4+4Y?—-12 = 0
X2 Y2
- + e
2 (V3)?

To compute the area we need the equation of the cone in the new
coordinates X,Y, Z = z:

Z2=(X-1)+Y*Z>0
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Viewing it as the graph of f(X,Y) = /(X —1)2 + Y2, we can use the
formula for the area of a graph. Call R(E’) the region enclosed by E’; then:

B (X —1)2 Yy? B
Area(S) = //R(E,) \/1+ X 12472 + (X—1)2+Y2dXdY_

= / V2dXdY = v2Area (R(E')) = V21 -2-V3 = 21V6
R(E')
U

Problem 109:

Compute the area of that part S of the paraboloid 2% + y? = 2az, (a > 0)
limited by the plane z = 4a and the cylinder y? = az.

Solution:

The paraboloid and the plane intersect along the circumference 2%+ y? =
8a2, z = 2a, of radius R = v/8a.
The projecting cylinder of the intersection of the paraboloid and the cylinder
is

z = (2t +y?

_ 1,2
= ay
2a

bt =oslalHly)
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The paraboloid is the graph of f(z,y) = 5 (2°+y?) and taking symmetries
into account we have:

Area(S)

Problem 110:

2 2
= 4//\/1+‘” Y frdy =
D a

4 V38a w/4
= {polar coords} = —/ / Va?+rirdrdd =
aJo 0

471
ad 3

_ 26
(a2 + r2)3/2 ‘:;(\]/éa: ?Waz

Viviani’s vault.

Let S be the intersection of a solid cylinder of radius R and a semisphere of
radius 2R with the center on the surface of the cylinder. S is called Viviani’s
vault; compute its area.

Solution:

We take the coordinate axes as in the following figure and compute the area
of the intersection of the solid cylinder with the upper semisphere:

z

2R
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Let us give two points of view:

e The equation of the sphere is 22 4+ 3% 4 2?2 = 4R? and S is on the graph
of the function

flz,y) = VAR — (2° + ¢?)

Now we use the formula for the area of a graph:

—T
O f =
P )
Y
0
vl VAR = (22 + 1)
2 2
1\2 AV z +y —
1+(fm) _'_(fy) - 1+4R2—($2—|—y2) -
4R?

4R? — (22 + y?)

Area(S) = // T 2?2_‘_ Q)dzvdy,
D — (22 4y

D being the disc D((0, R, 0); R) that is the basis of the cylinder in the
plane z = 0. The mixture x?+y? suggests a change to polar coordinates:

y

@) X
Not to say we take the pole at 0; points in the disc 2% + (y — R)? <
R? correspond to polar angles 6 € [0, 7] and for each § we have r €
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[0,2Rsin#]. Then

T 2R sin 6 2R
Area(S) = /(; dﬁ/o \/ﬁrdrde =

= 2R / VAR? — p2|2Rsint g —
0

= 2R / (V4R? — 4R?sin 20 — VAR?)df =
0

= —4R2/ (|cos@| —1)db =
0
= —4R*(2—7) =4R*(1m —2)

e In spherical coordinates the upper semisphere has the parametrization
alp,0) = (2Rsinpcosf, 2R sin psinf, 2R cos ), (p,0) € (0,7/2)%(0, 27)
Let P’ be the projection on z = 0 of a point P € S; we have:
PeScCSipe P eDs (2Rsinpcosd)’+(2Rsin psinf—R)? < R?
As sinp > 0 we are able to arrive at

PeS&esnp<sinfsp<f<n—op

The element of area in spherical coordinates is dS = 4R? sin ¢dpdf and
the area is

/2 T—p /2
Area(S) = / d(p/ 4R? sin pdf) = 4R2/ (m — 2¢p) sin pdp =
0 © 0
w/2

= 4R*m — 8R? / @sin pdp = 4R* (1 — 2)
0

It is noticeable that the complement of the area of Viviani’s vault to the area
of the quadrant where it lies is

7m(2R)? — 4R*(1 — 2) = 8R?,

a rational function of R.
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Problem 111: Viviani’s cylinder.

Let S be the intersection of the solid upper semisphere and the surface of
the cylinder in the preceding problem. Compute the area of S.

Solution:

A parametrization of the cylinder by means of the polar angle 6 € [0, 7] (see
the preceding problem) is:

a(f,z) = (2Rsinfcosf,2Rsinfsinf, z) = (Rsin20,2Rsin 0, 2)
Ja = (2Rcos260,2Rsin26,0)
d.a = (0,0,1)
Ja x d,a = (2Rsin20, —2R cos20,0), |Opa X O,a| = 2R

To compute the area of S we must find the limits of z; at the point
(2Rsinf cosf,2Rsinfsind,0) in the basis of the cylinder, we can ’climb’ up
to the sphere, that is up to

V4AR? — 4R?sin® f cos? § — AR?sin? Asin® 0 = 2R | cosd |

Finally

T 2R| cos 0] T
Area(S) = / do / 2Rdz = 4R* / | cos 0|df = 8R*
0 0 0
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Problem 112: A formula.

Let S be a surface and o : D — R3 a regular, simple parametrization. Define
E = (0a,0,a), F = (Oya, 0y), G = (O, D)
and show that

Avea(S) = / /D VEG — F2dudv

Solution:

It suffices to show that [N| = v EG — F2. We know (see problem on p.77)
that if e,f, g, h € R? then

(exf)-(gxh)zdet(?:g (;E)

Now
IN|* = |0, X Opar|* = (Opex X Opar) - (Oyax X Dyat) =

B Oy - Oy Oy - Opx '\ E F\ 9
_det(ﬁua-&,a &,a-&)a)_det(F G)_EG_F

Problem 113:

Compute the area of S, the conic surface with vertex at the origin and basis
the part of the parabola 2 = 2y, z = 1 that lies in the region 0 < z < 1.

Solution:

z=1
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The arc of the parabola in the region is y(t) = (%,t, 1),t € [-vV2,V2]
and the cone is

2

B(t,s) = (5%,51&, $),(t,5) € [-V2, V2] x [0,1]

B = (st s,0)
t2
856 = (5) t> 1)

Using the formula of the preceding problem

E = (00,0,8) =s*(t* +1)

F o= @6@%—mg+u
G = (0,3,0,8) = (7;2+1)
pG-r = e - o=
= oy

and the area is

Area (S) = / / +1 dtds =

=§/f@ it = 25wy 72,= 22

Problem 114: Sphere and cylinder: a surprising result.

a) A sphere S is inscribed in a right circular cylinder C; cut both of them
with two parallel planes perpendicular to the cylinder’s axis. This
produces a region A on the sphere and a region B on the cylinder;
show they have the same area.

b) Now let m be the orthogonal projection of S onto C' from the axis.
Show that 7 preserves areas.
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Solution:

a) A figure:

:

We may assume that the sphere and the cylinder have radius 1 and
that z; > 29; then on the cylinder

Area(B) = 27(z1 — 29)
On the sphere, if z; = cosy, 25 = cos sy, the area of the spherical
region is
2r pp2
Area(A) = / / sin pdpdf = 2w (cos p1 — cos py) =
0 P1
= 271'(21 — 22)

Notice: if we cut a bell 1cm wide all around the equator and a similar
bell around the pole they have the same area!

b) A figure of the projection:

P [n(P)

o, z

1
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We parametrize S and C"

alp,0) = (singcos,sinpsinb, cosy), (¢,0) € [0, 7] x [0, 27]
B(0,z) = (cosO,sinO,2)(0,z) € [0,27] x [—1,1]

|

[<7

o

¢
In the figure T'=m(R), R = a(D), T'= B(E) . 7 is a bijection

m:S—{N,S,G} — C —{L},

L being the generatrix of the cylinder that corresponds to G (the merid-
ian 6 = 0). In coordinates the projection is

h(p,0) = (0, cos ¢),

a differentiable function whose jacobian is

J:<a¢@ 89@):< 0 1)
0,2 Opz —sing 0

Using the change of variables theorem for double integrals we have

Area(T) = //ld@dz://|sing0|dg0d9:
E D

= //singpdgodezArea(R)
D
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Problem 115: Surfaces of revolution.

Let a(t,6) = (z(t) cos 0, z(t) sin b, z(t)), (t,0) € [a, b]x[0, 27| be a parametriza-
tion of .S, the surface of revolution obtained revolving a regular, simple curve
parametrized by v(t) = (z(t), 2(t)),t € [a,b], z(t) > 0.

a) Find a formula to compute the area of S.
b) Find the area of a right circular cylinder with radius R and height h.
¢) Find the area of a right circular cone with radius R and height h.

d) Find the area of a torus (make first a conjecture).

Solution:

a) The tangent vectors and the normal vector associated are

Oyav = (2'(t) cosO,2'(t)sinb, 2/ (t))
Opov = z(t)sin 6, z(t) cos 0, 0)
N = d,a X o = rZ cosf, —xz sin 6, xx')
dS = |N|dtd) = av/a® + 2dtd6

(_
(_

And the area is
27 b b
Area (S) = / / zVa'? 4 Z2dtdf = 27?/ xVa'? 4 22dt
0 a a

Notice that v/2/2 + 2/2dt is the small arc of the curve traversed during
the time dt. Then (27z)vz'?2 + 2/2dt is the area of a small cylinder
with radius x and height v/x'2 + 2/2dt. The formula expresses the area
as a sum of those areas.

b
Area(S) = 27r/ xVa'? + 22dt
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ﬁ \/X’2+y’2 dt

/

|

y
b) A generator curve is the segment
7(t) = (R,0,t),t € [0, h)
Using a)

h
Area(5) = 27r/ Rdt =27 Rh
0

¢) A generator curve is the segment

h
It) = (8,0, — 5t + h).t € [0, F]

and the formula gives:

R h2 R2 h2
Area(S) = 27r/ t\/1+ ﬁdt = 27r7 1+ == TRV R? + h?
0

d) If we cut and straighten the torus we obtain a cylinder of radius b and
height 2ma whose area is 2wa X 27b; some fibers have stretched while
some others have shortened and the result is only a reasonable conjec-
ture.
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(- -— - -

y

Assume the torus is generated revolving around the Oz axis the cir-
cumference (z — a)? + 22 = a?,y = 0 that has a parametrization

v(t) = (a+bcost,0,bsint), t € (0,27),0<b<a

We have ' = —bsint, 2/ = bcost and using the formula we obtain

2T
Area(S) = 27r/ (a + bcost)bdt = 4m?ab
0

Problem 116:

Let f:[a,b] — R, f(x) > 0 be a differentiable function and S the surface

S={(z,y,2): "+ 2 = (f(2))’}.

Parametrize S and find a formula for the area of S.

Solution:

At a height x we have in S the circumference y* + 22 = (f(z))? with radius
f(z), and we see that S is obtained revolving the graph of z = f(z) (a curve
in the plane xz) around the Oz axis:
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z=f(x)
Y2+ 22 =f(x)°

: (X,y,Z)

y
Let 6 be as in the figure; we have the parametrization of S
a(x,0) = (x, f(x) cosb, f(x)sinh),z € [a,b],0 € [0, 27]

and

O
7
O
a9
o0 T8 = (') (), ~F(x) cos, — (x) sn6)

O P = T P

and the formula for the area is

b p27
Area (5) :/ /0 V14 f2dxdd

= (1, f'(z)cos@, f'(x)sinh)

= (0,—f(x)sinb, f(x)cosh)

5.2 Integration of scalar fields

Let o : D — R? be a differentiable, regular and simple parametrization of
a surface S, N = 0, X d,« the associated normal vector and f a continuous
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function on S; define

/ /de: / /D f((u, v))|N|dudy

The definition is all right because the integral in the right member takes the
same value for all equivalent parametrizations (see p.?7?).

O

Problem 117:

Let f(z,y,2) =z +y + 2z and S the region of a cylinder {z? + y? = R%,0 <
z < 1}. Compute [ [, fdS.

Solution:

/_-— z=1
K

——

X
Parametrize the region in the cylinder
a(f,z) = (Rcosf, Rsinf, z), (0, z) € (0,2m7) x (0,1)
The tangent vectors and the associated normal are
Jga = (—Rsin6, Rcos,0)
J.a = (0,0,1)

N = (Rcosf, Rsin6,0)
IN| = R
dS = Rdfdz
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Now the integral is

//(x+y+z)d5 = // (Rcosf + Rsinf + z)RdOdz =
s (0,2m) % (0,1)

2
= R2/ (cos@+sin9)d9+R2§:4R2+R7r
0

Problem 118:

Compute I = [ [((z* 4+ y* — 32%)dS, S being the unit upper semisphere.

Solution:

X

On the sphere 22 + 3% + 22 = 1 we have 22 + y? — 322 = 1 — 422 and this
is the function we want to integrate. In spherical coordinates we have:

2 w/2
I = //(1—422)d52/ dé’/ (1 — 4cos® p)sin pdp =
S 0 0

2w /2
= / d@/ (sin ¢ — 4 cos® psin p)dy =
0 0

- 4 2w
)o/? = 2m(1 - =7

cos® ¢

= 2m(—cosp +4
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Problem 119:

Let S be the surface
%+ y2 + 22
z

)

Parametrize S as the graph of a function and compute 22 +y?)zdS.
g s

AV

Solution:

Noticing that when 2z = 1 we have 2 + y? = 3 we parametrize S as the
graph of the function

fla,y) =VA— (22 +y?), (z,y) € D= D(0;V3)

The element of area is

2 4+ y? 2
dS = 1+ ———2 dady = dxd
\/ Yy P i) R

and the integral is

//S(x2+y2)zd5 = // 22+ y)V4A— (22 4+ 42) 4_(12+y2>dxdy:

// 2(2% + y?) dzdy = {polar coords} =
D

\/§ 27
/ / 22 r drdf = 97
0 0
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Problem 120: First Pappus-Guldin theorem.

Let S be a surface of revolution generated revolving around the Oz axis a
regular, simple curve C' of length L, parametrized by ~(t) = (z(t), 2(t)),t €
[a,b], x(t) > 0. Show that Area(S) = 27 (z)L, (x) being the average value of
x along C. Using this result compute the area of:

a) A sphere.
b) A cone of revolution.

¢) A torus.

Solution:

A formula that gives the area of a surface of revolution is:
b
Area(S) = 27r/ rVa? 4 22dt = 27?/ xdl,
c

fc

and as (z) = ! the result follows.

a) Parametrize the generatrix circumference
v(t) = (Rcost, Rsint),t € [—7/2,7/2], |7 (t)| = R

and obtain the average

Jowdl 1 T2 2R

= R t Rdt = —

() TR 7R o8 s

The Pappus-Guldin theorem gives the area:
2R
Area(S) = 2r—7R = 47 R
T
b) Consider the cone gencrated by the segment z = %z, z € [0, R]. The

average is

dl /1 + Lda 1 R? 1—|— 1
oy Je AR P

N ViZt 2 2m T2

And the area

1
Area(S) = 27T§R\/ h?+ R? = tRVh? + R?
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¢) It is geometrically clear that
(r) =a
and the theorem gives

Area(S) = 2ma27b = 4n*ab

Comment

We straighten C' along a segment of length L and revolve it around the Oz
axis thus generating a cylinder 7" that we arrange to be of radius (z). Then
the first Pappus-Guldin’s theorem asserts that the area of S, the surface

generated by C'is the same as that of 7™
y4

/__
X

z

<X> y

X

There is a second Pappus-Guldin theorem; let C' be a simple closed curve
in the half plane y = 0,2 > 0 and R the region enclosed. Then revolving
R around Oz we obtain a solid body whose volume is 27 (z)Area (R). If we
cut and straighten the body we obtain a straight cylinder with basis R and
height 27 (z) (see p.205).

O

Problem 121: Associated normal vector.

Let
a(u,v) = (z(u,v),y(u,v), 2(u,v)), (u,v) € D



222 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACES

and

B(s,t) = (X(s,t),Y(s,t), Z(s,1)),(s,t) € D

be two parametrizations of the same surface equivalent through a
diffeomorphism h:

b % b
o\ /B

Show:
a) The normal vectors N, M respectively associated to o and [ satisfy

N = d,a x d,a = (det h)0,3 x 9,3 = (det A" )M
b) Whenever « is regular so is .

Solution:

a) We know that & = Foh and the chain rule gives the following matricial

relation
C]/(u,v) = ﬁilt(u,v) : /(u,v)
that is
Out Oy OX 0%\ ont o,n
&Ly 8vy = 8SY 8tY 8h2 ah2
Ouz  Oyz 0.7 07 u v
which is equivalent to
i Our Oy i 0, X 0X 1 0 0
J Oy Oy | =13 0Y oY 0 9,ht O,k
k 0,z 0,z k 0,7 0,7 0 9,h* 0,h?

Taking determinants we obtain
N = M(det h')

From this last equality we see that N and M have the same sense iff
det A’ > 0 and contrary sense if det A’ < 0.
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b) A point (u,v) €D is regular iff N # 0 and, taking into account that
det A’ # 0, that is equivalent to M # 0. Both parametrizations are
regular or non regular at the same points.

Problem 122:

Prove that [ [, f(a(u,v))|N|dudv takes the same value for equivalent parametriza-
tions.

Solution:

Let a,3,a = [ o h as in the preceding problem; the change of variables
theorem for integrals gives:

I :/ . F(B(s,8)| M| s ndsdt = //Df(g(h(u’v)mme) | det B |y dudo

but on one hand f(B8(h(u,v))) = f(a(u,v)) and on the other [M|su.) |
det b’/ |(u7v):| N ‘(uﬂ)). Then

I://Df(a(u,v))|N|dudv

as desired.

5.3 Material laminae

Let S be a surface and K the body obtained translating S a distance
on each side. Assume that K has a mass and for each region R C S let the
corresponding mass of K be concentrated in R. We have then a material
lamina.
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The surface mass density at a point P of the lamina is

m(R)

o= Areal(r}%—@ Area(R)

The densities are there to be integrated; for instance the total mass of the

lamina is
M = / / odS
s

Problem 123: Center of mass and gravitational field.
Let S be a material lamina with surface density . Write the formulae giving
a) The center of mass.

b) The gravitational field created by the lamina.

Solution:

a) By analogy with the unidimensional case (material wire, see p.57) we

put
(2, = ffS]\ZJdS’<y>: ffsj\gzadS’<ZJ: ffSAZUdS
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g(x,y,z)z—//a%ds,r:(at—u,y—v,z—w)
S

r

Problem 124:

Find the center of mass of the region S of the paraboloid z = 2 — (22 + y?)
limited by the plane z = 0.

Solution:

D V2

Parametrize S:
a(z,y) = (z,y,2— (2" +y%), (z,y) € D(0;2) = D
N = (2z,2y,1)
IN| = VIT i@ 1)

Consider S as a material lamina with surface density o = 1:

//sds B //D V1 +4(22 +y?) = {polar coords} =

V2 p2nm V2
- / / VT I2drdg = 2 / I T rldr =
0 0 0

267
6

M

1
= 2m (L4 4% 2=
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//de = // 2+/1 + 4(x2 4 y2)dxdy = {polar coords} =
S D
V2 2m
= / / r(rcos@)V1+ 4r2drdf =
o Jo
2m 2m
= (/ cos Hdﬁ)(/ r2V1 + 4r2dr) = 0
0

0

Then (x) = 0 and analogously (y) = 0, as was previsible because of the
symmetry. Now

//SzdS = //13(2 — (2 + %) V1 + 4(2? + y?)dady = {polar coords} =
= /0 N /0 27T(2 — 1*)rv/1 + 4r2drdf

and it suffices to compute 0\/5 r3v/1 + 4r2dr; by the preceding results and
integrating by parts we have:

) 1 1
/7“3 L+dr2dr = T2E(1+47’2)3/2—/QTE(1+4T’2)3/2dr

The last integral is
2

: 2 1
12"

032, _ 2 L 215/2
1+ 4r)>/=dr 1220(1—1—47")

1
= —— (1 425/2
oot 4)

Then

V2 27 242
W+drddr = — ——
/0 T + 4r=dr 5 120

and summing up partial results we have

\/5 27 \/5 27
// zdS = 2/ / vV 1+ 4r2drdf — / / V1 + 4r2drdf =
s 0 0 0 0

527 bdrw L 2421
6 6 60

and finally (wow!)

