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3PrefaeThis problem book evolved from problem letures I gave in UPC (Univer-sitat Politènia de Catalunya). There are two hundred problems ompletelysolved in detail. Some are publi domain, some are rereations and someothers have been told by olleagues. If any merit an be given to the olle-tion it ould be the seletion and grouping of the material, mainly followingPolya's ditum that 'problems grow as mushrooms'.These problems ould interest students of mathematis, physis and en-gineering. As the title shows the main emphasis is on alulus and not somuh on analysis. Nevertheless bibliography on some deliated questions ispresented here and there. For a quik overview of the style I would like tomention some of my favourite problems: 3, 6, 14, 54 and its ompanion 57,81, the surprising result in problem 114, 145, 160, 173, 178. Physis andengineering students may like to browse last hapter on eletromagnetism.I only assume a mild responsability as to possible errors beause as lateProf. Wieszlaw Slenk said �orreting is an in�nite non onvergent proess�.The existene of errors an be seen as a stimulus for the student to be areful.In any ase if the reader wants to point out an error, he an do so writingto miquel.dv�gmail.om, but he needn't use this address only for that reasonand if he liked some part(s) of the book he an show it through the samehannel.Needless to say that my English is IE (International English), not SE(Shakespeare English); I apologize about that.AknowledgmentsThe author would like to thank Profs. Jordi Saludes for the on�dene,and Juan Jose Morales who took are of the ourse later on. Thanks as wellto Prof. Natalia Sadovskaia who pointed out errors and ontributed someproblems.Barelona May 2013



4 Some notationsAs they are mainly standard we mention only a few:
a := b de�nes a in terms of a known b.
T := Beginning of a theoretial setion.
�:= End of a theoretial setion or of a problem.i�:= if and only ifMatrix (m,n) :=m rows, n olumns.
S1 :=irumferene with enter at 0 and radius 1.
S1

R :=irumferene with enter at 0 and radius R.
S2 :=sphere with enter at 0 and radius 1.
S2

R :=sphere with enter at 0 and radius R.
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Chapter 1Curves
1.1 Parametrized urves
T A parametrized urve in Rn is a di�erentiable map

γ : [a, b] −→ Rnof lass C1 (:= with ontinuous �rst derivative) at least.
γ ’ (t)

γ(a)

γ(b)(t)γ
γ

z

x
y

ba t

• The vetor γ′(t) is the veloity vetor at the instant t and its norm
|γ′(t)| is alled the elerity .

• An instant t ∈ [a, b] is regular if γ′(t) 6= 0 (the tangent vetor is notnull), and it is singular if γ′(t) = 0.A parametrization is regular if all instants are regular. The veloityvetor is then never null. 7



8 CHAPTER 1. CURVES
• Let γ(t), t ∈ [a, b] be a parametrized urve in Rn and make the hange ofvariable t = h(τ) to obtain another parametrization Γ(τ) = γ(h(τ)), τ ∈

[c, d]. We all Γ a reparametrization of γ and we shall say that bothparametrizations are equivalent . The funtion
h : [c, d] → [a, b]that does the hange of variable must be bijetive and both h and h−1are to be of lass C1 at least (another name for a hange of variables isdi�eomorphism).

ba

c d

γ
z

x
y

Γ

h

t

τ

As equivalent parametrizations do the same job we de�ne the urve C tobe the whole of equivalent parametrizations. The ommon trae of all thoseparametrizations is the geometri urve of C, a subset of Rn.We an use as well pieewise C1 parametrizations; those are ontinuousfuntions
γ : [a, b] → Rnwith a partition of [a, b] in n subintervals {a = t0 < t1 < · · · < tn = b} suhthat γ is C1 in eah subinterval [ti−1, ti], i = 1, . . . , n. A polygonal line maybe a handy example (see problem 3 a), but see as well 3 b)).

�



1.1. PARAMETRIZED CURVES 9Problem 1. Parametrizations.Find parametrizations of the following paths:
a) A omplete wind in the positive sense (anti lokwise) around a ir-umferene with enter at 0 and radius R.b) A spiral that turns in the positive sense and opens.) A omplete turn of a helix (the omposition of a uniform irular move-ment and a uniform translation movement perpendiular to the planeof the irular motion).

Solution:a) γ(t) = (R cos t, R sin t), t ∈ [0, 2π].
C

Rcost

t
x

Rsint

y

b) γ(t) = f(t)(cos t, sin t), t ∈ R f(t) being a funtion suh that | f(t) |inreases. In this ase the domain of the parameter is the whole of R.



10 CHAPTER 1. CURVES
t

y

x

) γ(t) = (a cos t, a sin t, bt), a, b > 0, t ∈ [0, 2π]. We an visualize preiselya helix turn if we draw the diagonal of a �lm tranpareny and wrap itto have a ylinder.We shall go on using this �lm in the study of the yloid.
t

�Problem 2. Equivalent parametrizaions. Opposite urve.Parametrize:a) Two omplete turns around the unit irumferene in the positive sense.b) One turn around the unit irumferene in the negative sense.