223w 267
= 222 993/960 ~ 0.85
9 ==/ /



5.3. MATERIAL LAMINAE 227

Problem 125: Field of a homogeneous disc.

Let D be a material disc of radius R with constant surface density o.

a) Compute the gravitational field at a point P of the axis.

b) Compare with the field generated by a mass point at the origin with
the same mass as that of the disc, when P is at an axis point infinitely
far away. First do a conjecture.

c¢) Verify that when P approaches D, the field does not become infinite
(that does not happen when the body is a particle or a wire).

d) Show that the field’s component in the direction of the axis experiments
an increment 470 when P crosses the disc from the upper space to the
lower space.

Solution:

a) A figure (care with the position of the axes):
X

P(x,0,0

(O,V,W)\0 z

y

Parametrize the disc:

a(p,0) = (0,pcosh,psind),pe (0,R),0 € [0,27]
N (0,0,p),| N |=p
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From symmetry we see that the field has the form g = (X,0,0) where

X(z,0,0) = //DO' dsS = — // x2+v2+w2)3/2

2w P R
= —O',I'/ / mdﬂd@— 277'0'2[‘/(; x2+p 3/2 p_

= —2rox(—(a®+ p*) )2, —QWJx(\/m m)

For another expression let d, = v R? 4+ 22 be the distance from P to
the boundary of the disc, and dy = |z| the distance from P to the
origin. We have

X = 27rax(div - dio)

b) Consider an M = mR?¢ point mass at the origin; the field generated
at (z,0,0) is

i ifr>0) _ 7R%
TR0 -

=2 ifz <0 |z| a2

When P is far away we expect the field of the disc to be that of the
particle; that is to say we expect that

2102 (s — 1)
X = hm 52:;220_ ‘x‘ = ]_
X o0 —m xz

Now

2 || 2 1

X =—— lim 2?(———— — —— lim 22 —1

R? a—oc (\/R2i+sc2 ) R? 2—00 ( (By2 41 )

and as
li —)2+1=1

we have an oo - 0 indetermination that must be resolved; to be brief
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write |/~ instead of (E2+1:

_ 2 . A
Y= i ()=
2 1—(£)2 -1
= - l 202 Nzl —
R2m—1>1-i¥loox(\/(1+\/))
2 —R? 2 R?

-~ lim ——— -
REa-toe /(14 /) RE2

¢) We have
lim X = 270 li - 1) = —2
Jm X = 2mo lim (e — 1) = 270
and analogously
lim X = 270 lim ( = +1) =270

z—0~ =0~/ R2 + g2
both limits are finite.

d) The increment is X (07) — X(07) = 270 — (—270) = 470

Problem 126: Field of a disc with variable density.

Compute at a point P of the axis the field of a radius R disc centered at the
origin with surface mass density o = f(r) (r is the distance from a point in
the disc to the origin). If o = a+br? , see what happens when P crosses the
disc.

Solution:

Let us use the same setting of the preceding problem. It is clear from the
circular symmetry of o that g = (X,0,0). Let’s express X :

X = —27T£L’/OR(T¢C£T

22 + r2)3/2
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In the case 0 = a + br? we have

R 2
X = —27r:c/0 %dr
Integrating by parts
/ 7(2(;;—:;7;32 dr = —(224+r)" Y2 a+br?) + /(x2 + )7V 29 dr =
= —(@®+7r*) 72 (a+br?) + 2b(a® + r?)/?
and
X = —2ra(—(2® + R?)™Y2(a + bR?) + 2b(a® + R2)V2 + % — 2bz)

Setting d, = VvV R? + 22 , dy = |z| results in

a a-+bR?
X = —omp(L -
7T:L'(d0 7

+ 2b(dv - dO))

and taking into account that d, — R and dy — 0 when x — 0,

lim X = —2ma
r—0t
lim X = 27wa
rz—0~

the change of sign being due to the sign of z/dy. We see that crossing the
surface from the upper space to the lower space results in an increment 47a
of the field.

Problem 127: Field of a homogeneous cylinder.

Compute at a point P of the axis the field produced by a circular cylinder
of radius R, height h and constant surface mass density o.
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Solution:

A figure:

0
/

From symmetry the field has the form g = (0,0, Z) where

Z—w
Z:—U//S = s, r =|(—u, —v,z — w)|

Using the cylinder’s parametrization

u = Rcosf,v=Rsinf,w=s
(0,s) € [0,27] x [0,h], dS = Rdlds

gives

2 h s g
Z = — dfds =
"/0 / (Rt (= — sy 0ds
h Z— S
o [ G o
= —27TRO’((R2 + (z— 5)2)_1/2)\6‘ =

1 1
VR? + 22 \/R2—|—(z—h)2)
Let d, be the distance from P to the boundary of the basis and d; the
distance from P to the boundary of the cover; then

1 1
Z = 27TRO'(d— - d_t)

= 27mRo(

231
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We can test the result: when z = h/2 the field should vanish by symmetry.
And this is so because d, = d; and then Z = 0.

U

Problem 128: Field of a homogeneous sphere and of a homogeneous ball.

Let S be a material sphere of radius R > 0 centered at the origin and constant
surface mass density o. Let B be a material ball of radius R > 0 centered at
the origin and constant volume mass density y.

a) Compute at P = (0,0, z), 2z > 0,z # £R the gravitational field of S;
separate the cases z > R and 0 < z < R.

b) Do the same for B.

Solution:

Position the axes as shown in the figure

z

1+ (0,0,2)

a) From symmetry we see that the only nonvanishing component of the
field is

Z(0,0,2) = —a// : _3wd5, r=(—u,—v,z—w)
g T
If we pick-up the spherical parametrization of S,

u = Rsinpcosf,v = Rsinpsinf,w = Rcos ¢
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(0, ) € [0,7] x [0,27], dS = R?sin ¢ dfdyp,
we may compute r thus

r? = R* + 2° — 2Rz cos p (%)

2 s
(2 — Rcos ) 9 .
0/0 /0 (R? + 22 — 2Rz cos p)3/? Rsinp didy
B — Rcos )
- _9 R2 (Z
i /0 (R? + 22 — 2Rz cos )3/2

sin ¢ dp

Geometrically we see that r determines :

and to do the change of variables ¢ = h(r) we differentiate (x) thus

r

d
Rzr

2rdr = 2Rzsin @pdp = sin pdp =

reeo = == R
Toer = V(R+2)2=|R+ 7|

From (%) we obtain an expression of z — Rcos ¢ in terms of r; doing
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the change of variables one obtains

|R+2| .2 2 p2
7 - _QmRz/ Uk At L
|R—z| 227’ RZ
o R |R+z| 2’2—R2
5 /lR—zl ( 5t )dr
N roR 22— R? |R+2|
- 22 (- T +r)||R—Z|:
mRo 2?2 — R? 2?2 — R?
_ _ R —|R—
T IR T — 1R 2)
and as z > 0 we can write
o R 22— R?
Z = - R — R —|R —
(B4 Rs T~ (R
moR 2?2 — R?
= —7(2R+m—lR—Z‘)

Two cases appear:

O<z<R = Z=0

4o R? M
O0<R<z == Z=—-——"F—=—>

z z
But we are free to choose the direction of the Oz axis and so the
preceding value of the field holds in every direction. If, as usual, r =

(r,y,2), e, =r/r we can write in vector form

0 if P is interior
glr)=4

—€ if P is exterior
,

Let us remark: the field of a spherical lamina vanishes in the interior,
and in the exterior it is the field of point mass at the origin. Observe
that the field on S (unknown up to now) can’t possibly be continuous.

From symmetry the only nonvanishing component at P = (0,0, z), z >

B
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i)

ii)

Exterior points, z > R. Parametritze B by the spherical system:

u = psinpcost,v = psinysinf, w = pcosp
(p, ) € [0, R] x [0, 7] x [0,27], dV = p? sin ¢ dfds

and using the computations in a) we have

R T 27
Z — pcosy 9 .
Z = - dpdpdt =
A e
= _47T_2X ) 2dp__47T_2XR_3
2% Jo z% 3
M
)

Interior points, z < R . The integral is improper (at u = 0,v =
0, w = z because then r = 0), but one can see that it is convergent
(see [Kell|] p.18). To compute it isolate the point P = (0,0, z) by
means of two concentric spheres of radius § and  + €:

4

The spherical annulus of radius d+¢ < r < R has a vanishing field
at P which is an interior point. To see that, imagine the annulus

as made of concentric spheres each one producing zero field. All
the field at P is due to the ’internal’ ball B(d) with mass M(J),
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whose value we know to be g = —M(6)2%. Letting § — z and
e — 0 we arrive at: .

Summing up, the field is

M

&(r) = { i

e, if P is exterior
e

e, if P is interior

That is for exterior points the sphere and the ball (of equal masses) create
the same field, precisely that of a point mass at the origin. For interior points
the field is null for the spherical lamina and the field is generated only by
masses nearer than P of the center for the ball; the farther masses do not
contribute.

Assume for a moment that the field at the exterior of the ball is not that
of a point mass. If we went far away enough we would see the ball as a point
mass, and it might happen to see two identical objects, two point masses,
producing different fields.

Problem 129: Potential of a homogeneous sphere.

a) Show that the gravitational potencial of a homogeneous spherical lam-
ina is that of a mass point of equal mass at the center (use the additivity
of potentials).

b) Let g be the field and U a potential. Is U continuous? Is it true that
g = VU? Are the derivatives of U continuous?

Solution:

a) Two lines:

i) The field of the lamina at exterior points is the same as that of a
point mass at the center,—M ;. It will then have there a potential
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M% At interior points the field of the sphere vanishes and we pick-
up a constant potential that we adjust to have it continuous on

the sphere:
ML if r>R
U(r)—{ ML if r<R

ii) Choose cartesian axes with origin at the center of the sphere:
Y4
z

By symmetry it suffices to compute the potential at P = (0,0, z), z >
0. Let o be the surface mass density; then

U(0,0,z)://gdS,r:(—u,—v,z—w),r:|r|
s T

The usual spherical parametrization gives

2T T 1
U0,0,2) = / dé’/ o R%sin pdp =
( ) 0 0 \/R2—|—z2—2chos<p s

T 1
= 2moR? / sin pdyp =
0 /R2+22—2zRcosp o

1 ™
= 2moR*— / 2f
zR Jo \/R%+ 22 —2zRcosgp

1 _
= 27T0'R;(\/R2 + 2% = 22Rcos p) [0-5=
2roR

= T R4zl - |R-z))

sin pdy =
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and

if P is exterior

U(O,Oaz)—{ @(R+2_R+z):4ﬂ}€0=

NS

if P is interior

Using the symmetry we can write:

if P is exterior
if P is interior

Ur) = {

|z g

Let us define the potential to be % at points on the sphere; then
it will be continuous everywhere.

b) We have seen U to be everywhere continuous. It’s derivatives for points
not on the sphere are

M

8—U(0,O,z) _ { —OZQ if P is exterior

0z if P is interior

which is the field of the sphere. They are discontinuous on S:

ou —
9z |==p-=0
ou _
9 =Rt = "Rz

Problem 130: Potential of a homogeneous ball.

a) Find the potential of a material ball with constant volume density .

b) Show that the potential and its derivatives are everywhere continuous
and that they give the field.

¢) Show that V2U = 6;72 + %27(2] + %27({ vanishes at exterior points and has
the value —47my at interior points.
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Solution:

a) With the same notations as in the preceding problem we have:

U(0,0, 2) /// ZdV,r = (—u, —v, 2 — w)

In spherical coordinates (p, ¢, ) we have

R 2w 1
U(0,0,z) = / / / ? sin pdpdipdd =
( ) X o Jo Jo \/,02—|—z2—22pcosgpp paree

1
= 27rx/ / 0% sin pdp)dp
0 ( 0 P2+ 22 —2zpcosep )

The innermost integral has been evaluated in the preceding problem
and we obtain

orx [
U<o,o,z>=7/ ol ptzl—1lp—=|)dp
0

If P=(0,0,z) is an exterior point z > R and

2 233 M
U(OOz——/ 20%dp = =X = —

z

while if P is an interior point z < R and

27rx
U(0,0,2) = / / ol p+z]— | p—z|)dp
2
= 7TX(/ 2p2d,0—|—/ 2zpdp) =
0 z

z

B 27TX(2

oz '3
M

= _iz) + 27y (R? — 2%)

+2(R* - 2%)) =

M (z) being the mass of B(0,z). Let’s remind that at interior points
the integral is improper at (0,0, z) but nevertheless a convergent one.
Using the symmetry we have:

M at exterior points

U(r) = '
(r) { @ + 2mx(R? — r?) at interior points
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b) Giving the value % to the potential on the sphere, we have an every-
where continuous function. The derivative at exterior points is

r
r3’

VU =-M
precisely the field of the ball. At interior points

Ur) = %wrzx + 27X (R? — 1?)

ou 8 x 4 x
% = (577'7’ — 477'7");)( = —gﬂ'.rx = —M(T)ﬁ
and the symmetry gives
r
VU(r) = ~M(r) 5,

that is, the field of a ball at interior points. On the boundary of the
ball both expressions coincide and U is of class C!.

¢) At exterior points
VU(r) = —M% = V2U(r) = div (-M~) = 0

and at interior points

oU 4 QU 4

and the same value for the other two derivatives. Then

0*U  0*U  9*U
VU = 922 + 0y + 52 —4myx

Problem 131: Logarithmic disc.

Let D be a homogeneous material disc of logarithmic particles; compute the
potential U. The integration formula

2m
1++vV1—a?
/log(l—acos@)d@z%rlog%,o§a<1
0

may be useful.
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Solution:

Let R be the radius of the disc and o the surface density; the potential is

U(x,y)://[)alog(%)dS

A parametrization of the disc is:
a(r,8) = (rcosf,rsind), (r,0) € [0, R] x [0, 27]

It suffices to compute U(x,0) when x > 0:

1
U(x,0) = //alo rdrdf =
(=0) D g(\/(:c—rcosﬁ)2+r2sin29)

— _%//log(x2+7’2—2:m’0089)7’d7’d9=

D
_c 2 a2y 20T —
— 2//[)log((:c +7r)(1 o cos8))rdrdd =

R
2
= —aﬂ/o log(2? 4 r¥)rdr — %//Dlog(l ~ fj cos O)rdrdf =

2
= L+
a) For I, as a primitive of logz is z(logx — 1), we have:
o
L= == [@ + %) (log(x” +77) = Dy

b) To find I; put a = ng;a and use the integration formula to obtain

R p2r R 14++v1—a?
I, = —%/ / log(1—acos0)rdrdf = —%/ 27 log(%) rdr
o Jo 0

Now compute the argument of log:

2 X A2y (22 — 12)2
J— a —_— JE— —_—
(2 +7r2)2 (22 +71r2)?
x2_r2
1+ +v1—a? 1+‘x2+rzl_1x2+r2+|x2—r2
2 2 9 2 + 12

{L if 0<r<uzx

x24r?
2 .
2242 if T <r
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i) At exterior points r < R < x and we obtain

R 72
I, = —077/0 log(m)rdr:

R R
= —aw/ log xrdr + O'7T/ log(z® + r?)rdr =
0 0
R2
= —or(log x2)7 -1
So, for exterior points, letting M be the mass of the disc, U(x,0) =
‘”R (log x?) = —M log z.

U(z,0) = —Mlogz

ii) At interior points < R we have

x 1'2 R ,,,.2
]2 = —UT(A 10g<m)7’d7’+/; lOg(W

r2

yrdr) = —on(J1+Js)

Compute separatedly both integrals

T 2
J = /Olog(ixziﬂ)rdr:/o log(2?)rdr — /log:c + 7?)rdr

0
R 2 R
Jy = /m log(i$2 n Tz)rdr = /x (logr)rdr —/ log(2? 4 r¥)rdr

Now we compute the three integrals involved:

T 1’2
/ log(x?)rdr = ?log(xz)
0

R
/ 2(logr)rdr = r*(logr — 1)[/=F

T R
—/ log(x? + r?)rdr — / log(z® + r¥)rdr =
0 T

R 1
—/ log(x® +r*)rdr = —1I,
0

agm
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and then

U = ]1—0'7T(J1+J2):
z? _ 1
= I, — UW(?log(:ﬁ) +r(logr — 1)|"=8 + Ell) =
= —on(2x*logr + R*(log R — 1) — 2*(logz — 1)) =
= —on(2®* + R*(logR—1)) = —M(z) — M(logR— 1) =
= —M(z)log R

M (z) being the mass of the disc of radius z.

Ulz) = —Mlogxz if (x,0) is exterior
= —M(z)log R if P is interior

a continuous function on the boundary of the disc because

1iI}I{1+U(£L’) = —MlogR
lirl{zliU(r) = —MlogR

Problem 132: Center of mass.

Let a material lamina S be that part of the sphere 22 + y? + 22 = R? in the
first octant and let the surface mass density at each point be the square of
the distance to the origin. Compute its center of mass.

Solution:

Parametrize S through spherical coordinates to obtain

/2
M = //adS RQ/ / Rsin pdpdl =
TR3

= 5/0 sin pdp = —— 5
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and

w/2  pm/2
//xadS = R2/ / Rsin ¢ cos 6 Rsin pdpdl =
s 0 0

w/2
= R4/ sin 2pdp =
0
™21 — cos 2 TR!
= R —Tdp=—
/0 2 YT
R
- R
_ 1 _
()= A5 =1

R3
2
From the symmetry of the problem (y) = (z) = £.

5.4 Integration of vector fields

An orientation of a surface S is a continuous, unit normal field:

z

y

.

This looks strange because after all our idea of orienting a plane has to
do with turning clockwise or anticlockwise. But assume that the space has
its proper orientation (maybe given through the screwdriver rule, or through
the right hand rule or whatever). Then by means of n we can define on S
a ‘clockwise’ sense of turning and an ’anticlockwise’ sense, the clockwise one



5.4. INTEGRATION OF VECTOR FIELDS 245

being obtained using the official rule so as to advance in the sense of n, the
unit normal vector.

A surface with an orientation is an oriented surface. A parametrization
a : D — R3 preserves the orientation if N = 9, x Oy« has, at each point of
S, the same direction as n.

Let o : D — R3 be one such parametrization and F a continuous vector
field on S. The integral of F on S is then

//SF'dS://DF(O‘(UW))'N(U,U)dudv

We know (see p.221) that whenever o : D — R3 and 3 : D' — R? are two
equivalent parametrizations of a surface S through a diffeomorphism h : D —
D', then the asociated normal vectors N = d,a X d,a« and M = 9,0 x 9,03
satisfy

N = (det )M

If o preserves the orientation and det A’ > 0 then [ preserves the orientation,
because then N and M have the same sense. In this case

/AF“:/AF“

and we see that our definition of the integral doesn’t depend on the orien-
tation preserving parametrization. If deth’ < 0 then N and M have have

opposite directions and
//fwﬁ:—//FdS
a B

The combination dS = ndS = Nduduv is the vector area element (for full
discussion of that concept see |Jan| p.169)

This integral of a field on an oriented surface is also called the flux of
the field through the surface for the following reason. Look at the field as
if it was the velocity field of a fluid; the integral adds up pieces as that in
problem p.53 and we see that the flux is the volume of fluid that crosses S
per unit time. The integral counts the volume crossed in the direction of n
as a positive value and as a negative number in the opposite case.

O
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Problem 133:
Let F(x,y, z) = zi+yj+zk and consider the region of a cylinder parametrized
by

a(f,z) = (cosB,sinb, z),(0,z) € D = (0,7) x (0,1),

oriented through the normal vector associated to the parametrization. Com-

pute ffaF -dS .
Solution:

Ja = (—sinb, cosb,0)
d.a = (0, 0, 1)
N = (cosf,sin6,0)

The integral is:

| [Feis -

0

/ didz = m
0

™
™

1
/ (cosf,sinf, z) - (cosf,sin b, 0)dOdz =
1

S— —

Problem 134:

Compute the flux of the vector field F(z,y,2) = (x,y + 1,2) through the
upper part of Viviani’s vault V' (see p.205) oriented by the exterior normal
vector to the sphere.

Solution:

Let D = {(z,4,0): 2* + (y — 1)* < 1,2 > 0,y > 0}; being a radius 1 sphere
we have dS = (z,y, 2)dS and
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5 = //VF.dsz//V(x,yH,z)-(x,y,z)ds:
_ //V(x2+y2+z2+y)dsz

= //(1 + y)dS = {cartesian parametrization} =

1
= // (1+y) dmdy = {polar coords} =

V1— (@2 +y?)

sin 6
= df 1+7rsinf *d
/0 /0 ( 7 sin 6) — T

As an exercise in integral calculus we have

/ L_ir=—VT=7

2
/ ! 2d7’z—rﬂ—i—/ﬂdr

1—r
The last integral is:
/\/1 —r2dr = { c;nr B CS:;ZU } = /\/1 — sin 2u cos udu = /cos2udu =
u N sin2u  arcsinr N rv1—r?
2 42 2

and:
. —
/(H—r sin@)hdr = VT2 tsinf(—rv1— T2+arc;mr+m 5 o)

Evaluating this expression between r =0 and r = siné :

sinfcosf 6

—cosf+ 1+ sinf(— 5 —I—§)
Finally
™/ infcos 0
gb:/ (—cos@+1+sin9(—M—l——))d9:
; 2 2
in30 1 1 1 2
:(—sinﬁ—l—H—Slr; —1—2(8111(9 60089))W/2——1+g—6+§:g—§
U
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Problem 135:

Compute the flux of the vector field F(z,y, z) = (0,y, zyz) through the part
of Viviani’s cylinder (see p.208) in the first octant

E={(x,y,2): x>0,y >0,z >0},

with the exterior normal orientation.

Solution:
We parametrize the region of Viviani’s cylinder by
a(f,z) = (Rsin 20,2Rsin* 0, 2), (0,2) € [0,7/2] x [0,2R cos 0]

and obtain

dS = (2Rsin 26, —2R cos 26, 0)dfdz
Then

w/2 p2Rcos6
¢ = / / (0,2Rsin?60, —) - (2Rsin 20, —2R cos 26, 0)dzdf =
0 0
w/2
= / (—4R*sin’ § cos 20)2R cos 0df) =
0
w/2
= —8R3/ sin? f(cos® § — sin? ) cos 0df) =
0
w/2
= —8R? / (sin? (1 — sin” @) cos 6 — sin* @ cos 0)do
0

After a few calculations we obtain

sin® 6 B sin® 6 9—r/2_ 8

_ 3 — _— p3
¢_ SR( 3 5 )0:0 15R

Problem 136: Heuristic of the flux.

Find without computations the flux of F through S when:

a) F(z,y,2z) = (x,y, 2), S the square (0,0,0), (b,0,0),(b,b,0),(0,b,0) and

two similar squares in the planes x = 0 and y = 0.



5.4. INTEGRATION OF VECTOR FIELDS 249

b) F(z,y,2) = (xi+ yj)log(x? + 3?), S the lateral surface of the cylinder
{(x,y,2): 2> +y* = R?,0 < z < H}. What happens at the covers?

¢) F(x,y,2) = (e”)(x,y, 2), S the sphere with center at 0 and radius R.
d) F(z,y,z) = (2% 3,2yz), S the triangle (0,0,0),(1,0,0),(0,0,1).

e) F(z,y,2) = —% , S the sphere with center at 0 and radius R oriented
by the unit exterior normal vector n.

Solution:

At each point of S we compute product of the normal component of F and
the element of surface. The flux is the sum of those terms.

a) A figure:

A//\\\ls1

At points of S the field is ’in S’ and the normal component vanishes.
The flux vanishes whatever orientation we give to the surface.

X

b) Let us give S the orientation of the exterior unit normal vector. On
S the field is normal to the surface and its normal component is the

module R | log R? |.
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JAV,

X
Then the flux is obtained multiplying by the area:

¢=R|logR*| (2rRH)

At the covers we see that the field is not defined at (0,0,0) nor at
(0,0, H) because of the logarithm. But we can see that

lim |F|=0
(z,4)—(0,0)

and give the field the value zero at both points. Then the flux will
vanish for the same reason that it vanishes on the lateral surface.

¢) The normal component of the field is Re®™ and the flux will be ¢ =

(Re™)4n R,
d) We first orientate the triangle through the constant vector field n =
(0,1,0):
z
n
—t—=
y
X

The normal component of the field is:

F-n=(2?3,2y2)-(0,1,0) =3
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and the flux is

1
= 3=
¢ 2
e) The unit normal exterior vector field is n = & and the normal compo-
nent of F is
r r 1
RS R R

The flux is then )
¢=—ﬁmﬁz—m

Notice this is the flux through the sphere of the gravitational field of a

unit point mass at the origin. Should we have a point mass m the flux
would be ¢ = —4mm.

Problem 137:

Let F be a continuous vector field in an open set U C R3 and let S C U be
an oriented surface. Show that the flux through any region in S vanishes iff
F is tangent to S at each point.

Solution:

If F is tangent to S, its normal component vanishes and so does the flux.
Reciprocally if F is not tangent to S at the point p we have

F-n#0,

and, due to continuity, the product maintains the sign in a neighborhood U
of p. Choosing U as the region we would have

//UF~ndS7£O

contradicting the hypothesis.
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Problem 138:

Consider the paraboloid S; = {(z,y,2) : 2 = 2% + y?}, the plane Sy, =
{(z,y,2) : 2x — 2+ 3 = 0}, and the vector field F(x,y,z) = (y, 2,2 — y).
Compute:

a) The circulation of F along the intersection of S; and 5.

b) The flux of F through S, the finite region of S; limited by S.

Solution:

a) Eliminating z we obtain the projecting cylinder

Py = 20+3
- 2r+9y* = 3
(z—-1)2+y* = 4

A parametrization of the circumference (z — 1)* 4+ y? = 4,z = 0 with
center at (1,0) and radius r = 2 is:

r = 1-+2cosf
= 2sinf

and ’climbing’ to the paraboloid we obtain a parametrization of C' =

Sl N SQZ

v(@) = (1+2cosf,2sin60,5+4cosf),0<0 <27
Y(0) = (—2sinf,2cosf, —4sinb)

/F~dl:
c

2T
= / (2sin 6, 5+4 cos B, 1+2 cos§—2sin 0)-(—2sin b, 2 cos §, —4 sin 6)df = 127
0

The circulation is

where the orientation of the curve is that given by the parametrization.
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b) A parametrization of the paraboloid is

a(z,y) = (z,y,2* +y?), (v,y) € D

D being the disc limited by the circumference in a). The associated
normal vector and its norm are

a, = (1,0,2z)
O‘y = (07 172y)
N=a,xa, = (—2z,—2y,1)

And the flux is:
¢ = // y, 2 +y x —y) - (—2z, -2y, 1)dzdy =

B = 1+ pcost
N psin 6
2 2
= / / 2(psin @ + p*sin @ cos ) — 2psin (1 + pcos f)?
—2p%sin® 0 + 1 + 0 cos — Osin 0)dpdd =

2
= 27r/ pdp = 47
0

This value is obtained choosing the orientation given by the associ-
ated normal vector; it points to the interior of the paraboloid. Had
we choosen an exterior unit normal field to orient S we would have
obtained —4r.

O

5.5 Solid angle

Let [p, q) be the half line emanating from p and passing through q, and
let [p,q] be the corresponding segment. Now if S is a surface in R* and p
an exterior point, the solid angle of S with vertex at p is:

p*S={[p,q):q€ S}
and the solid cone generated by S with vertex at p is:

p*S]={[p,d:qcS}
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o

Gy

Let us remind that to obtain the measure in radians of plane angles we
draw a radius 1 circumference with center at the vertex of the angle and then
measure the length A\ of the arc limited by the angle:

Y

T

If the plane is oriented (anticlockwise usually) and we give an order to
the sides of the angle we can give a sign to the measure.

Similarly to measure a solid angle px.S we draw a radius 1 sphere centered
at p and measure the area of the region o cut on the sphere by the solid angle:
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Z
P (9,06)

In the case of of a plane angle, to obtain a signed measure we had to assign
a positive sense of turning on the circumference (where things happened) as
well as give an order to the sides of the angle. Now to obtain a signed solid
angle we orient the sphere (where things will happen) by the unit normal
exterior field; the orientation of the solid angle is an orientation of S.

We search a formula (et.: small form) to compute the measure and the
sign of oriented solid angles. We divide the problem in small problems (Ar-
quimedes, Descartes) breaking down the surface in surface elements dS which
we may think as small pieces of plane tangent to S. To introduce the tan-
gency we use the vector surface element dS = ndS, n being the unit normal
field giving the orientation of .S:



256 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACES

In the figure we project dS, the tilted form in continuous line, onto a plane
through q orthogonal to e, the unit position vector (the position vector being
T = pq). We obtain the form in dashed line whose area is

(cosa)dS = e, -ndS = e, -dS

and the area of the projection of this area onto the unit sphere is the element
of solid angle

Q= ~e. dS
r

We obtain the measure of the solid angle vith vertex at p adding the
contributions df:
/ s =

The integral is evaluated on S; if p = (a, b, ¢), q = (u,v,w) then

= (u—a,v—bw—c),r=+/(u—a)?2+ v —a)?+ (w—c)?

and we have the formula

o=/ [ u—au_ziwbw(_czc)?)?’/?'ds

Now df2 is positive if e, and n point to the same side of S and negative
if they point to different sides. The sign of €2 will depend on the orientation
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of S. For instance take for S a semisphere centered at O oriented by the
exterior normal; the solid angle with vertex at the origin measures 27, but if
we orient S by the interior normal the measure will be —27.

In the following figure the contribution at point b is positive, and that
at point a it is negative. Try to see geometrically that the solid angle of a
sphere from an exterior point vanishes.

p

Notice that % is the gravitational field of a —1 mass (!) at the origin (see
p.56) and then the solid angle is the flux of this field through S. If the minus
sign associated to a mass is disturbing we can think in the electric field 5
generated by a point charge +1 at the origin (see p.61)

Problem 139:

Find the measure of the following solid angles expressing them as p * .S and
giving an orientation to .S.

a) C={(z,y,2): x>0,y >0,z >0}

b) D:{(l’,y’Z) :I2+y2 SCLZ2, 220,0,>0}.
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Solution:

a) It is clear that the first octant of the unit sphere centered at the origin
is the S we must choose. Orient this piece of the sphere through the

unit exterior normal vector:
V4
n

X

We see what the region on the unit sphere measures:

b) The solid angle given is generated by the region A in the upper unit
sphere that lies outside the cone. We orient this region through the
unit exterior normal vector; moreover we have tan o = /a.

V4

S —

Xz y

Let 3 be the spherical parametrization of S?; the exterior normal is
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n = (u,v,w) and put r = (u,v,w),r =| r |. The solid angle is

0 = //A%-dS:
_ //A(u,u,w).(u,u,w)dsz
_ //A(u2+v2+w2)d5://AldS:
/2

2w w/2
= d@/ sin pdp = 2w (—cos ) /o =
/0 m/2—arctan \/a m/2-arctan v/

NG

= 2n(sin(arctan /a)) = QWM

Problem 140: Solid angle and attraction.

Let g be the gravitational field created by a plane, bounded, material lamina
L with constant superficial density o, that we assume oriented by a normal
field n. Show that the normal component of the field is o2, 2 being the
measure of the solid angle p * L.

Solution:
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When computing the gravitational field at p we follow the rule from the
source (the lamina) to the point’ (see p.55) and if p = (z,y, z) we have

:—a//—dS r=(r—uy—v,z—w),r=|r
L’

The normal component is

r
gn(pP) =g :—0’/ = ndS——a/ Lﬁ-dS

While to find the solid angle of L with vertex at p we use r = (u — z,v —

y,w — z) that satisfyes r = —r and compute
~dS = — - dS
// | [? / L
Finally
gn(p) = ot

Problem 141: Solid angle and attraction.

Let V' be the region of a solid angle with vertex at the origin limited by a
surface S whose equation in spherical coordinates is p = f(¢,0), (p,0) € D
and assume in V' a mass density x. Show that the z component of the
gravitational field of the body at the origin is

f(p,0)
= //(/ xdp) cos @dS)
s Jo

Solution:

Observe the figure:
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Z
P (9,06)

To compute the field, using the rule from source to point’ , we write
r = (—u,—v, —w), r = (u* +v* + w?)'/?; the component Z(0,0,0) is simply

Z(0) = —/// _—gjde:{spherical coords} =
v T

f(e,0)
= / / ( / PEL o sin pdp)dipdd =
D Jo p

f(,0)
= //(/ xdp) cos @ sin pdpdd
p Jo

While to compute the solid angle we use e, = (u’:’w) and dQ) = % - dS; we
have the parametrization of S

a(p,0) = f(p,0)(sinp cos 0, sin psin b, cos p) = f(p,0)e,, (¢,0) € D
and we let the normal vector associated to it orient S . Then :

dpa = foe, + fO,e,
O = fge, + f Ope,
N = (f.e.+ fo.e.) x (foer + fOse,) =
= ff.(e. x Ope,) + ffo(0,e. x €,) + f3(D,e, x Dge,)
i = & .4s= f—Q . 2(D,0, X Ope,)dpdd
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The partial derivatives of e, are:

Jye, = (cosycos,cospsing, —sinp)
e, = (—singsind,sinpcosh,0)
d,e, x Oge, = (sin’pcosf,sin>psin b, sin ¢ cos p)
f2
dQ) = aer (0p€ X Ope,) dpdf =
= e, (0ye, X Ope,) dpdl =
= (sin >y cos %0 + sin *p sin 20 + sin ¢ cos 2p)dpdf =
= (sin®p + sin ¢ cos *p) dpdfh =
= sinpdpdl

and the attraction is

f(,0)
Z(0) = // (/ xdp) cos psin ¢ dpdfh =
D Jo

f(p.0)
= //(/ xdp) cos p dS2
s Jo



Chapter 6

Integral theorems

6.1 Green’s Theorem

Let U C R? be the bounded region limited by a piecewise C! simple closed
curve C', positively oriented (i.e.: the region U lies to the left of the traversed
curve) and F = (P,Q) € C'(CUU). Then:

/ -dl = //a—Q—a—jdxdy

(The theorem remains true under the weaker hypotheses that F be differen-
tiable and % %—I; continuous. See J.Bruna, J.Cufi, ANALISI COMPLEXA,
Manuals 49. Universitat Autonoma Barcelona. 2008.)

In the following figure we can see from left to right curves that are: simple

C', non simple C!, simple piecewise C', non simple piecewise C*.

SACADRT

Notice that if the curve is not simple it may be impossible to leave the
bounded region on the left:

263
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and we see as well that several bounded regions may exist in this case.

U

Problem 142:

Let a = (0,0),b = (2,3) and C the boundary of the rectangle R(a,b) tra-
versed in anticlockwise sense. Compute fCF - dl using Green’s theorem in
the following cases:

a) F(z,y) = (0,2)
b) F(z,y) = (v +y,vy%)
c) F(z,y) = (v, 22 —y)
d) F(z,y) = (sin(5zy), 27)
Solution:
y
(2,3)
X

a) [ F-dl= [ [,1ldzdy = Area(R) = 6.
b) [F-dl= [ [,—1dzdy = —Area(R) = —6.
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/F-dl = //(Q—Q:Cy)dxdy:2//1dxdy—2//xydxdy:
c R R R

2 3
= 12—2(/ :Bda:/ ydy) =12 — 18 = —6.
0 0

/CF.dl _ //R(z_ v cos( S ay))drdy =

2 3 2
= 12— d:E/ T cos(zzy))dy =12 — / :Esin(ﬁxy)|yzgdzv =
o Ty 270 , ol

4

2
3
- 12— / sin( L ay)de =12 — —
0 2 3T

Problem 143: Area computations through line integrals.

a) Let U be the bounded region of C, a piecewise C! simple closed curve,
positively oriented. Show that

Area(U) = —/ydx:/:cdy: %/(—ydij:cdy)
c c c

b) Find

i) The area of an arc of a cycloid.

ii) The area of one leaf of the four-leaf clover given in polar coordi-
nates by r = 3sin 26.

Solution:

a) We obtain the three results applying Green’s theorem to the region U
and to the fields

F(2,4) = (—5,0).F(z,) = (0,2), Fla,y) = 5(-p.2),
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respectively. For instance

—/Cydx _ /C(—y,O)-dlz//D[ax(O)—ay(—y)]d:de
- //Dldxdy:Area(U).

Observation: There is an analogous method for volume computation
that uses surface integrals (see p.331).

b) In each case we use the appropiate formula:

i) Remind the parametrization of C}, one arc of the cycloid:

x = R(u—sinu)

y = R(1—cosu) }’ O<usm

Let U be the bounded region of the closed curve C' that consists
of C; and the segment Cy = [27R, 0] on the Ox axis traversed in
the negative sense:

y Cl
U
(@] G, X

The curve C is piecewise C*, simple and closed but is negatively
oriented. That is why we have

Area(U) = _/c C:de:—/cxdy—/cxdy:
1UC2 1 2
2m
- —/ R(u —sinu)Rsinudu + 0 =
0

2 2T
= RQ(—/ usinudu —I—/ sin *udu) =
0 0

2m 2m
1- 2
= R*(ucosuld” +/ cos udu) —|—R2/ %du =
0 0

= R’(27m+ ) = 37R?



6.1. GREEN’S THEOREM 267

The area is thrice the area of the generating wheel. We can visu-
alize this result: the area of both regions next to the central disc
in the figure is the same as the area of the disc.

y

@) X

ii) The cartesian parametrization of one leaf is
v(0) = (3sin26 cos @, 3sin 20sin ), 0 < 0 < /2.

y

L J
Using the second formula in a) we have

w/2
Area(U) = /dey:/o 3sin290089d£9(3sinQQSinﬁ)dﬁ:
w/2
= / 3 sin 26 cos (6 cos 20 sin 6 + 3 sin 260 cos ) =
0

0

w/2
/ (18 sin 26 cos 20 sin 6 cos O + 9sin® 26 cos® §)df =
w/2
( )df

1 20
= / g sin 46 sin 20 + 9 sin? 294_6%
0
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Let us compute separatedly each integral; we use the trigonometric

formula sinasinb = w :
w/2 9 w/2 1
/ 9sin40sin20df = — / —(cos 20 — cos66)df =
o 2 ), 2
~9,sin20  sin66, 5o
N 4( 2 6 Jlo™ =0
1 20
/ 9sin +cos —df =
0 2
_ / sm sm2 20 cos 29)d6’ _
0 2
“/2 —cos46  sin® 26 cos 26

I
©

[ s,

0 sm49 sin® 26 a2 9
= 9(= _Z
(3- T =T

o

Finally the area is

Area(U) = =7

Problem 144:

The parametrized curve v(t) = (e ‘cost, e 'sint),t € [0, 27] (a spiral) joined
to a segment in the Ox axis forms a closed curve. Find the area of U, the
bounded region of C.
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Solution:

o P \0

NIV

We use the formula Area (U) = [, zdy because doing so we won’t have
to integrate along the segment since there we have dy = 0.