1.1. PARAMETRIZED CURVES 11) Two omplete turns around the unit irumferene in the negativesense.d) A partile goes from (0, 0) to (1, 1).e) A partile goes along the segment (0, 0) to (1, 1), returns to (0, 0)along the same path, and goes to (1, 1) again following the same route.Find the obvious pieewise C1 parametrization and a not so obvious C1parametrization as well.Identify some equivalent parametrizations.Solution:a) We an double the time elapsed
γ1(t) = (cos t, sin t), t ∈ [0, 4π],or double the elerity:
γ2(t) = (cos 2t, sin 2t), t ∈ [0, 2π]Those parametrizations are equivalent beause if we make in γ1(t) thesubstitution t = 2u we obtain γ2(u). The di�eomorphism we have usedis

h : [0, 2π] −→ [0, 4π]
u 7→ t = 2uOn another hand none of these two parametrizations is equivalent to

γ(t) = (cos t, sin t) beause γ is one to one in (0, 2π) but γ1 and γ2wind twie around the unit irle and are not one to one. Being areparametrization bijetive it doesn't hange the injetivity, so γ1 and
γ2 annot be equivalent to γ.b) i) It is geometrially lear that γ(t) = (cos t,− sin t), t ∈ [0, 2π] is asolution to our problem.



12 CHAPTER 1. CURVESii) In general to desribe a given parametrized urve γ(t), t∈ [a, b]traversed in the opposite sense we put:
γ1(t) = γ(−t), t ∈ [−b,−a]whih is a parametrized urve named the opposite urve of γ,notated γ−. Applying this method to the present problem wehave:

γ−(t) = (cos(−t), sin(−t)) = (cos t,− sin t), t ∈ [−2π, 0]But cos t and sin t are 2π-periodi funtions, so a parametrizationequivalent to γ− is
Γ−(t) = (cos t,− sin t), t ∈ [0, 2π],the parametrization we guessed at the start.iii) Yet another way to obtain the opposite urve follows from thefollowing �gure:

a b

t t’

.where t′ = b− (t− a) = a+ b− t. We see that as t goes from a to
b, t′ goes from b to a and the opposite urve is:

γ−(t) = γ(a+ b− t), t ∈ [a, b]Using this method we obtain
γ−(t) = (cos(2π − t), sin(2π − t)) = (cos t,− sin t), t ∈ [0, 2π]) Using the parametrization γ2 of a), the method of b) ii) and the 2π-periodiity we have:
γ−2 (t) = (cos(−2t), sin(−2t)) = (cos 2t,− sin 2t), t ∈ [0, 2π]We may as well use the parametrization γ1 in a) :
γ−1 (t) = (cos(−t), sin(−t)) = (cos t,− sin t), t ∈ [0, 4π]Or, if we prefer so, we an use the method in b) iii) and the parametriza-tion γ2, leading to:

γ−2 (t) = (cos 2(2π − t), sin 2(2π − t)) =

= (cos 2t,− sin 2t), t ∈ [0, 2π]



1.1. PARAMETRIZED CURVES 13d) We an onnet the points through a segment
γ1(t) = (t, t), t ∈ [0, 1],an ar of a parabola
γ2(t) = (t, t2), t ∈ [0, 1],segments in the axis diretions

γ3(t) =

{

(t, 0) if 0 ≤ t ≤ 1
(1, t− 1) if 1 ≤ t ≤ 2

,among an in�nity of options.e) It's easy to write a pieewise C1 parametrization. First
γ1(t) =

(

t
t

)

, t ∈ [0, 1] parametrizes the segment [

(

0
0

)

,

(

1
1

)

]while, using the method of b) iii), we see that
γ2(t) =

(

1 − t
1 − t

)

, t ∈ [0, 1] parametrizes the segment [

(

1
1

)

,

(

0
0

)

]Now de�ne γ3 = γ1 and then, to have a single interval for the parameter,adapt γ2 to the interval [1, 2] and γ3 to the interval [2, 3] :

Γ2(t) =

(

2 − t
2 − t

)

, t ∈ [1, 2]

Γ3(t) =

(

t− 2
t− 2

)

, t ∈ [2, 3]Then
γ(t) =







(t, t) if t ∈ [0, 1]
(2 − t, 2 − t) if t ∈ [1, 2]
(t− 2, t− 2) if t ∈ [2, 3]is a parametrization of the whole path. It is not diferentiable at t = 1, 2but it is ontinuous in [0, 3] and of lass C1 in eah subinterval so it is



14 CHAPTER 1. CURVESpieewise C1.A C1 parametrization is
γ(t) = (sin2 t, sin2 t), t ∈ [0, 3π/2].but the tangent vetor γ′(t) = (2 sin t cos t, 2 sin t cos t) vanishes for thevalues of the parameter t = 0, π orresponding to the point (0, 0) and forthe values t = π/2, 3π/2 orresponding to the point (1, 1). The veloityvetor vanishes there and the C1 parametrization is not regular at thosepoints.