2m
Area (U) = / e ' cost(—e"sint + et cost)dt
0

2T
= / e *(cos?t — sint cost)dt
0
Integrating by parts

27 27
1 1
/ e Mcos’tdt = ——e *cos’t 2" —/ ——e #(2cost(—sint))dt =
0 2 o 2
1 1 27
= —56_4W+§—/ e 2 sintcostdt =
0
1 27
= —(1—e%)— e ?sintcostdt
2
0

and then

1 2
Area (U) = 5(1 — e i) — 2/ e *sintcostdt =
0

1 2m
= —(1—e*)— / e~ sin 2t dt
2 0



270 CHAPTER 6. INTEGRAL THEOREMS

This last integral is
2m
I = / e 2gin 2t dt =
0
1 2w
= —56_2t sin 2t 3" +/ e % cos 2t dt =
0

27
= / e 2eos2tdt = J
0

and
2
J = / e 2 cos 2t dt =
0
1 27
= ——e *cos2t |3”—/ e % sin 2t dt =
2 0
1, 1
— e AT ——[:
3¢ T3
1
I 1_ —47 ]
S e
Then
1
2] = —(1—e"
S e
1
] - (1-— —4m
-
and

Area (U) = i(l — et
U

Problem 145: Area enclosed by a polygonal line: a computing science
problem.

Compute the area of the region U enclosed by the simple closed polygonal
line C' with vertices at

Py=(3,2),P,=(1,4), P, = (—4,3), Ps = (3,—4), P, = (2,-2).
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Solution:
y P1

P
2

R

X
P
P3

We use the line integral method; from the symmetric formula we have:
1
Area(U) = = / (—ydz + zdy)
2 Jc
Let P, = (a;,b;),i=1,...,4 and let us work first on the segment [Py, P]:
X(t) = 1=t P )+¢ 9 ), telo,1]
bo by
/ . ay — Qo
X(r) = ( A )
1
/ flfdy = / ((1 — t)CLQ + tal)(bl — bo)dt =
[Po,P1] 0
1—1t)? t?
-

9 a0+5a1)|(1] =
ag + ap

= 5 (b1 —bo)

bo+ b
/ ydr = 0—5 L (ay — ap)
[Po,P1]

1
/ —ydx + l’d’y = —(a,obl — albo)
[Po,P1] 2

and by symmetry

SO

N —
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and the area is

3
1
> (aibis1 — aiabi) + 5 (aabo — agby)

=0

Area(U) =

N —

To do the computation it is useful to put the data in a table

1 a; bz
0 3 2
1 1 4
2 -4 3
3 3 —4
4 2 =2
0 3 2

and then calculate the successive minors 2 x 2 :
1
5(10+19+7—|—2+10) =24

One sees the usefulness of this result when applied to a list of vertices with
several hundreds of items; a trivial program will allow us to obtain the area.

O

Problem 146:

Consider the ellipse

fL’2 y2
2=t

the field F(x,y) = (—y, x) and the points P = (a,0),Q = (0, b).

a) Compute fc F - dl, C being the curve consisting of the segment [Q, P]
and the arc PQ of the ellipse traversed in the positive sense.

b) Compute directly the area of the region U limited by C' and check the
result of a) using Green’s theorem.
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Solution:

yQ
U
b
P
0 a X

a) The integral along the segment is

¥(t) = (ta,(1—1t)b), t € [0,1]
Y(t) = (1)

F-dl = —(1 —=1t)b,ta) - (a,—b)dt =
/m /0<< 0, ta) - (a, ~b)dt

1
= / —abdt = —ab
0

and the integral along the arc of ellipse is

v(t) = (acost,bsint), t € [0,7/2]
7Y(t) = (—asint,bcost)

abdt = gab

/ F-d = / (=bsint,acost) - (—asint,bcost)dt =
PQ 0
J

and

/F-dlz(f—nab
c 2
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b) The area seeked is obtained subtracting from the area of a quarter of
the ellipse the area of the triangle OPQ , that is ’TT“I’ — %b = (- %)ab.
On another hand the symmetric formula for area calculation tells us
that it should be half the line integral, and so it happens. The result
in a) is checked.

Problem 147:

Green’s theorem is valid in some more general situations than the one de-
scribed above. For instance:

a) Let C' and C" be two piecewise C! simple closed curves. Assume C’
contained in the bounded region of C. Show that if F € C*(D U dD),
D being the region in between C” and C, then we can apply Green’s
theorem to D; explain the orientations.

b) Let C be the ellipse v(t) = (2cost,3sint), t € [0, 27]; compute:

d d
/C(x?er? ij952+y2) Y

¢) Let C be a closed curve; the index of C respect to 0 = (0,0) is:

n(C:0) 1/0( YV drr — Ty

T or Jo B y? r? + y?

Show that if C is a simple closed curve positively oriented and D its
bounded region then:

1 ifoeD
”<C70)_{ 0 if0¢ DUID

Solution:

a) Orient both curves as in the figure, that is so that D is on the left of
both curves:
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Consider the cuts P and (). Now the curve C + P+ + (@ is piecewise
C!, simple, closed and positively oriented; its bounded region D; lies
on the left:

Applying Green’s theorem we obtain:

F: F
/ dl = // 2 _ b )dxdy
01+P+C’+Q Dy

Analogously the curve Cy+ Q™ +Ch+ P~ is piecewise C', simple, closed
and positively oriented; its bounded region D lies on the left:

P Q

Apply again Green’s theorem to obtain

/ ~dl = / / % — @ Ydxdy
Co+Q~ +C’+P* Dy
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Adding term by term the two preceding equalities and taking into ac-
count that the line integral vanishes when integrated on two opposed
curves (that is: along the cuts), we obtain the following version of
Green’s theorem:

/ .dl = / @ _ @ )dady
c+cr

Remark that the orientation assigned to C’ leaves the region D to the
left.

The field F(z,y) = (ﬁ, ﬁ
tion in R? — {0}. Let B be the unit circumference positively oriented:

) satisfies the mixed derivatives condi-

C

N
N

Applying Green’s theorem to the region D:

/ -dl = / %—@ddy20:>/F~dl:/F~dl
C+B~ dy c B

but the integral on the unit circumference B is easy

2w oo t t
/ F.-dl = / (S—m,(—sint)jLL,zcost)dt:
B 0

cos?2t + sin®t cos2t +sin“ t

2m
= / (sint + cos® t)dt = 27
0

Notice we have been able to change the integration path because in the
region D the mixed derivatives condition is satisfied.
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¢) If 0 € D let S be a circumference with center at 0 and contained in D:

C
S

D

By the same reason we had in b) we can change the integration path:

1 —y x 1 —y x
— | (5w—=d d d dy) =1
21 C(a:2+y2 I+x2+y2 v)= 27r/(182+y2 x+:v2+y2 v)

If 0 is an exterior point

C
we can apply Green’s theorem to the region D, because the field F(x,y) =

(1‘2_—-1-yyz’ :l:z‘rTyz) is Cl in D. We have

-y 8F2 8F1
/C(at2+y2d$+x2+y // — d:vdy—//()d:)sdy—()

Obviously we can define the index of C' respect to a point P = (a,b)

thus
1 —(y — b)dx + (v — a)dy
wCiP) =5 |

Problem 148:

a) Compute the length of the astroid 2%/ 4 %/ = a?/3,a > 0.

b) Compute the area enclosed.
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) Let F(z,y) = (7%, 71,7); show that the integrals of F along the
astroid and along the circumference

traversed in the same sense coincide. What is the common value?

Solution:

A figure:

a) A parametrization of the astroid is

v(t) = (acos®t,asin®t),0 <t < 2w
7' (t) = (—3acos®tsint,3asin®tcost)
|4/ (t)| = 3aV/costtsin®t + sin*t cos?t =

= 3a|costsint |

and its length is:

2 w/2
L = 3@/ |costsint|dt:4-3a/ costsintdt =
0 0

c 02
U x
_ 12aSH; "2 6
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b) We use the symmetric formula (see p.265):

Area

1
5 /(—ydm + zdy) =
gl

2m
/ (—asin® t)(—3acos® tsint) + acos’ t 3asin’® t cos tdt =
0
w/2

4 - 3a® / (sin® t cos® t + cos* t sin® t)dt =

0

/2
12a? / sin? t cos? tdt =

0

dt =

12&2/ﬂ/2 1 —cos2t 14 cos2t
0 2 2

/2
3a* / (1 — cos? 2t)dt =
0

w/2 1 4

302(7/2 — / *%”dt) — 3a2(r /2 — 7/4) =
0

3T 4

Za

But we can as well use one of the other formulae:

Area(U)

= /:cdy
”

2m 2m
= / acos*t(3asin *t cost)dt = 3a* / cos? t sin? tdt =
0 0

2m 2
1 2t)° 1 — 2
3a2/ (1 + cos2t) cos2t
0

4 2
3a2 2T
Y (1 — cos? 2t)(1 + cos 2t)dt =
0
3a2 [*7 1 At
o (1— Sroos® + cos 2t — (1 — sin ?2t) cos 2t)dt =
8 Jo 2

¢) As the mixed derivatives condition is satisfied both line integrals coin-
cide by the same reason we had in b) of the preceding problem. Then
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we can integrate along a circumference, let’s say the unit one:

F.-dl = cdl =
L /c($2+y2’x2+y2)

2

(—siné,cosf) - (—sinf,cosd)dd =

2

1d0 = 27

S—. S—

Problem 149:

Let D C R? be the bounded region of a piecewise C!, simple, regular closed
curve C positively oriented. If F = (P,Q) € C'(D U dD) (where C = 9D,

the boundary of D) and F = (P, @, 0), prove the following equalities:

/aDF-dIZ//D(axQ—ayP)dxdy

a)

b)
/ F-dl= // (rot F).dzxdy
oD D
c)
/ F - -ndl = // div F dzdy
oD D
d)
/ r-ndl = 2Area (D)
c
Solution:

a) This is Green’s theorem.

b) (rotF), = 0,Q — 0, P and it is again Green’s theorem.
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¢) Call n the normal vector to C pointing to the exterior of D. If

7 ¢ a, b = R?, 4(s) = (a(s), y(s))

is an arc-length parametrization of C, that normal vector must be
n = (y,—2') or n = (—y',2’). We have to choose the one that makes
(n,v') a positive basis. As we have

/ x/
dor (0,0 ) =0 @) >0
we see that n = (y/, —a’). Then
b b
/ F-ndl = / (P,Q) - (y,—")ds = / (—Qz' + Py')ds =
oD a a

_ /aD(—Q,P)-dIZ//D(axP—ay(_Q))dedy:

= //div F dxzdy
D
/r-ndl:// div rdxdy:// 2dxdy = 2Area (D)
c D D

The result in b) is Stokes’s theorem in the plane and the result in c) is the
divergence theorem in the plane.

6.2 Stokes theorem

Surfaces with boundary

Let S be a surface that has as boundary a curve C; we write 95 for the
boundary. Let F be a C' vector field in an open set U C R? that contains S

and 05. Then
//rotF-dS:/ F-dl
s a8
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In words: the flux of F’s rotational through S equals the circulation of F
along the boundary.

There is an important point about orientations since both integrals de-
pend on them; the orientation of the boundary has to match that of the
surface. Let us give some intuitive rules about that.

Assume S oriented by a continuous unit normal field n that gives a pos-
itive sense of rotation in S through an orientation of the whole space (see
p.244). Imagine small dust like particles distributed on S and 0S; on S they
are dragged by the positive turning sense. In 05 the wind produced in S
moves the particles thus fixing an orientation for 0S; it is called the induced
orientation. A figure:

0S

We can as well apply the theorem to surfaces glued through their bound-
aries. But one has to be careful with orientations in the sense just explained.
For instance:
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-5

Problem 150: Checking.

Check Stokes theorem applied to the field F(z,y,2) = (z,x + y,z + y + 2)
and the closed curve C' = {(z,y,2) : 2? +y* = R,z +y = z, R > 0}.
Solution:

C' is the intersection of a cylinder and a plane; we see geometrically that it
can be the boundary of many surfaces. According to the theorem any one of
them will do; we choose as S the region of the plane x +y = z limited by C":

N
—

z

X

A parametrization of S and its associated normal vector are

a(r,0) = (rcosf,rsinf,r(cosf +sind)), (r,0) € (0, R) x (0,27)
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Ora = (cosf,sinf, cosf + sinh)
Oga = (—rsiné,rcos@,r(—sinf + cosf))
N = (-r,—nrr)

Orient S with that normal field. To check the theorem we need a parametriza-
tion of 05 = C such as

v(0) = a(R,0) = (Rcos#, Rsinf, R(cosf +sinf)),0 € (0,2m)
7'(0) = (—Rsinf, Rcosf, R(cosf — sin b))

that has the induced orientation. We can see this geometrically: the
screwdriver rule tells us that the normal generated by the way C' ’turns
around’ is in the N direction. Algebraically this amounts to see that

7(6) x7'(0) - N >0

wich is easily checked. Or we can say that v is the restriction of o and
v = Oya; then ~y is already well oriented because:

Y(0) x ¥ (0) - N = (a(R, ) x Opa) - N = (RO, x Jpar) - N = RN? > 0
e Flux of rotF through S:
rotF = (1,-1,1

)
R 2T R 2
//F-dS = / / (1,—1,1)-(—r,—r,7’)drd9:/ / rdrdf = TR
S o Jo o Jo

e Circulation of F along C"

2T
/ R(cosf,cos +sinf,2(cosf +sinf)) - R(—sinb, cosf, cosf —sinh)df =
0

2T
= Rz/ (3cos?0 — 2sin20)df =
0

2 ;0=

= R%*(37 —271) = mR?

B R2/2”(31—|—c0829 _21 — cos 20
0
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Problem 151:

Check Stokes theorem applied to the field F(x,y, z) = (z,y, 2) and the sur-
face S parametrized by a(r,6) = (rcos6,rsin,6), (r,0) € (0,1) x (0,7/2)
(helicoidal ramp).

Solution:
A figure:
Z
Z
nr\ y3
/2
Yq
a y2
]
y N

e We orient S by the associated normal vector:

O = (cosf,sind,0)
Opav = (—rsinf,rcosb, 1)
N = (sinf,—cosf,r)

The flux of the rotational through the surface is

rotF:0:>//r0tF-dS:O
s

e Circulation of F along the boundary:
To parametrize the boundary according to the orientation of S observe
that the normal vector points towards the upper half space of the plane.
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We see in the figure the induced orientation in the boundary. Then

) (¢,0,0),0<t<1

) (cosf,sinf,0),0 <0 < m/2
v(t) = (0,1 —t,7/2),0<t<1

) (0,0,7/2—-0),0<0 <7/2

The circulation is the sum of the contributions along each piece:

1 1
1
/F-dl _ /(t,0,0)-(l,0,0)dt:/ bt =
Y1 0 0 2
7T2

w/2 /2
/ F-d = / (cos@,sinf,0) - (—sinf, cosh, 1)dd = / 0dh = —
~ 0 0 8
/
g

2
1 1
1
F.dl — /(O,l—t,ﬂ/2)-(0,—1,0)dt:/(t—l)dt:——
3 0 0 2

/41?

w/2
dl :/ (0,0,7/2 — ) - (0,0, —1)df =
0

/2 T 2 2 T
= e-Hu=5-T--%

8
/F-dl:()
g

and we have checked Stokes theorem.

We obtain

Problem 152:

Evaluate the following integral using Stokes theorem
/ —Pdr + 2*dy — 22dz
c
C being the intersection of the cylinder 224y? = 1 and the plane z+y+2 = 1,

with an orientation such that its projection on z = 0 turns anticlockwise
(usual positive sense) as seen from z > 0.
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Solution:

A figure:

X+y+z=1

Let S be the region of the plane limited by the cylinder; parametrize S
by

a:D=D(0;1) — R
(x,y) = (v,y,1—2—y)

that has as associated normal vector N = (1,1,1). We see geometrically
that 0S has the induced orientation and we can apply Stokes theorem. Let
F(z,y,2) = (—y? 23, —23) that has rot F = (0,0, 3(z* + y?)). Then

/F-dl _ // (0,0,3(2% + ) - (1,1, 1)dady —
c D(051)

1 27 1 3
= 3/ / r’rdrdf = 3-21 = =7

Problem 153:

Let C be the curve intersection of the surfaces

z+y=2b 2%+ 9%+ 22 =20z +y),b>0
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oriented in the anticlockwise sense when seen from the origin. Use Stokes
theorem to evaluate

I:/ydx+zdy+xdz
c

Solution:

C'is the circumference intersection of the plane parallel to the Oz axis z+y =
2b and the sphere 2% + y? + 22 = 2b(x + y) with center (b,b,0) and radius
V/2b. In the figure we can see C with the given orientation, and its projection
on the plane y = O:

S
N D
=T D

/|

Eliminating y from the system giving the intersection we obtain the pro-
jecting cylinder on the the plane y = 0:

T4y = 2b

2 N2 2 a2
PPt = 2b(a:+y)} = 24+ 2b—2)"+ 2 =4b

20° — 4br + 2° =0
and completing squares we obtain the ellipse

(x —b)? 22
RN NGHE

:]_’y:O
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If S'is the region in the plane that has C' as boundary we have the parametriza-
tion
alx,z) = (z,2b—x,2),(z,z) € interior (F)
N = (-1,-1,0)

N gives S the right orientation and we can apply Stokes theorem to the field
F(x,y,z) = (y, z,x) whose rotational is rot F = (=1, —1,—1); let R(E) be
the region enclosed by E:

I = //rotF-dS:
s

_ // (—1,-1,-1) - (=1, —1,0)dzdy =
R(E)
= 2 // dzdy = 2 - Area R(E) = 2 - wbv/2b = 2v/21b?
R(E)

Problem 154:

Let f,g € CYR?),h € C*R®) and F(z,y,2) = (f(z,2) + ay,g9(y,2) +
bx, h(x,y,z)). Let C be a simple closed curve contained in z = 0 and oriented
by leaving its bounded region U to the left (the planez = 0 being oriented
by (0,0,1)). Show:

/F-dl: (b —a)Area (U)

Solution:

Apply Stokes theorem to U oriented by (0,0, 1):
i 3 K
rot F = det 0y 9, 0, =
flz,2) +ay gly,z) +bx hz,y,z2)
= (Oyh —0.9,0.f — Oyh,b—a)

/F-dl = //rotF-dS://rotF-(0,0,l)dS:
c U U

_ (b—a)//UdS:(b—a)Area (o)
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U

Problem 155:

Let S be a surface with boundary the curve C' and assume both oriented in
a compatible form. For each p = (a,b,¢) ¢ S U C consider the gravitational
field of a unit mass point at p

1
g(x,y,z):——(x—a,y—b,z—c),r:| (:L’—a,y—b,z—c) |7

r3

and the flux through S as a function of p

¢(p)=//sg-d8-

—p)xd
V(25:/0(3< I;z,x X

Show that

Solution:

The first component of the gradient is
0 1
_ 0% _ _
(V¢)1 = %4 = 8(L(//S_§(x_a’y_b7z_c)ds)_

B 0,x—a, 0 ,y—>b, 0 z—a
- [ G e s

We compute the derivatives

0 x—a, —1°=3r"2(x—a) —r?+3(z—a)’
%( 73 )= 76 B rd
0 y—b,  3r%Ey—b) 3(—ay—0)
%( r3 )=- r6 B rd
0 z—c, 3@—a)(z—c)
%( r3 )= 73

and the first component of the gradient can be written

(Vo) = —//9:—5(—7“2+3(at—a)2,3(:)3—a)(y—b),B(:E—a)(z—c))-dS
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On the other side

(x—p)xdx = ((y—b)dz—(z—c)dy, (z—c)dz—(r—a)dz, (r—a)dy— (y—b)dx)
([ B [ St b - oy

Now we use Stokes theorem applied to the field F = 5(0,—(z —¢),y — b,)
whose rotational is

i j k
rot F=det| 0, O 0, =

2r2 —3(y —b)2 = 3(z —¢)? 3(x—a)(y—0) 3(z—a)(z—c)

=( ) =

and

(x —p) xdx, _ L 2 430—a)2, 3(r—a) (y—b). 3(z—a) (z—c))-
([ E=BE = [ [ St es—a 3a—a) -1, 3a—a)(=0) a8

r3

that coincides with the first component of V¢. The other components are
checked in the same way.

Problem 156:

a) Compute directly the flux of the field F(x,y,2) = (—=x,0, z) through
the surface S = {(z,y,2) 1 a® + > + 22 = 1,2 > 1}.

b) Find a vector potential for F of the form A(z,y,z) = (X,0, Z).

¢) Check the result in a) by means of Stokes theorem.
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Solution:
a) Parametrize S:
a(p,0) = (sinpcosf, sinpsinb, cosp),0 < o <7/3,0 <6 < 2w

with associated normal vector

0
o (cos @ cos b, cos g sin b, — sin @)
Iy
[3Je! . . :
%0 = (— sin psin @, sin  cos 6, cos @)
N = (sin®¢cosf,sin? ¢sinf,sin ¢ cos @)

We orient S by N. The flux is:

2w w/3
o= / / (—sin ¢ cos @, 0, cos p)-(sin? ¢ cos @, sin® p sin 6, sin ¢ cos p)dpdf =
o Jo

2r  pw/3
= / / (— sin® ¢ cos? § + sin ¢ cos? p)dpdl =
o Jo

w/3 w/3 3
= —7T/ sin® pdyp + 27r/ sin ¢ cos® pdp = u
0 0

b) F may have a vector potential:

o—z) 0z B
o +$_—1+1_0

A = (X,Y, Z) must satisfy (see p.159)

div F =

0yZ = —x
rot A=F:¢{ 0,X—-0,Z = 0
—0,X = z
from first and third equations
Z = —Iy + (,O(SL’, Z)

X = —yz+¢(z,2)
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and substituting into the second

0 0
0z

We choose ¢ =1 = 0 and obtain

A= (_yzv 07 —xy)

¢) Using A we have

gb://F-dS://rotA-dS: A -dl
s s as

The vector N points to the exterior of the sphere and we orient 0S
accordingly. The following parametrization gives the right orientation:

() = (vV3/2cos0,v/3/2sin6,1/2)
7'(0) = (—v3/2sin6,v/3/2cos6,0)

and then
O = A -dl =
a8
271' 1 1
= / (“ﬁSiﬂH,O,__ﬁCOSQ)~(—\/§/28in9,\/§/26089,0)d9:
0 2 2 2 2
27
= /0 gsinzedﬁzgw

Problem 157: Flux and circulation.

a) Compute the flux of the field F(z,y,z) = (2%, 0,—2z2) through the
surface

S={(z,y,2): 2* +y*=4,20>1,0< 2 <1},
oriented in such a form that the normal at point P = (2,0,1/2) is
n=(—1,0,0).

b) Using Stokes theorem check the result in a).
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Solution:
A figure
Y4
- v
11
N
! \
@012 N/ )Y
X Y
1

a) Parametrize S by means of cylindrical coordinates

a(f,z) = (2cosh,2sinb, z),
(0,2) € D=[-7n/3,7/3] x[0,1]

The associated normal vector is N = 2(cos#,sin6,0); now the point
P = (2,0,1/2) has the parameters (0,1/2) and the normal vector
there is N(0,1/2) = 2(1,0,0) which is opposed to n. We can pro-
ceed with the parametrization we have and change the sign at the end
or reparametrize by

B(z,0) = a0, z)

that has an associated normal vector satifying Ng = —N, and will
have the good orientation. We use the first procedure:
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//F-Nadedz // (4c0s%0,0, —4(cos6)z) - 2(cos 0, sin 0, 0)dOdz =
D

// cos30dfdz = 8 // (1-— sin 2 ) cos 0dldz =

30 3 38
=8 (sinf — SH;) )|_/7S’/3 = 8@% - 2%) =6V3

So with the given orientation we have

//SF-dS:—

b) F has a vector potential since div F = 22 — 2z = 0. Using the method
of p.156 we have

1
A(z,y,z) = /F(tx)xtxdt:
0

1
= / (#2220, —2t%x2) - (tx, ty, t2)dt =
0

1
= (2xyz,—3x2z,x2y)/ t3dt =
0

1
Z(2xyz, —32%2, 2%y)
To check the result obtained in a) we shall integrate A along the four
arcs in the figure that have the orientation induced by that of the
surface. Then:

1(0) = (2cosf,—2sinh,0),0 € [—7/3,7/3]

71(0) = (—2sinf,—2cos6,0)

7r/31
/A-dl = / ~(0,0, —8cos*#sin ) - (—2sinf, —2 cos d, 0)dh = 0

() = (1,—V3,t),t e [0,1]
t) = (0,0,1)
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v3(0) = (2cos6,2sin6,1),0 € [—7/3,7/3]
v5(0) = (—2sin6,2cos6,0)

/A-dl:
73

w/3 1
= / ~(8sinf cosf, —12 cos® #, —8 cos? § sin f)-(—2sin 6, 2 cos 6, 0)df) =

—7/3
1 w/3
= —/ (—16sin? @ cos § — 24 cos® §)df =
4 —7/3
sin®@ . sin®6.
= —4 3 |_/7f’/3 —6(sin 0 — )|_/7f’/3:
sin® ¢ /3 . /3 \/3 11\/3
= 2 3 |Zayg —6sin6 |7 = o = 6V3 = 5
74(t) = (1a\/§>1_t)>t€ [071]
7)) = (0,0,-1)
' 3
A-dl = /—(...,...,\/§)~(0,0, 1)dt:—£
V4 0 4 4
We obtain
11
Adl= Y3 V3 o
88 4 2

Problem 158:
Let u,v € C*(R?) scalar fields.

a) Show that Vu x Vv has a vector potential.
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b) Is any of the following fields such a vector potential?

i) V(uv).
i) uVo.

iii) vVu.

¢) Ifu(z,y,2) = 2% —y>+ 2% and v(z,y,2) = x + y + 2, compute

I://Vuva-dS,
s

S being the upper hemisphere of the unit sphere oriented through the
exterior noisrmal.

Solution:
a) Let us show that Vu x Vo has a vanishing divergence
div (Vu x Vu) = div (uyv, — w0y, U0 — UgUs, UgVy — UyVy) =
= (UyaUs + UyUsy — UsgVy — U Uy, ) +

+ (uzy'Ux + uzvxy - uxy'Uz - u:c'Uzy) +

4+ (Upsy + UgVys — Uy Uy — UyUy)

and the terms vanish in pairs because of the equality of cross deriva-
tives. Being u, v defined in all of R? there is a vector potential.

b)

rot V(uv) = 0

and it is not a vector potential.
ii) rot (uVv) = Vu x Vv and we see that uVv is a vector potential.

iii) rot (vVu) = Vv x Vu and we see that —vVu is a vector potential.



298 CHAPTER 6. INTEGRAL THEOREMS

¢) We know that uVv = (2* — y® + 2%)(1,1,1) is a vector potential and
Stokes theorem gives

//Vux Vu-dS = //rot (x* —y* +2%)(1,1,1)) - ndS =
s s
= / (2® — 4+ 25 (1,1, 1)dl
a8

Parametrizing S by

v(t) = (cost,sint,0),t € [0, 27]

7' (t) = (—sint,cost,0)
we obtain

21

I = (cos®t — sin®t)(—sint + cost)dt =

2T
(cos*t — cos®tsint + sin*t — sin®t cost)dt =

2m
3 3 3
(cos*t +sin* t)dt = Zﬁ + Zﬁ = ;

I
o— S— —

Problem 159:

Let S be a surface oriented by the unit normal field n, and u,v € C? (in an
open set containing S) numerical functions. Show that if Vu is orthogonal

to Vv x n on S, then
/ uVuv-dl =0
as

Solution:

We use Stokes theorem and the property of the mixed product (a x b)-c =
(bxc)-a=(cxa)-b:

/aSqu-dl = //Srot(qu).dS://S(Vuxvv),ndS:
- //S(WXH)-VudSzf/SOdS:o
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Problem 160: Independence of the path.

a)

Let S C R? an oriented surface such that any simple closed curve in S
is the boundary of a region R C S, and let F(z,y, z) be a vector field

in R%. Show that
/ F-dl=0
c

for every simple closed curve C' C S iff rot F - n = 0 at every point
of S (n is the normal field giving the orientation). If this condition is
fulfilled then the line integral depends only on the endpoints.

Let S = {(z,y,2) : 2* +y* = 4,1 < 2,0 < z < 1} and F(x,y,2) =
(—y,x,1); is the line integral of F along curves in S independent of the
path? If this is so compute the integral of F between (1,/3,0) and
(1,—+/3,1). If that is not so compute the circulation of F along the
boundary of S

Solution:

a)

i) If (rot F) - n = 0 then rot F is tangent to S and its flux through
any region R C S vanishes. Then let C' C S be a simple closed
curve and R C S the region such that OR = C. Giving C the
orientation induced by that of S we can apply Stokes theorem:

/F-dl://rotF~dS:0
c R

ii) If [,F -dl = 0 for every simple closed curve C' C S for every
region such that OR = C' Stokes theorem gives

//R(rotF)-ndS:/CF~dl:O

If we had (rotF-n), > 0 at a point p € S it would remain positive
in a neighborhood V of p by continuity; for any simple closed curve
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Cy C V we would have

/ F-dl://rotF-ndS>O,
Cy v

a contradiction that shows that it must be ((rot F)-n), = 0,Vp €
S.

b) Remind the figure (see p.293):
z

1,-\3,1)

I A y
(1,-\/3.0) (1,\/3,0)
X .
i j k
rot F(z,y,2)=det | 0, 9, 0, | =(0,0,2)
-y x 1

and as n = (z,y,0) is normal to the surface and (rot F)-n = (0,0,2) -
(z,y,0) = 0, F satisfies the condition of point a). This means that we
can choose any path joining (1,v/3,0) and (1, —v/3,1). Consider first
the segment [(1,1/3,0), (1, —+/3,0)] :

V(t) = (17 _t>0)’ AS [_\/g’ \/g]

7/(‘9) = (07 _170)

w/3
/F-dl - / (t,1,1)- (0, —1,0)df =
¥ —7/3

w/3 9
= 1do =T
—7/3 3
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And now we ’climb’ along a cylinder’s generatrix from (1, —/3,0) to

(1,—/3,1):

I'(z) = (1,-v3,2), z€[0,1]
I'(z) = (0,0,1)

/FF-dl = /01(\/§,1,1)~(0,O,1)dz:1

and the integral is

2T
[=——+1.
3 +

6.3 Gauss theorem
Let U C R? be a bounded open set with a closed surface as boundary U

(or several surfaces glued along common boundaries making a closed figure),
oriented by the ezterior normal field and F € C1(U U 9U). Then

[ [ [avrar=[[ pas

Gauss theorem is also called the divergence theorem.

6.3.1 Gauss theorem
Problem 161: Checking.
Check Gauss theorem when
a) F(z,y,2) = (21,9% 2%) and U the unit ball.

b) F(x,y,2) = (x,y, 2) and the cube [0, 1] x [0,1] x [0, 1].
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Solution:

a) On on hand div F =2 + 2y + 2z and

4
///divFdV:///(2—|—2y—|—2,z)dV:2—7r:8—7T
U U 3 3

because by symmetry [ [ fU ydvV = [ [ fU 2dV = 0.

On another hand if we parametrize S? with spherical coordinates and
remind that n = (z,y, z) is an exterior normal vector, we have:

//aUF'dS - //{)szy 2%) - (x,y,2)dS =
= //aU(ZT + 2+ 2%)dS =

= / / (2sin? ¢ cos? O + sin® psin® O + cos® ) sin pdpdd
o Jo

Some terms have a vanishing integral:

/ cos® psingdp = 0
0

2m
/ sin* psin®0dd = 0,
0

The first vanishes because cos ¢ is an odd function respect to /2. The
second vanishes because sin f is an odd function respect to 7. It remains

to compute
2 T
/ / 2sin® o cos? Odpdf
0 0
We have

2

1 20

/ 2 sin® <p7+ CQOS d) = 2msin®
0

/ 2msin® pdy = 27r/ (1 — cos? ) sin pdyp =
0 0

cosp . 8w

= o2+ 2 =

8
F-dS=—
[ f,r=5

and so we have checked the divergence theorem.

We have seen that
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b) A figure
V4

1
X

On one hand divF =1+1+1=3 and

[ [axrar=[ [ [ a3

On another hand we must find the flux crossing the six faces of the
cube oriented by the exterior normal vector:

e n = (1,0,0) is the normal to the face (1,y, z) and we have
F-n=(1,y,2)-(1,0,0) =1 = ¢ = Area(face) =1
e n=(—1,0,0) is the normal to the face (0,y, z) and we have
F-n=(0,9,2)-(-1,0,0)=0=¢_1=0
e n = (0,1,0) is the normal to the face (z, 1, z) and we have
Fon=(z12) (0,1,0)=1= ¢=1
e n = (0,—1,0) is the normal to the face (x,0, z) and we have
Fon= (2,02 (0,-1,00=0=¢_o=0

and a similar result for the last pair of faces. Summing up:

[ ] ®oas=s
au
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Problem 162: Computation of a flux.

Using the theorem of the divergence compute the flux of F through the unit
sphere S? oriented by the exterior normal when:

a) F(z,y,2) = (2,9% 2°)
b) F(z,y,2) = (x2%,0,2°)

Solution:

a) div F = 2(z + y + z) and the divergence theorem gives:

// F-dS:/// 2(x +y + 2)dzdydz = 0,
S2 B2

the symmetry being taken into account.

b) div F = 22 + 32% = 422 and we have

// F-dS = /// 42*drdydz = {spherical coords} =
52 B2

1 T 2
= 4/ dr/ dy 2 cos %pr? sin pdf
0 0 0
5 s

= 4-27r(%)|;§(1)/ cos 2 sin pdp =
0
3
4 COS P, ey 16
=4 (- By =

Problem 163: Computation of a flux.

Compute the flux of the vector field F(z,y, z) = (yz, zz, xy) across the lateral
surface L of a pyramid with vertex at (0,0, 2) and basis the triangle B with
vertices at (0,0,0),(2,0,0),(0,1,0).
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Solution:

Let @ be the flux through all the faces of the pyramid if they are given
the exterior normal orientation; the theorem of the divergence applies and

we have
(I)Iq)L—l-(I)B:///diVFdVIO
1%
and

@B://BF.ds - //B(O,O,:cy)~(O,O,—l)dS://B—xde:

2 —z/2+1 2 42
= / d:zs/ :Bydy:—/ T Zzax/zﬂ dx =
0 0 0
3 2 2

2 x x i A
= — _— — —d = —(— — — —_ wizz
/0(8 y tylde=—(5 -5+ 3) k=
o
6

SO

1
o= [ [Feas =
L : 6
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Problem 164:

Consider that part V of the solid cylinder
U={(2,y,2): 2 +9* < 4,2 >0}

limited by the plane y + 2z = 10. Find:

a) The volume of V.

b) The area of the upper cover.

¢) The lateral area.

d) The flux of the field F(z,y, z) = (0,0, 2) across the upper cover.

e) The line integral [, F - dl where C' = &(U N P), P being the plane
y+z=a,2<a<10.

Solution:

We are free to choose the orientations. First at all a figure:

VA
n
Q
L

hey | T — =

T, 2~ "

./ y
X n

a) V is the region under the graph of the function f(z,y) = 10 — y and



6.3. GAUSS THEOREM 307

its volume is

Vol (V) = //D(o-z)(lo — y)dxzdy = {polar coords}

2 2
= / dr/ (10 — rsin @)rdrdd =
0 0
2

= /0 (1070 + r* cos 0) |3 dr =

2
= / 207rdr = 407
0

Let us do a check of this result using Gauss theorem. To that end let
S be the surface wich is the boundary of V', oriented by the exterior
normal. Think about it as decomposed into two covers 717,75 and a
lateral surface L. Then

Vol (V) = / / /V ldadydz = / / /V div (z,0,0)dzdydz =
= //S(x,o,()).ds

From y + z = 10 we obtain the exterior normal to 77: n = %(0, 1,1).
And the exterior normal to T3 is n = (0,0, —1). Then

Vol (V) = //T(:c,O,O)-%(O,l,l)deL

+ //Tz(x’o’())'(0’0’_1)ds+//L<x’0’0)'dS:
= 0—|—0+//L(x,070).ds

Parametrize L by:

a(f,z) = (2cosh,2sinb, z),0 € [0,27],z € [0,10 — 2sin ]
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Ogae = (—2sin6,2cos6,0)
d.a = (0,0,1)
N = (2cos6,2sin6,0)

and the integral is

2T 10—2sin 0
//(:E,0,0)-dS = / dé’/ 4 cos® Odr =
L

= / (10 — 2sin 6) cos® 0df =

0

27 27
= 40/ cos? 6dh — 80/ sin @ cos® 0dh =
0 0

= 40

2T
1 260 30
/ +cos20 9+ 0% 2 _
0 2 3
= 407

b) We can see geometrically that we are computing the area of an ellipse
with semiaxes 2 and 2v/2 (because the plane y+ z = 10 has turned 7 /4
respect to the plane z = 0) and has an area

Area = 427

We can check that result parametrizing the surface of the ellipse; to do
so we simply ’climb’ from the disc D(0;2) to the plane y + z = 10:
B(r,0) = (rcosf,rsinf, 10 — rsinf), (r,0) € [0,2] x [0, 27]
O3 = (cosf,sinf, —sinh)
O = (—rsinf,rcosf, —rcosb)
N = (0,7(sin®6 + cos*8),7) = (0,7,7)
IN| = V2r
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and its area is:

Area :// dsz//r\/idrdezzwfgzw%
Ty D

¢) The area of L is the sum of those bars h(€) in the first figure:
2m
Area (L) = / (10 — 2sin6)df = 20w
0

Alternatively we may use the parametrization of L we had in a); as
| N |= 2 we have

2T 10—2sin 6

Area (L) = / d@/ 2dz =
0 0
2T

= / 2(10 — 2sin )d6 = 20r
0

d) Using the parametrization /3 of T;:

ér, = //TI(O,O,z)~dS:

2m 2
= / / (0,0,10 — 2siné) - (0,7, 7)d0dr =
027r 02 2T
= / / (10 — 2sin)rdfdr = 2/ (10 — 2sin6)df = 40w
o Jo 0

Alternatively we may use Gauss theorem applied to the field (0,0, 2).
This field is tangent to L and gives no flux across. On 75 the field
vanishes and so does ¢r,. Then

///Vdi" (0,0,2)dV = é1, + é1, + ¢1 = b1y

and

¢T1=///Vdiv (O,O,z)dV:///VldV:Vol (V) = 407
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e) Let us use Stokes theorem; let T}, be the upper cover of the body (the
intersection of y+2 = a with the solid cylinder) and taking into account
that rot F = 0 we obtain:

/F~dl:// rot F-dS =0
c a

As a check we parametrize C'

v(0) = (2cos6,2sin6,a —2sinh),0 € [0, 27]
Y(0) = (—2sinf,2cosh, —2cosh)

2
/ F.dl = / (0,0,a —2sinf) - (—2sinf, 2 cosh, —2 cos 0)dh =
¢ ° 2w 2w
= —Qa/ cos9+4/ sin # cos 0df =
0 0

L2
sin®0 5.

0_0

— 0+4

Problem 165:

Let C be the solid cone with vertex at (0,0,1) and basis the disc D =
{(x,9,0) : 2% + y* < 1}; call S the lateral surface of C' oriented by the
exterior normal. Let F(z,y, z) = (2°,0,%?) and compute [ [(F -dS:

a) Parametrizing S.

b) Using the divergence theorem.
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Solution:

(0,0,1)

a) Parametrize S:

a(r,0) = (rcosf,rsinf, 1 —r),re0,1],0 € [0,27]
Oy (cosf,sinf, —1)
Opav = (—rsinf,rcosb,0)
N =

rcosf,rsinf,r)

and notice that N points to the exterior. We have

1 2
//F-dS = / / (r*cos? 0,0, 7% sin? @) - (rcos @, rsin 6, r)drdd =
s

2
= / / 3 cos® O + r®sin? 0)drdd =

= —/ (0089(1—81:(1 0) + 71+COS29)CZ9—
1, 2
1 2T T

- 4(0+ 2) 4

b) The theorem of the divergence states that

///CdideV://SF-deL//DF-dS
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Orienting D by n = (0,0, —1) we have

//DF'dS B //[)(I27073/2)'(0,0,—1)dxdy:

= // —y2dxdy = {polar coords} =
D

1 27
= — / / r?sin? @ rdrdf =
o Jo
1 27
- _1/0 sin® df) = —%

///Cdidevz///czxdxdydz:o

The integral vanishes because there are 'so many’ positive x as negative
ones (or we can make the change of variables z = rcos 0,y = rsinf, z =
z, r € [0,1],0 € [0,27],z € [0,1 — r| that has a jacobian determinant
r > 0). The divergence theorem ckecks the result in a).

O

Problem 166:

Compute the flux of F(z,y,2) = % across S, the surface of a cube C' with
sides 2a centered at 0, oriented by the exterior normal.

Solution:

2a

|

e P ' y
5/

The field is not defined at 0 and we cannot use the divergence theorem.
Nevertheless delete from C' the closed ball B(0;a/2) = {x :| x |< a/2} and
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call U the open set left. Then OU = S U S ,; we orient the sphere by the
interior normal. Apply the divergence theorem to U to obtain:

0_///d1v—dv / = dS+//a/2 -dS

We know that with the exterior normal orientation

// .48 = 4n,
Sase T

and with the interior normal orientation we have [ fs /2 L -dS = —47. Then

/ 37“3 -dS =47

Alternatively we may use the solid angle concept (see p.253) and obtain the
same result just by noticing that the projection of the cube on the unit sphere
52 is the whole sphere.

O

Problem 167:

a) Using the divergence theorem compute

//(x2 cosa + y? cos 3 + 2% cosy)dS
s

S being the surface 22 +y? + 22 = 2az,a > 0 and «, 3,~ the angles of
the exterior normal to .S with the coordinate axis.

b) Same question if S is the surface of the cube [0,a] x [0, a] x [0, a].

Solution:

Let us transform the integral to one that is a flux

//(x2cosoz+y2cosﬁ+z2cosy)d5 = //(x2,y2,z2)~ndS:
s
= //x y?, 2%) - dS

which is the flux of the field F(z,y, 2) = (22, 9% 2?), and now we can use the
divergence theorem.
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a) The equation x? +y% + 2% = 2az is equivalent to 2? +y* + (2 —a)? = a?

and thus it is a sphere with center at (0,0, a) and radius r = a. Choose
new coordinate axes with origin at (0,0, a), that is make the change of
coordinates

X=zx,Y=yZ=2z—a

(0,0,a

X

s

The sphere’s equation is now

X+Y*+ 2 =d’

The field in the new coordinates is:
F(X,Y,Z) = (Xz,Y2, (Z + a)2)
I= //(X2,Y2, (Z +a)?) -ndS
s

And the theorem of the divergence gives:

//S(X2,Y2,(Z+a)2)-nd5 = ///Vdiv(x2,y2,(2+a)2)dvz
= [ [ [exvor vz aa -
= Qa///VMV:

4 3

Srat
= 2a-ma’ =
3 3

We have used the fact that, [ [ fv Xav =[] fv Yav = [ [ fv ZdV =
0 by symmetry.




6.3. GAUSS THEOREM 315

b) Now we have:

//(xzcosoz+y2cosﬂ+z2cosy)d5 = ///2(x+y+z)dv
S v

and we compute each coordinate separatedly

a a2 &4
/// xdxdydz = (/ xd:c)(// dydz) = —a® = —
v 0 [0,0]2 2 2

and the same result is obtained for the other coordinates; finally
a

2

= 3a*

//(:L’zcosoz+y2cosﬂ+z2cosy)d5:2-3~
S

Problem 168:

Consider the cylinder D = {(x,y, z) : 2+ y? = 1}, the hiperbolic paraboloid
H = {(x,y,z) : z = zy}, the intersection curve C = D N H and the field

22
F(x,y,z)::(O,x,y 2 )'

a) Compute directly [, F - dl
b) Check the result of a) using Stokes theorem.
¢) Compute [, rotF - dl.

d) Let L be the region of D limited by the curve C' and by z = 1; compute
[ [, F - dS using the divergence theorem.

Solution:

A figure:
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z=1
N z=1/2
AN
D
y
X
4

a) To parametrize C' it suffices to “climb’ from the basis circumference to
the paraboloid (see p.28):

v(0) = (cosf,siné,cosfsinb)
= (cos@,sin@,ﬁ)

7v(0) = (—sin#,cosB,cos26)

In the figure we can see the orientation of C'; we compute the line
integral with this orientation:

2m 20 2
/ F-dl = / (0, cos @, M) - (—sin 6, cos b, cos 20)dl =
c 0

2m
= / (cos? 0 + %(Sin2 6 — cos? 0)(cos® O — sin” 6))d =
027r 1
= / (cos® 6 — 5(0084 0 + sin 0) + sin” 6 cos® §)df
0

29 — 1+cos 260

5 and sin’f =

and using many times the formulae cos

%, we obtain
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b) To use Stokes theorem we fill the curve with the surface S given by:

Bz, y) (z,y,2y), (z,y) € D1 = {(z,y) : 2* +¢y* < 1}
B = (1,0,y)
B, = (0,1,x)
N = (—y,—x,1)

The third component of N is positive and the vector points up, as we
can see in the figure. This orientation of S induces in C' the orientation
used in a). As rot F = (y,z,1), we have:

//Sth'dS = //Dl(%f”vl)'(—y,—x,l)d:cdy
= //Dl(l—xz—gf)dxdy:

2T 1
= {polar coords} = / / (1 —r®)rdrdd =
o Jo

™

and Stokes theorem gives

/F-dl://rotF-dS:z
C S 2

To compute fc rotF - dl we apply Stokes theorem again:

/rotF-dl://rot (rotF)~dS://0-dS:0
c S s

Let T" be the upper cover of the region in the cylinder and U the volume
enclosed by the solid cylinder between S and T'; the divergence theorem

gives:
2 _ .2
0 = ///div(O,x,y Thav =
U 2
= //F-dS+//F-dS+//F-dS
L S T
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| [Feis——[ [F-as— [ [F-as

Notice that L,S,T have to be oriented by the exterior normal. The
parametrization § we had in b) has the associated normal vector point-
ing to the interior of U; so we must change the sign:

[ o ] fes

1
// (—§ZB2 + §y2)da7dy = {polar coords} =
Dy

2
/ / —;cos 9—|— sm 20)rdrdd =

Sl e CE

2

Then the flux with the orientation given by the exterior normal will be
—m /4.

A parametrization of T with the associated normal pointing to the
exterior of u is:

Blz,y) = (z,y,1),(z,y) € Dy ={(z,y) 1 2" +y* < 1}
N = (0,0,1)

[ freas = [ [ ot
_ /O /0 (sin 0 — cos® B)rdrdf — 0

m
F.dS="_
AR

) (0,0, 1)dzdy = {polar coords} =

Finally

Problem 169:

A solid of revolution respect to the Oz axis is limited on the floor by the
disc D, 2?2 +y? < 1,z = 0, on the side by the piece of a cylinder C' with
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equations 22 +y? = 1,0 < z < 1 + a and on the roof by the paraboloid P:
z =1+a(z’+y*),a > —1. Let us orient all these surfaces in an anticlockwise
sense when seen from the exterior. Consider the field F(z,y, z) = (2,9, 0).

a) Compute the integral of F on the parabolic cover.
b) Compute the integral of F on the cylindrical side.

¢) Use Gauss theorem to compute the volume in terms of the results
obtained in a), b).

Solution:

A figure:

@)
> o Y
N
_-o/ /7
> Pehg
/'

a) Parametrize the cover P:

alz,y) = (v.y.1+a(@®+y%), (z.y) €D
d.a = (1,0,2ax)
oy = (0,1,2ay)
N = (—2azx,—2ay,1)
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and the integral of F is:

//(:E,y,O)-dS = // z,y,0) - (—2azx, —2ay, 1)dzdy =
P

= —2a// (2% + y*)dzdy = {polar coords} =
D

1 2w 1
= —Qa/ / r?rdrdd = —4ra- = —
0o Jo 4

b) The side C' we parametrize by

B6(0,z) = (cosb,sinb, z),0 € [0,27],z € [0,1+ a

QB = (—sin6,cosb,0)
2,8 = (0,0,1)
N (cosf,sinf,0)

and the integral of F is:

//(x,y,()) -dS = //(cos 0,sin6,0) - (cosd,sind,0) =
¢ 27‘(’C 14a
= / / dfdz = 27(1 + a)
o Jo

c¢) Notice that the associated normal vectors to the parametrizations «a, 3
point to the exterior and we can use the divergence theorem to obtain:

///VdideV://FdS+//FdS+//FdS_

= —ma+2r(l1+a)+0="7(2+a)

///VdideV:///VMV:QVol(V)

we get the result

Vol (V) = g(z +a)
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Problem 170:

Let f be a positive differentiable function such that f(0) = f(—1) = 2. Let
S be the surface of revolution obtained revolving the curve y = f(z),z =0
around the Oz axis. Consider the vector field F(z,y, z) = (x,y, —22).

a) Let Sy be that part of S limited by the planes z = —1, z = 0; compute
directly the flux of F across 5;.

b) Check the result in a) using the divergence theorem.

Solution:

A figure:

a) A parametrization of S; is
a(f,z) = (f(z)cosb, f(2)sinb, z), (0, 2) € [0,2n] x [—1,0]
with associated normal vector
N =oqy xa,=(fcosh, fsind,—ff")
Thus
0 27
/ F-dS = / / (f(2)cos@, f(z)sinf, —2z) - (fcos, fsinh,—ffdOdz =
S1 —-1J0
0 2 0
= / / (f*+2ff'2)d0dz = 27?/ (fP+2ff2)dz =
—1Jo -1
= 2n(f*2)[i2%, = 8r

Notice that as f > 0 the normal vector points to the exterior.
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b) Consider the region U C R? limited by S; and by the covers

T, = {(v,y,2): 22 +9y* < f(-1)* =4,z = —1}
Ty = {(z,y,2): 2>+ < f(0)* =4,2=0}

As div F = 0 the divergence theorem gives:

// F-dS+//F-dS+//F-dS:O
T 1 To S1

where the surfaces must be oriented by the exterior normal; this is so
for the parametrization of a). On Tj the flux vanishes, because

F-n=(z,94,0)(0,0,1)=0
Parametrizing T"_; by
a(f,p) = (pcosb, psinb, —1), (6, z) € [0,27] x [0, 2],
we have an associated normal vector pointing to the exterior:
ag x a, = (0,0, —p)

The flux is

2T 2
// F.dS = / / (pcost, psinb,2) - (0,0, —p)dbdp =
T ) o Jo

27 2
= / / —2pdfdp = —87
o Jo

and from the theorem we obtain

//SlF-dS:—//TlF-dS:—(—Sw):87r

We have checked the result of a).
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Problem 171:

Consider the paraboloid P = {(z,y,2) : 2 = z* + y?}, the plane 7 =
{(z,y,2) : x +y+ z = 1} and the vector fields

F('Ta Y, Z) = (y — 2T, X = y)7 G(%Z/a Z) = (ya —Z, O)
a) Show that F is tangent to m and that G is tangent to P.

b) Compute the flux of F across S the region of P limited by .

¢) Compute the flux of G across T' the region of 7 limited by P.

Solution:

a) A perpendicular vector to mis N = (1,1, 1). F satisfies
F-N=(y—zz—z,2—y)-(1,1,1)=0

and is tangent to 7; then F has a vanishing flux through any region in
.

On another hand, if f(z,y,2) = 2% + y* — 2, a vector fiel normal to P
is N=V/f=(2x,2y,—1) and G satisfies

G- -N=(y,—z,0) (2x,2y,—1) =22y — 22y =0

that is, G is tangent to P and has a vanishing flux across any region
in P.
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b) Let U be the region of R? limited by the paraboloid and the plane; as
V - F = 0, using the divergence theorem we obtain:

0:///UV-FdV://SF-dS+//TF~dS

and as F has a vanishing flux across T

//SF-dS:O

¢) Analogously V - G = 0 and

o= [ [ [vew-[[cus+[[cuas

and as G has a vanishing flux across S

//TG~dS:—//SG~dS:0

Problem 172:

Consider the fields

2

G(Z’,y,Z) = (1 —7"2)(y,—1’, e’ )
r
H(x,y,2) = =
F(r,y,2) = H+rot G
a) Compute div F.

b) Compute the flux of F across S, the upper unit semisphere.

¢) Compute the flux of G across S, the upper unit semisphere.
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Solution:

a)

b)

c)

div F = div H 4 div (rot G) = 0 because H is a gravitational field of
a point mass that we know to have vanishing divergence.

We cannot close the semisphere by a lower cover to apply the diver-
gence theorem because H is undefined at 0; so let us proceed directly.
Orienting the semisphere by the exterior normal we have:

//SH.dS:/[g%.rdS://S%dS:{r:1}://Sd5:27r

Or we can use the concept of solid angle to arrive at the same value
(see p.255).

For the flux of rot G we close S with the disc T' = {(z,y, 2) : 2?2 +y? <
1,z = 0} oriented by the exterior normal n = (0,0, —1). The theorem
of the divergence applies and we obtain

//SrotG~dS+//TrotG-dS:///Udiv(rotG)dV:o

and using Stokes theorem

//rotG-dS:—//rotG-dS:— G-dl=0
S T or

due to the fact that G vanishes on 0T, because r = 1. Finally

//F-dS:27T
s

On the unit sphere » = 1 and we see that G vanishes there; so

//SG-dS:O
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Problem 173:
Let S be the surface of the ellipsoid
2y 2
etpta=th
oriented by the exterior unit normal n and let d(x,y, z) be the distance from
the origin to the tangent plane to S at the point (z,y, z). Show:

a) f F(z,y,2) = 5
b) [ JsqdS = 5m(T + 5+ )
¢) [ [yddS = 4dmabe.
) Compute the flux across S of the field G = (3, 43, j—z) .
Solution:
V4
P(xy,z
[ ] \\
\d
b y
X
) S is the level 1 set of the function f(x,y,z) = “Z—j + Z—z + i—z; an exterior
normal vector is vy oz
Vi=2(2, 2 Zy_9F
f=2(t L)
F

and
n=—
|F|
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thus
F 12 y? 22
F-n=F- = |F — + =+ —
|F| = |F| = i pA +
The tangent plane to S at the point py = (o, Yo, 20) € S is Vf(po)
(P - Po) =0:
Zo Yo 20
?(LL’—SL’Q) -+ b—2(y—y0) + —2(2—20) =0
2 2 2
Zo Yo 0 0o, Y% 0
—21’ -+ b—2 -+ —2 —2 + —2 —+ —2 1

1
d =
e
at T g T
and
1 x v 4
i Ve Tyt F=

b) Using the preceding result and the divergence theorem

//sédsz//sF'“dS://SF'dSI///VVde:
///a2 >dV( ///1dv_

1 1 1 4 be ca
— Zrab ca
37rac( b2+ ) 37T(a+b+c)

¢) As it has been so comfortable, we try to copy the line in b); we would
like a field H such that H-n = d on S that is

1

H-n—
[ z2 y2 22
a_4+b_4+c_4
But we know n to be
(2 yz Zz)
) p2
n a?’ b’ ¢

)
[ 2 Y2 22
at + b4 + ct
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and we see that we should choose H(x,y, 2) = (z,vy, 2); then

//deS://H-ndS://H ds = ///v HdV =
—3///1dv—3\/ol )—337mbc—47rabc

d) We simply apply the divergence theorem:

//SG.ds:///vv.dez///V(%+%+i_§)dvz
:4%+é+%%ﬁﬁﬁmvzq

taking into account the symmetry.

Problem 174:

Let S be a closed surface enclosing a region U, n the unit exterior normal,
and v a fixed vector. Show:

) [ Jscos(v,m)dS = 0.
) ffodiv ndV = Area (S).

Solution:

a) We convert the integral into a flux integral

I://Scos(v,n)dS://Sﬁv-ndS:ﬁ//sv-ds

Now the divergence theorem shows that

L] awvav=o
| v | U

) The divergence theorem gives

[ o e f s s

0
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Problem 175:

Let F € C?(R?) be a vector field such that V2F = 0 and let U be a region to
which we can apply the divergence theorem. Show that

///U|r°tF|2dV=//8U(F><rotF)-dS+///UF~grad(divF)dv

Solution:

Equivalently we want to prove that

//é)U(FxrotF).dS:///UﬂrotF|2_F.grad (div F))av

Apply the formula (see p.72)

V- FxG)=(VxF)-G-F-(VxG)
to G = rot F and obtain
div (F xrot F) = rot F-rot F —F -rot (rot F) =
= |rot F |* —F - rot (rot F)
and by the divergence theorem it suffices to show that rot (rot F) = grad (div F).
We have:
i j k
rot (rot F) = det Oy 0y 0, =
(OyF5 — 0,Fy) (0.F1 — 0, F5) (0,F> — 0, FY)
(82F2 Pr O'F N 0*Fy )
oxdy  Oy? 022 Ox0z’ T
And taking into account the condition V2F = 0 we may write
0*F,  OPF,  O*F
L2 =SS
0x?  Oxdy Oxdz

rot (rot F) = (

On the other hand
, B oF, 0F, O0F;
grad (div F) = grad ( 5 + 3y + % ) =
OPF,  0°F, 0*F3
(B2 T ogr T
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We have proved the equality for the first component; the equality of the other
components is seen in a similar manner.

O

Problem 176: Let U C R? a simply connected open set with boundary
S = 9U, a closed surface oriented by the unit exterior normal vector n. Let
F,G € CY(U U S) vector fields such that in U

rot F = rot G
divF = divG

and on S
F-n=G:-n

Show that F = G in U. Hint: show that X = F — G has a potential ¢ and
apply the divergence theorem to ¢X.

Solution: In U

rot X = rot F—rot G=0
divX = divF-divG =0

and taking into account that U is simply connected, the field X has a poten-
tial: X = V. Apply the divergence theorem to pX:

//w@X-dS:///Udiv(apX)dV

The left hand integral vanishes because X -n = 0 on OU. For the right hand
integral we have

div(pX) = Vo - X + pdivk = Vp - X = X - X = [X|?

///U|X|2dV:O

and as |X|? > 0 and X is continuous we have |X|? = 0 that is X = 0.

Thus
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Problem 177: A nowhere zero scalar field u satisfies
|Vul? = 4u, V - (uVu) = 10u

Let S? be the unit sphere oriented by the exterior normal. Compute

ou
/y%“

Solution: Let B be the unit ball; we have

/ 0 —dS / SQVU-ndSz///Bdiv(Vu)dV:///Bv%dv

div(uVu) = Vu-Vu+uViu
10u = 4u+uViu
Viu = 6

[ [ Zeas [ [ [ v —cia—ss

6.3.2 Volume calculation

Then

Problem 178 : Volume calculations using surface integrals. Volume of
cones.

We know how to compute areas through line integrals (see p.265); in a similar
way we can compute volumes by means of surface integrals.

a) Let U € R? be a region to which we can apply the divergence theorem.
Show:

Vol(U) = //é)U(x,O,O)~dS://é)U(O,y,O)~dS://8U(0,O,z)~dS
= %//aU(x,y,z) ds

OU being oriented by the exterior normal.
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Application: volume of a general cone. Let C' be a simple closed curve
contained in a plane 7 at a distance d from the origin. Let R be the
bounded region of C' and let V' be the solid cone with base R and vertex
at the origin. Show that

Vol (V) = %Area(R)d

Assume we can apply the divergence theorem to V.

To use the preceding formula we must know how to compute Area(R).
Show that the area enclosed by a simple closed curve C' contained in
the plane 7 : ax + by + cz = p , where a® + > +c? = 1 is
1
A= 3 ((bz — cy)dx + (cx — az)dy + (ay — bx)dz)
c

C being oriented leaving R to the left as seen from the side to which
the normal vector (a, b, ¢) points.

That is the formula, but where does it come from? To see it remind (see
p.280) that if C is a C' regular, simple, closed plane curve, positively
oriented with bounded region R and n is the exterior unit normal vector
to C' then:

Area(R) = %/ r-ndl
c

Use this formula to prove the one in c).

Solution:

a)

Applying the divergence theorem to each of the fields
F('Z'7 y? Z) = (I7 07 0)’ F(x7 y? Z) = (07 y7 0)7 F($7 y7 Z) - (07 07 Z)?

we obtain the first three results; the fourth is the average of the others.
Comment: We have seen that the volume of U can be computed using

the formula
1 1
—// (x,y,z)-dS:—// r-ndS
3 oU 3.J) Jou
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which is the flux of r across the boundary of U. Compare with the
formula in d) that gives the area of a plane curve C'

1
—/r-ndl
2 Jeo

and notice that n being the normal vector to the curve, we are again
computing the flux of the field r across C, the boundary of R.

A figure:
V4

X
Using the last formula in a) and taking into account that 0V = RU L
where L is the lateral surface of the cone we have:

Vol(V) = %//W(x,y,z)dS:

= %//R(:B,y,z)-dS+%//L(:E,y,z)-dS

But [ [} (x,y,2)-dS = 0 because the field (x,y, z) is perpendicular to
m, the exterior normal vector to L.

On another hand let (a, b, ¢) be the unit vector orthogonal to the plane
7 pointing to the exterior of V' (this is so iff (a,b,¢) - (z,y,2) > 0 at
points (z,y, z) in the plane); then the equation of the plane is

ar +by+cz=p
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with p > 0 and

la-04+b-04+c-0—p|

d: = | — =
vaz+ b2+ 2 [—pl=»

We obtain:

%Mﬂzéfﬁ@ww //xy, (a,b, c)dS =
_ %//R(azv by + c2)dS = %d//RdS _ %Area(R)d

Notice that this result generalizes the usual one for cones with circu-
lar basis: 4(Area basis)x (height). Now we know, for instance, that
the volume of an elliptic cone with basis semiaxes a,b and height d is
%wabd. Note as well that a pyramid is a cone.

¢) Orient the plane by the unit normal vector n = (a, b, ¢) and the curve
C according to this choice; this allows the use of Stokes theorem

L /C((bz — cy)dx + (cx — az)dy + (ay — bx)dz) =

2
1
= /(bz—cy,cx az,ay —bx)-dl =

//rot 2z —cy,cx —az,ay — bxr) -dS =

:§/Lz(a,b,c).nds _
://Rn.ndsz//nlds = Area(R)

N —

d) A figure:
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N=(a,b,c)

@) y
X

We should adapt the above mentioned formula % fc r-ndl to do compu-
tations in R3. Orient the plane 7 : ax +by +cz = p,a® +b*> +c*> = 1 by
the vector N = (a, b, c). Then we may orient the curve C' leaving the
bounded region R to the left (as seen from that side of the plane con-
taining the curve pointed by N). Let d be the distance from the origin
to the plane and choose in 7 a new origin O’ = dN. Let p=r —dN
the radial field from O’; the formula gives

1
Area(R) = 5/ p - ndl
c

If t is the unit tangent vector to C' we have:
n=txN=p-n=p-(txN)=t-(Nxp)
and
i j k

N x p= a b c = (bz — cy,cx — az,ay — bx)
r—da y—db z—dc

Substituting into the formula for the area gives:

Area(R):%/C(pr)-tdl:%/C(NXp)dl:
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1

:—/(bz—cy,m—az,ay—bzc)dlz
2 Jc

1
=3 / (bz — cy)dz + (cx — az)dy + (ay — bx)dz
c

Problem 179: Second Pappus-Guldin theorem.

Let C be a simple closed curve in the semiplane y = 0,2 > 0; let R the
bounded region of C'. Name U the solid body generated by revolving R
around the Oz axis. Show that

Vol(U) = Area(R) - 2w (x)
(x) being the average of x on R. Application: find the volume of

a) A circular straight cone.

b) A ball.

¢) A torus.

Solution:

A figure:

2TRX>

X <>
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We want to use the formula Vol(U) = 1 [ [, (z,y,2) - dS and to that end
we parametrize QU as a surface of revolution. Start from a parametrization

of C:
V(t) = (2(t), (1)), t € |a, 0]

to obtain
a(f,t) = (x(t)cosb,z(t)sinb, 2(t)), (0,t) € [0,27] X [a, b]
g = (—wsinf, xcosh,0)
O = (2’ cosh,z’'sinb, 2’)
Opax X Oyv = (22’ cos B, x2' sin b, —zxa')
Then

Vol(ll) = %//aU(:)s,y,z) ds —

1 b
= —/ / (rcosf,xsinb, 2) - (xz' cos b, x2' sin @, —xx')dOdt =
0

2
= ?ﬁ (222 — x2'2)dt

a

Now we have to relate this to the area of R; Green’s theorem does that:

b
Vol() = %” (—zz,2?) - (2, )t =

2
- - rz,2%) - dl =

= // 2z — (—x))dzdz =

= 3 3( ) Area(R) = 27 (x) Area(R)

a

Applications:

a) Consider a right cone of height h and circular basis of radius R, gener-
ated by revolving the triangle in the figure around the Oz axis:
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X R

Parametrize the segment by z = —%(m — R), y = 0; to use the Pappus-

Guldin theorem we compute the average of x on R:

//R:cd:cdz = /OR(/O_E(I_R) xdz)dx = /OR(x(_%(x — R)))dz =

R 3 2 6
and the average of x is:
hR?
= R
()= =3
hE 3
The theorem gives:
hR_ R 1
Vol(U) = —2r= = —7R*h
ol(U) 5 2y =37

Of course it’s quicker if we think the figure as a right circular cone and
apply the corresponding formula.

A ball of radius R is obtained revolving around the Oz axis the half
disc

D={(x,y,2) :0<z<VR?—22y=0,—-R<z<R}
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. We have:

//xda:dz =
D

2J)-r
23 2R3
= (Rzz—g)h}f: 3
2R3
4
<I> = 7332 = 3_R
i ™
TR? 4R 4
1 = o — “rR?
Vol(U) 52T 37TR

339

¢) Consider the solid torus obtained by revolving around the Oz axis the
disc D = {(z,y,2) : (x —a)*+ 2% < b*,y = 0}. Tt is geometrically clear
that (z) = a. Then

Vol(U) = wb*2ma = 27%ab?

symmetry which is the same as the volume of a cylinder of height 2ma
and basis a disc of area wb?.

Problem 180:

Find the volume of the region U limited by the surfaces

r=at4+9y* 2=1, 2
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Solution: In the figure

X X=y .

we can see that Vol(U) = £Vol(U"), U’ being the region of the paraboloid

limited by z = 1,z = 2. Applying the divergence theorem to the field
F = (z,9,0) and to the region U’ we have

Vol(U) = ///lldV:%////div(x,y,O)dV:
_ %//E)Ul(x,y,0)~ds

At the upper cover U’ the exterior unit normal is n = (0,0,1) and
F -n = 0; the same is true in the lower cover. It suffices to calculate the flux
across S, the lateral surface of the paraboloid that we parametrize by

a(f,p) = (pcost,psing, p*), (0, p) € [0,27] x [1, V2]
N(9,p) = (2p*cosh,2p’sinf, —p)

with N pointing to the exterior. The flux is

2
[lrs =[]
S o Ji
2m
= / / 2p3dAdp = 4n
o J1

S

(pcosB, psin®,0) - (2p* cos ), 2p* sin 6§, —p)dOdp =

S
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the volume of U’ is %4% = 27 and that of U is

Vol(U) = 2% - %

Problem 181:

a) Compute in terms of d :
i) A, the area the skullcap
Co={(z,y,2): 2 +y’"+2 =1,0<d <2< 1}
ii) V, the volume of the region
Ug={(m,y,2) 2> +*+2°<1,0<d<z<1}

b) Using the theorem of the divergence compute the flux of the field
F(z,y,z) = (z,2y, z) across the upper unit semisphere

S2 ={(v,y,2): * +y*+2°=1,0< 2}
¢) Compute the flux of F across the surface

1
S:{(:B,y,z)::E2+y2—|—22:1,0<z<§}.

Solution:
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a) If ¢ means colatitude and ¢, is the colatitude corresponding to a height
d we have

i)
// 1dS = / d@/ sin pdyp =
Ca
= —27m(cos p)|5? = 27(1 — d)

Check: when d = 0 we have a complete semisphere with area 27.

ii) Closing the skullcap Cy with the disc Dy = {(z,y,d) : 2* + y* <
1 — d*} we can use the formula

I%(//Cdr-dS—i—//Ddr.ds)
e On one hand
//cdr'ds://(;d(I’y’z)'(I’y’z)dS://Cdldsz%(l—d)’

as we have seen in a) i).

e On another hand

//Ddr.dS://Dd(:B,%d).(0’0’_1)d5«:

= // —ddxdy = —dr(1 — d*)
{a2+y2<1-d2)

Finally
Ve 20— d)—d S — ) = T —md 2 = T 3d 4 2)
3 3 3 3 3

b) To use the divergence theorem we close the surface S by means of the
unit disc D so establishing a closed surface M that we orient by the
exterior normal; let V' be the enclosed region. If ¢ is the flux across M

then:
o= [ [ was= [ [ weiss [ [wois



6.3. GAUSS THEOREM 343

The divergence theorem gives

[ [ ras=[ [ [vrav—af[[1av—izin-Zs

On another hand as the unit exterior normal vector in D is (0,0, —1)
we obtain:

//F~dS://(x,2y,0)-(0,0,—l)dxdy://dedyzo
D D D
Then 8
// F-dS=_7
52 3

¢) Now the flux across S is (flux across 5% )-(flux across C2). Using again
the divergence theorem

// F-dS+// F-dS:// V- FdV =
Ci/2 Dy /o Ui/
:4/// AV = 4T(d — 3d+ 2)]ucryy = T
0 3 6

and taking into account that

1
// F.-dS = // (x,2y,=)- (0,0, —1)dzdy =
Dys {a2+y2<3/4) 2

13
— —dxdy = —=-7
//{m2+y2<3/4} 2 24

[ [Foos =T =i

we have

Problem 182:

Let U C R? a region to wich we can apply the divergence theorem; show that

[ [ra =5[] ivas
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Apply the divergence theorem; to do this we first have

div (r?

and then

r) = div (r¥(z,y,2)) =

= 27“{:5—{—7’2 —|—2rgx+r2 +2TEZB+T2 =
r r r

= 2r? +3r? = 5?

[ s [ [ [ sav

6.3.3 Green’s formulae

Problem 183: Towards Green’s identities.

a) Express the divergence theorem when F is a gradient: F = Vu, u a

scalar field.

b) What do we obtain when u is harmonic (:=V?u = 0) ?

¢) What when u is a second degree polynomial ?

Solution:

a) f F=Vu

VZu

_ _ Pu  0*u  O%*u
divF = div(Vu) = 52 + 9 + pE

and the divergence theorem is:

///Uv2udV://6UVu~dS

Taking into account that [ [, Vu-dS= [ [, Vu-ndS = [ [, 5dS

we obtain the following expression:

///v2udvz/ @ds
U sy On
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b) If w is harmonic, V*u = 0 in U and then

Jf

¢) If u = ax® + by? + c2® + dwy + exz + fyz +--- (the --- are the terms
of degree zero or one) we have

Vu = 2a + 2b + 2¢

and

2(a+b+c)///UdV:2(a+b+c)Vol(U):/ 8U§—zd5

and we see that the normal derivative is proportional to the volume.

O

Problem 184. Green’s identities.

a) Express the divergence theorem when F is a weighted gradient, F =
fVg where f,g € C'(UUOU) to obtain Green’s first identity:

/// (fV2g+Vf-Vg)dV = / fgids Green 1
oU

b) Changing f and g in the first Green identity and subtracting, obtain
Green’s second identity:

2 2
/// fVig—gVef)dv = //BU I 8n)S Green 2

Solution:

a) In this case the divergence theorem is

///Udiv (ng)dV:/ | fVg-ds
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We compute both integrands:

div(fVg) = Vf-Vg+ fdiv(Vg) = Vf-Vg+ fV3g

Vg-dS:Vg-ndS:@dS
on

Substituting we obtain Green’s first identity:

/// (fVig+Vf-Vg)dV = /angidS

b) Green’s first identity for f and g is

///U(fv2g+Vf-Vg)dV:/ ang—fldS

and the same identity for g and f is:

///U(QVQHVf.vg)dV:/[BUgg_idS

Subtracting the second from the first we arrive at the second of Green’s
identities:

//fv2 —gViNaV = //aU on an

Problem 185:

Let f be a harmonic function in Br = {x € R? ;| x |< R}; show that the
average of f on the boundary of By satisfies

symmetry Hint: apply Green 2 to f and %
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Solution:

We may use Green’s formulae in an open set where the divergence theorem
applies, but % has a singularity at 0. We remove a whole small ball Fp C Bgr
whose boundary we orient by the normal vector pointing to the interior as
shown in the figure. Consider U = By \ Fp and write Green 2 applied to it:

///M, VI = [ [, o9

The functions f = f,g = % are harmonic in U and the left term integral

will vanish. The right term integral is:

//sR(f&fE’fl igfl) 5 = //SR —— -n) —%Vf-n)dS:
B //SR ——Vf-n)dS

and by the divergence theorem

[t - oo
_ _%///BRdiv (grad f)dV —
_ —%// [ vrrav =0

because of the harmonicity of f in Bg.
Analogously, reminding the orientation given to S,, and using again the
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divergence theorem we obtain:

//Sp(f(?&(fl)_%g_lj;)ds = //Sp<f(—r—§-n>_%vf.n)d5:

Summing up those calculations

1 1
0 = ——/ dS+—/ ds
R? st p? spf

1 1
| [ as=sminsg = 5 [ [ gas=axps, —ams)

We have obtained

U

Green’s identities are used to prove the uniqueness of solutions for the
problems of Dirichlet and Neumann.
Problem 186: Dirichlet and Neumann problems.

Let U C R? be an open set to which we can apply the divergence theorem.

a) The Dirichlet problem is to find a function u harmonic in U and u €
CY(U), such that u(p) = ¢(p) in dU, ¢ being a given continuous
function in OU. Briefly

Viu = 0inU
u = indU

Show that if a solution of this problem exists then it is unique. Hint:
apply Green 1 to the difference of solutions to show that it must be zero.
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b)

The Neumann problem is to find a function u harmonic in U and
u € C1(U), such that g—z(p) = ¢(p) in U, ¢ being a given continuous
function in QU. Briefly

Viu = 0aU

g—z = padlU

Show that solutions differ in a constant.

Solution:

a) Assume U is connected. Let u; and uy be solutions of the Dirichlet

problem. Applying the first Green identity to f = g = u; — us

///U((ul — ug) V*(ur — ug) + |V (uy — ug)[?)dV =

- /LU(ul - ug)WdS

On OU the integrand is (u1 — u2)(p) = ¢(p) — ¢(p) = 0 and the right
hand term vanishes. In the left hand term V?2(u; — uy) = 0 because
both functions are harmonic in U . Then

///U|V(“1—uz)\2dvzo

Being |V (u; — ug)|* > 0 a nonnegative continuous function with van-
ishing integral we must have V(u; —ug) = 0. As U is a connected set
in R? we can join any two points with a polygonal line without leaving
U. Applying to each side of the polygonal the mean value theorem we
may conclude that u; — uy = const in U. But u; — us = 0 on OU and
Uy — us is continuous in U; then the constant must be zero and uq = usy

in U.
Notice that we have shown that if two harmonic functions coincide on
the boundary then they coincide as well in U.

| 2

Let u; and us solutions of the Neumann problem; applying the first
Green identity to f = g = uy — uy the right hand term [ [, (u; —

O(ui—u2)
18112 =0

1@)%&9 vanishes, now because we are assuming that

on OU. Now we may conclude that u; — uy = const in U.
Notice we have proved that whenever two harmonic functions have the
same normal derivative on the boudary, they differ in a constant.
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U

Problem 187:
Let u € CY(U) N C?(U) be a nontrivial solution of

Viu+u =0 inU
U =0 onoU

Prove that A > 0.

Solution:

Taking f = g = u in Green’s first identity we have:

///(uv2u+Vu~Vu)dV:// u%dS
U ou On

In the left hand side term V?u = —Au and in the right hand side v = 0
because the integration is on OU. Then:

///U(—Au2+\vu|2)dvzo
A///Uzﬁdvz///UWuPdv

and we see that A > 0.

Problem 188: Heat equation and energy.

Let U C R3 be an open set to which we can apply the divergence theorem
and u(x,vy, z,t) € C* a solution of heat’s equation

kY2 = Oyu, k> 0

such that g—lul =0 on 9U. Show that E(t) = 5 [ [ [, u*dV (the energy in U)

is a nonincreasing function. Hint: compute V - (uVu). (u may be thought
as the temperature at points of the body U)
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= ///2u—dV ///Uukv2udv

We are not integrating a divergence; to tranform the integrand compute

Solution:

V- (uVu) =V - (u0yu, udyu, ud,u) =

= (0,u)? + (Oyu)? + (0,u)* + uV?u =

= |Vul* + uV?u

— = k/// (uVu) — |Vu?)dV =

now using the divergence theorem

/// (uVu)dV = // (uVu) - ndS = // u—dS—O
U U
Finally
d—E:k///—\vu|2dV§o
dt U

and E(t) is nonincreasing.

and then

6.3.4 Gauss integral theorem
Problem 189: Gauss integral theorem.

Let U C R3 be an open set to which we can apply the divergence theorem
and OU = S, a closed surface oriented by unit exterior normal n. Show that

T ogs = 47r if O interior to S
s 7’3 if 0 exterior to S
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Solution:

The result says that the solid angle of a closed surface oriented by the exterior
normal is 47 if the vertex is interior to the surface and 0 if it is exterior. We
can say as well that the electric field generated by a positive unit charge
has a flux 47 if the charge is an interior one and is 0 if it is exterior. The
gravitational field of a unit mass has a flux —4r if the mass is interior and a
flux 0 if it is exterior.

a) If 0 is exterior to S the field 5 has no singularity in UUS and, moreover,
it has zero divergence; the divergence theorem gives:

//S%-dS:///UOdV:0

b) If 0 is interior to S we cannot apply the divergence theorem because
the field has a singularity at 0. Choose a ball B={r:|r |[< R} C U
and remove it from U. The region left Q@ = U \ B has a boundary
0 = S U Sk; orient this boundary as shown in the figure so as to be
able to aply the divergence theorem.

On SR

r 1 1 1
/ S ﬁds - //SR ﬁ(xuyaz)(_ﬁ(xuyaz))ds - _//SR ﬁds = 47
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In ) the field -5 has zero divergence and the divergence theorem gives:

= di
o [ fa o [ [ s [ [ 5oas
[[feas [ [ S

Problem 190:

Gauss integral theorem shows that if m is a point mass and g its gravitational
field, the flux across any closed surface S oriented by the exterior normal is
—47mm if m is an interior point of S and 0 if m is exterior.

Show that:

a) If my,..., m, are point masses and g their gravitational field, the flux
of g across any closed surface S that doesn’t pass through any of the
masses and oriented by the exterior normal is —47 M, M being the sum
of the interior masses.

b) The result in a) is true for a continuous distribution and a closed surface
S that doesn’t cut the distribution.

Solution:

a) According to Gauss integral theorem the flux due to exterior masses
vanishes; let gq,..., g, be the fields generated by the interior masses
mi,...,mg. Then

//Sg-dS://gl dS+-t [ [aas-

= —471' m1+ +mk :—47TM

b) The field generated by a continuous mass distribution y(z, y, z) located
in a region V is:

g(x,y, 2 /// X3 dVr—(:B—uy v,z —w), (u,v,w) €V

Let a closed surface S be given and call V; that part of the distribution
which is outside S and V5 the interior part.
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i) Let g; the field created by the masses in V;. As there are no
masses of V; inside of S r doesn’t vanish and the integrand has
no singularity. Moreover -3 has continuous derivatives and we can
differentiate the integral thus

div g; = /// xS v

r3 r3 r3

but the integrand satisfies

0, r—u 0 y—v 0 z—c T
%(T)WLa—y(TH'&(T)—dWE—O,

and div g; = 0 in U, the interior region of S. By the divergence
theorem its flux through S is

[ [eas=[ [ [aved-o

Summing up: the flux of the field from exterior masses is zero.

ii) Let gy be the field created by interior masses; its flux across S is

[ fais= [ o] [ [ ~Eavr-as

As S doesn’t cut the distribution r doesn’t vanish on S and, being
the integrand continuous, we can invert the order of integration:

[ fom=f o] [

But from Gauss integral theorem, for interior points

//—T—g-dsz—zm

s

//g-dS:—47r/// xdV = —4xM
S Va

Under special conditions on x the result is true even if S cuts the
distribution (see |Kell|, p. 73).

Then

O
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Problem 191: The divergence teorem in the plane.

Guess a plane version of the divergence theorem and derive it from the usual
divergence theorem.

Solution:

Let F(x,y) = (X(z,y),Y (z,y)) be a field in R? and C' C R? a simple closed
curve that has U as bounded region. Let n be the exterior normal vector to
C; we would like to show that

//didea:dy:/ F-ndl
U ou

To use Gauss theorem we convert our two dimensional problem into a three
dimensional one. To this end define a field in R? and a cylindrical volume:

FE(x7y7Z) = (X(S(Z,y),Y(SL’,y),O)
V = Ux|0,1]

| , : S
| U |
| /N
| \ I
l Ly
X
C U |
N

Orient 0V by the exterior normal IN as shown in the figure and apply the

divergence theorem:
[ ][ daweeav=[ [ po.as
1% oV
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) The left hand term is

///dlvFEdV:///aX 8Y =
= /0 ( / /U div Fdzdy)dz = / /U div Fdzdy

b) As to the right hand term notice first that the boundary OV is the

union of two covers U o~ U x {0}, U’ >~ U x {1} and a lateral surface S.
The flux is null across the covers, for Fp-N = (X,Y,0)-(0,0,4+1) = 0.
To compute the flux across S we parametrize it by

aft,s) = (x(t),y(t),s), (t,s) € [a, 0] x [0,1]
(x(t),y(t)) being a parametrization of C' traversing it in the positive
sense (leaving U to the left).

Then the associated normal vector that points to the exterior of C' is
the one that makes (n,t) a positive basis. It is n = (y/, —2’), for

/ /
det(y,x,)>0

The associated normal vector of the parametrization is

o = (2'(t),y(1),0)
a; = (0,0,1)
axas = (y,—2',0)

that points to the exterior. Now we may compute the flux:

//WFE.dS = //S(vao)'(y’,—x’,O)dS:
= /;(/ab(Xy'—Y:B’)dt)ds:

b b
= /(Xy’—Y:L")dt:/ (X,Y) - (v, —2)dt =

[ (v, =) L,
- /G(X7Y) ‘(y/’ )|‘(Z/, )|dt

- / Fon|(,y)]|dt= /F-ndl
oUu oUu
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Problem 192: Gauss integral theorem in the plane.
Guess and prove a Gauss integral theorem in the plane.
Solution:

Let C be a simple closed curve, positively oriented let n be its exterior normal
and let U be the bounded region determined by C'. We guess that

ndl — 0 if 0 is exterior to C
c r2 ? if 0 is interior toC

a) If 0 is exterior to U then 7 is never zero and reminding that div 5 =0

(see p.116) we can apply the divergence theorem in the plane:

r2 -ndl = // div — dxdy =0
c

b) If 0 is interior we cannot apply the divergence theorem in the plane
since 0 is a singularity of the field, but we can proceed as in the proof
of Gauss integral theorem. Remove a small disc D ={r:|r |[< R} C U
from U to obtain Q = U \ B; then orient 92 = C'U Cg as in the figure
and apply the theorem:

o://dividxdy:/indur/ L ndl
Q 7 o CRT2

t

To compute the last integral parametrize C'g by

v(t) = (Rcost,—Rsint),| ¥ (t) |= R
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and take into account that the unit interior normal vector is n =
(—cost,sint); then:

" (Rcost, —Rsint
/ %-ndl :/ (2 cos éz sin ) - (—cost,sint)Rdt = —2m
Cr 0

and by the divergence theorem

= .ndl =27
c’

6.3.5 Continuity equation; energy conservation.

Consider a fluid with velocity field v(z,y, z) and density p(z,y, z,t). The
vector J = pv is the current density vector and, in a similar way as v - nAS
measures the volume of fluid crossing AS in a unit of time, J - ndS measures
the mass of fluid that crosses dS in a unit of time.

O

Problem 193: Continuity equation.

Let U be a region in R? and S its boundary, a closed surface oriented by the
exterior normal. Evaluating in two ways the mass exiting from U find the
continuity equation

dp
divJ 4+ —/— =
iwvJ+ 9 0

Solution:

The mass in U is [ [ [, pdV and the mass exiting per unit time is

i) [

On another side S the mass exiting per unit time is

| [3-as
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Now express the conservation of mass:

J[roif ] [

Transforming the left hand term using the divergence theorem and differen-
tiating the right hand term we have:

[[ oo =[] [2a
[ [ [ava+2a -

As this is true in any region of the fluid we obtain:

dp
divI+ 2L =0
vt

U

Analogous arguments will give expressions for the conservation of the
energy and the conservation of the charge.

If T'(x,y, z) gives the temperature distribution in a body, the vector h that

has the direction given by —V7T and module the amount of energy crossing

in a unit time a unit surface perpendicular to VT is called the density of

energy flux. Newton’s law of cooling is h = —kVT’; if p is the energy density
then p = cpoT” where c is the specific heat and py a constant.

O

Problem 194: Energy conservation.

Find an expression for the energy conservation. Using Newton’s law and the
relation between p and T derive the heat equation.

Solution:

Let U be a region in R? and S its boundary, a closed surface oriented by the
exterior normal. The energy in U is [ [ [, pdV and the energy exiting per

unit time is J
—— dV
ﬁ//Lp
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Another expression for the exiting energy is [ fS h - dS; an expression for the
energy conservation is

J i ]

Transforming the left hand term using the divergence theorem, differentiating
the right hand term and taking into account that the equality obtained is
true for any region in U we have:

dp
divh+ £ =0
WS,

Assuming k, ¢, pg constants and using Newton’s law we obtain

divh = div (=kVT) = —kdiv VT = —kV*T
o _ 0T
ot P05t

Now substituting into the energy conservation equation we obtain

oT
2T — g
\Y% a T

that is, the heat equation.



Chapter 7

Electromagnetism

7.1 Maxwell equations

When there are charges present the space acquires a ’state of electromag-
netic tension’ that Michael Faraday (1791-1867) described by means of the
idea of a field. James Clerk Maxwell (1831-1875) was the first to establish
the complete equations of the electromagnetism (see [Feyn| vol. II):

Maxwell equations

V.-E=2 VxE=-9B
€0

B=0 AV xB=gE+%
€o

Two vector fields, the electric field E(z,y,z,t) and the magnetic field
B(z,y, z,t), describe that ’state of electromagnetic tension’ at point (x,y, 2)
at the instant £. The sources of that space tension are the electric charges, de-
scribed by means of a scalar function, the electric charge density p(z,vy, z,t),
and the electric currents, described by means of a vector function, the electric
current density j(x,y, z,t).

Given the sources Maxwell’s equations allow (at least in principle) the
computation of the electric field E = (E,, E,, E,) and the magnetic field
B = (B,, By, B.). Then, once the fields are known, we can compute the
force they exert on a charge ¢ that moves with a velocity v:

F =¢(E+ v x B)

361



362 CHAPTER 7. ELECTROMAGNETISM

Then Newton’s equation allows the computation of the movement of the
charge.

Maxwell equations unified electricity, magnetism and light; moreover they
predicted the existence of electromagnetic waves. They were as well the
starting point for the discovery of special relativity and were an inspiration
for the general relativity, both theories presented by A. Einstein in 1905
and 1915 (see |Feyn|, vol I). They have also been a model for contemporary
physics (see [Ba-Mul]).

Problem 195: Integral form of Maxwell’s equations.

Apply Stokes’s theorem or Gauss’s theorem as needed and give the equations
an integral form. Application: an electrostatic field is given by E(z,y, z,t) =
(yz, zz, zy); find the charge contained in the unit sphere (assume the surface
doesn’t cut the distribution).

Solution:

a) Apply the divergence theorem to a region U C R? with boundary S, a
closed surface, and use the first of Maxwell equations V - E = £

[ [ [ ] [ [[ 22

In words: the flux of an electric field equals the charge in the interior/¢g
(Gauss law).

b) Apply Stokes theorem to a surface S C R? with boundary a curve C
and use the equation V x E = —0,B:

/CE-d1://SVxE-dS:—ﬁt(//BdS)

In words: the circulation of the electric field is minus the time derivative
of the flux of magnetic field (Faraday’s law).
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c¢) Apply the divergence theorem to a region U C R? with boundary S, a
closed surface, and use the Maxwell equation V- B = 0:

[ [Bas=[][v-Bav—o

In words: the flux of a magnetic field across a closed surface vanishes.

d) Apply Stokes theorem to a surface S C R? with boundary a curve C
and use the equation ¢*V x B = ,E + 6*’—0 :

02/B-d1:c2//vdeS:at(//E-dS)Jr/ i~alS
C S S s €o

In words: the circulation of the magnetic field is the time variation of
the electric flux-+current across S.

e) Applying Gauss law:

i=a [ [Beas=—a[[[vEw—qf[ [0

Problem 196: Gauss law in electrostatics.

Use Gauss law and symmetry arguments to

a) Show that the electric field in the exterior of a uniformly charged sphere
is the same as the field of a point charge (with the charge of the sphere)
at the center of the sphere. Is the result valid if we consider a uniformly
charged ball?

b) Find the electric field at interior points of a uniformly charged sphere.
c¢) Find the electric field at interior points of a uniformly charged ball.
d) Find the electric field created by a uniformly charged straight wire.

e) Find the electric field created by a uniformly charged plane.
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Solution:

a) Assume the sphere is S% and has a total charge ¢; from the symmetry
we see that the exterior field E(r,t) is central and stationary (time
1ndependent) Apply Gauss law to the sphere S? with radius r > R.

Let E(r) =| E(r) |; then

1 ¢
- //TE dS = 4xr? ():>E(7°)——47T€0ﬁ

that is the same as the field of a point charge ¢ at the origin. This is
true as well for a charged ball.

b) The field is central; let | E(r) |= E(r) and o the surface charge density.
Apply Gauss theorem to the sphere S? with r > R:

S

0://SE-dS:E(r)47rr2:>E(r):O

If there is no charge in the interior the field vanishes there; this shows
that we can avoid the fields inside of the sphere.
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We cannot use the argument in b) because then S? would cut the
distribution of charge. Instead decompose the ball By in three regions
Br = B,_c UCy_crie UCyryer, an innermost ball and two spherical
annulus:

B,_. and C,,. g are assumed charged and the region C,_., . empty.
Now compute the flux across S? due to the charged parts. The field
generated there by the interior sphere is E'(r) = 4”1507,%, g being the
charge of the sphere:

q=///”xdvz><§w<r—e>3

so the field is

X (r—e?’
E/(T> = 3—60 /r2

The field generated by the region C, . g vanishes on S%. Letting € — 0
we will obtain the field on S%:

X

E(r)= 3

Let A be the linear charge density. From the symmetry the field de-
pends only on the distance to the wire; let E(r) be its modulus. Aply
Gauss law to a cylindrical surface as in the figure:
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Al

1 A
A = eo// E-dS=¢eFE(r)2mrAl= E(r) = ——
s 2meg T
e) Let o be the surface charge density. The symmetry implies that the
field is perpendicular to the plane; let E(r) its module. Apply Gauss
theorem to a cubic surface as in the figure:

l

JA:eo//E~dS:eo2AE(r):>E(7’)— 7
S

_2_60

Electrostatics and magnetostatics
We say that the equations
VxE = —-0B
AV xB = OE+ 3
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are coupled because both fields appear in both equations. But assume the
state of the sources is independent of time; then so will be E and B and the
equations uncouple:
VxE = 0
AV xB =

a) Electrostatics deals with the equations

V-E=L VxE=0

€0
b) Magnetostatics does with
V-B=0,&VxB=2
€0
Both problems are, loosely speaking, dual:

a) Find an irrotational field with a given divergence.

b) Find a field with zero divergence and a given rotational.

7.2 Electrostatics

The datum is p(z,y, z) and we seek E(x,y, 2).

The equations are V - E = % and Vx E = 0.

We know that under good topological conditions if V x E =0 then E =
—V ¢ where ¢ is a potential function now called the electrostatic potential.
The potential produced by a charge distribution of density p in a region V' is

! p(u, v, w) _

It satisfies £ = —V¢ and substituting into the first Maxwell equation we

see that ¢ is a solution of Poisson’s equation
Vip=-L
€0
that now we know how to solve. From ¢ we have the field E = —V ¢, the force
on a charge F = —¢V¢ and we can write the equations of motion ¢E = m¥

O
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7.3 Magnetostatics

The datum is j(x,y, z) and we seek B(x,y, 2).

The equations are V-B =0and V x B = eJ—O

We know that under good topological conditions if V- B = 0 then B =
V x A for a certain field A called the vector potential of B.

Remind that A’ = A + V4 (¢) an arbitrary function) has the same rota-
cional (this is called a gauge freedom). Notice that we can find ¢ from

div A + V%) =0,

solving three Poisson’s equations. Then div A’ = 0; we do this choice in
magnetostatics (a different one is made in the resolution of the complete
equations).

O

Problem 197: Solution of the magnetostatics problem.

From the magnetostatics equations show that the vector potential satisfies a
Poisson equation.

Solution:

Substituting B = V x A in Maxwell equation V x B = % we obtain

<
Vx(VxA)= %
€C
Now, from problem 34,c), recall the formula
Vx(VxA)=V(V-A)- VA
Using it and reminding that V - A = 0 was our choice, we have

Vx(VxA)=V(V-A)— VA = -V’A

and A satisfies the Poisson vector equation
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whose solution is

]' j(u7v7w)
A(x,y,z)z4ﬂ€062/// Tdudvdw

We have solved the magnetostatics problem: being given the current density
Jj we can find the potential vector A and then the magnetic field B =V x A.

O

7.4 Complete Maxwell equations

Consider again the complete set of Maxwell equations:

V-E=2  VxE=-9B
€0
V.-B=0 , @VxB=9E+

€0

Charge conservation

The electric current density j is the amount of charge that crosses per unit
time a unit area surface perpendicular to the movement of the charges. The
flux of j across a surface is the electric current.

Problem 198:

From Maxwell’s equations deduce the equation of charge conservation V- j—+
@,0 = 0.

Solution:
Let the divergence operate on both sides of the equation 2V x B = 9,E + eJ—O

Vi

1
€0 €0

(O +V-3) =V -j+0p=0
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Wave equation

Consider a string along the Oz axis and let u(x,t) be the transversal
displacement at point z and at the instant £. Then the function

u(x,t) = f(x — at)

is a waveform travelling to the right with a speed a > 0 (f is an arbitrary
function), while
u(z,t) = g(x + at)

is a waveform travelling to the left with a speed a > 0 (g is an arbitrary
function).

f(x+at) K% f(x—at)
at at

The wave superposition
u(z,t) = f(x —at) + g(x + at)

is the general form of a wave in the string. Eliminating the arbitrary functions
f, g by differentiation we obtain the differential equation these waves satisfy:

Oyu=f'(x—at)+ g (x+at) Ou=—af (x—at)+ag(x+ at)

0%u ., ) 0u

and we see the one dimensional wave equation is:

=a’f"(x — at) + a’g” (v + at)

,0*u  D*u

“orr o
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Analogously in two dimensions (think in a drumhead) we would have

Pu  0%*u o%u 1 0%u
2 _ 9
et aE) T Y VT Eae
and in dimension three
Pu  0*u  0*u d%u 1 0%u
2 _ 2, .~ -~
e Tartor) "o O ViT goe

Problem 199:

a) From Maxwell’s equations show there is a function ¢ (the electric po-
tential) and a vector function A (the vector potential) such that

E:—V¢—atA s B=VxA.

b) Let ¢ an arbitrary function; show that if we take A; = A + V1),
¢1 = ¢ — Oyp we obtain the same fields E, B.

¢) Show that we can choose ¢, A so as to satisfy the equations

1 0’A j
240 _ 107 )
VA c? ot? €0C?
1 P¢ p
2, 1079 P
v ¢ c? Ot? €0

that relate the sources of the field to the potentials.

Solution:

a) From V -B = 0 we know that B has a vector potential, a field A such
that V x A = B. Substituting in the second of Maxwell’s equations
V x E = —0;B, we obtain

VXE=-0,(VxA)=-VxJA

or

The field E + 0,A has zero rotational and so has a potential ¢:
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b) It’s a computation:
VXA =VX(A+VYy)=VxA=B
And
—V¢1 — A =—-Vop+ Vo — A -0Vi) =—-Vop—-0A=E

i) Substituting B = V x A in Maxwell’s equation ¢’V x B = 8tE+%

we have .
AV x (VxA)=gE+ L
€0
or, applying the operator identity in problem 34,c) and isolating
the source,
0?A j
V(Y- A) = VA + 0V + S = g
€0

Assume that A and ¢ are already known. To simplify the preced-
ing equation we introduce new potentials

A, = A+VY
¢ = ¢— 0y
They satisfy
2A :
C2V(v . Al) — C2V2A1 + 8tv¢1 + % = Ei (>I<)
0

We choose ¥such that V- A = _0%%5

106 10%
. f— . 2 —_ —— —_
VA=V AV = oo S

that is, ©» must satisfy the equation

oy 1O o 109
VY 2ot VA c? Ot

a wave equation. With this choice (*) becomes

1 0’A j
24 L 1
VA 2 Ot? €oC2
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ii) Substituting E = —V¢; — 0;A; into the first Maxwell equation
we obtain V - (=V¢; — 0,A;) = % or

V1 + 0V - Ar) = =L (%)

€o

and the choice V- A} = —C%% gives
v2¢ _ia2¢1 _ _ﬁ
! 2 Ot? €0

iii) In free space (:—where there are no charges nor currents) we have:

1 0%A
2 _—— =
VA 20 0
1 0%
24— 2 ¥ —
Ve c? Ot2 ’

and we see that ¢ and A satisfy the wave equation.
OJ

Problem 200: Show that E and B satisfy in free space the wave equation.

Solution:
a) Applying the rotational to the wave equation for A we have:

1 0’A 1 0 1 0’°B

0= A Y =V? A)— - — A)=VB-_—_—

V x(V 2 e )=V (VxA) “op (VXA)=V 2
that is to say B satisfies the wave equation with speed c.

b) To obtain a similar result for E we start from the equality:

Differentiating respect to t and taking into account the wave equation
for ¢ we have:

OE  _06 PA  _96 o,
a- Vo e Ve VA
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Differentiate again with respect to ¢ to obtain

E 2
57 = V%S — 2O, VPA = —V(*V?¢) — PO, V?A =
= AV3-VedA)= AVE

as we wanted to see.



Epilogue

Two results and a problem.

The gravitational field of a uniform (:— constant density) mass sphere is
constant (in modulus as well as in direction) in the interior of an interior
hollow sphere:

Constant field

The gravitational field of a uniform mass sphere vanishes in the interior
of an interior concentric hollow sphere:

Vanishing field

May be you are thinking about why Jules Verne did not use those facts in
his well known novel A journey to the earth’s center. Well, the point is that

375
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both preceding results are true if there were no other bodies in the Universe,
but as that is not so, the gravitational fields from other bodies still create in
the interior of the hollow spheres a certain gravitational field.

Newton proved that the second result holds true in the interior of an
ellipsoidal body (see [Kell|] p.22):

Vanishing field

The problem is to find out if there are other shapes for which this fact
is still true. The answer is that there are no other such figures but, despite
having enough space in the margin, I can’t find out the reference (Hint: the
solution is in a book about partial differential equations).
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