�Problem 3: Di�erentiable parametrization of a path with sharp points.a) Give a pieewise C1 parametrization of the triangle with verties P =
(1, 0, 0), Q = (0, 1, 0), R = (0, 0, 1), traversed in the sense P,Q,R.b) Obtain a C1 parametrization as well.Solution:

x

y

z

P

Q

R

a) As in the preeding problem we �rst parametrize the three segments
PQ,QR,RP :

PQ : γ1(t) = (1 − t)





1
0
0



 + t





0
1
0



 =





1 − t
t
0



 , t ∈ [0, 1]



1.1. PARAMETRIZED CURVES 15
QR : γ2(t) = (1 − t)





0
1
0



 + t





0
0
1



 =



1 −
0
t
t



 , t ∈ [0, 1]

RP : γ3(t) = (1 − t)





0
0
1



 + t





1
0
0



 =





t
0

1 − t



 , t ∈ [0, 1]We get a single interval reparametrizing γ2 and γ3 and keeping γ1:
γ(u) =







(1 − u, u, 0) if 0 ≤ u ≤ 1
(0, 2 − u, u− 1) if 1 ≤ u ≤ 2
(u− 2, 0, 3 − u) if 2 ≤ u ≤ 3But this parametrization is not difereniable at u = 1, 2. For instane

γ′−(1) = (−1, 1, 0) and γ′+(1) = (0,−1, 1): left and right derivativesare di�erent at u = 1; the same thing happens at u = 2. So theparametrization is only pieewise C1.b) The useful idea to onstrut a C1 parametrization is to enter the sharppoints with veloity zero (see the end of the preeding problem). Thefuntion
u(v) =







sin2 v if 0 ≤ v ≤ π/2
1 + sin2(v − π/2) if π/2 ≤ v ≤ π
2 + sin2(v − π) if π ≤ v ≤ 3π/2has vanishing lateral derivatives at v0 = 0, v1 = π/2, v2 = π, v3 = 3π/2.Have a look at the graph!

1

2

3

π/20 π 3π/2



16 CHAPTER 1. CURVESThen the parametrization of the given path
Γ(v) = γ(u(v)), v ∈ [0, 3π/2]is of lass C1 in [0, 3π/2] beause at v0 and at v3 we have

Γ′
−(π/2) = γ′−(1) · u′−(π/2) = 0

Γ′
+(π/2) = γ′+(1) · u′−(π/2) = 0so Γ′ is ontinuous at v1 = π/2, orresponding to the point Q. Similarlyone sees that Γ′ is ontinuous at v2 = π, orresponding to the point

R. This parametrization is not equivalent to γ (u(v) is not a hange ofvariable beause, despite being bijetive, its derivative vanishes at fourpoints) but it is a C1 parametrization of the given path.
�Problem 4: Cirumferene.Let S1

R be the irumferene with enter (0, 0) and radius R; parametrize:a) S1
R using an angular oordinate.b) S1
R as the graph of a funtion.) S1
R projeting the axis Ox on S1

R from the north pole.Solution:a) We know this one:
γ(θ) = (R cos θ, R sin θ), θ ∈ [0, 2π]This parametrized urve winds in the positive sense one around S1

R(the point (R, 0) is aessed twie) and is of lass C∞.b) Isolating y in the equation x2 + y2 = R2 we obtain the funtion y =
f(x) =

√
R2 − x2; a parametrization of the graph of f is

γ1(x) = (x,
√
R2 − x2), x ∈ [−R,R]



1.1. PARAMETRIZED CURVES 17The image of this parametrized urve traverses one the upper semiir-umferene in the negative sense; it is not di�erentiable at x = R noris it at x = −R.

−R RA parametrization of the lower semiirumferene is
γ2(x) = (x,−

√
R2 − x2), x ∈ [−R,R]The image of this parametrized urve traverses one the lower semiir-umferene in the positive sense; it is not di�erentiable at x = R noris it at x = −R.

−R R

) Lets make a �gure of the projetion
.

P(u,0)

(x,y)

y
N(0,R)

x

The equation of the line NP is:
(

X
Y

)

=

(

0
R

)

+ t

(

u
−R

)



18 CHAPTER 1. CURVESWe ompute the intersetion point of NP with S1
R :

X = tu
Y = R− tR

X2 + Y 2 = R2







⇒ t =
2R2

u2 +R2
⇒

{

x = 2R2u
u2+R2

y = R(u2−R2)
u2+R2So the looked for parametrization is:

γ(u) = R(
2uR

u2 +R2
,
u2 − R2

u2 +R2
), u ∈ RThe intersetion point an also be omputed from the equations y =

−R
u
x+R and x2 + y2 = R2:

x2 +
R2

u2
x2 − 2

R2

u
x+R2 = R2leading to the same solution, of ourse!This parametrization winds one in the positive sense around S1

R ex-ept the north pole; parameters with | u |≤ R go to points in the lowersemiirumferene and those with | u |≥ R go to points in the uppersemiirumferene (exept N). In the usual ase of the unit irumfer-ene S1 the parametrization is:
γ(u) = (

2u

u2 + 1
,
u2 − 1

u2 + 1
)u ∈ RSimilar parametrizations are obtained projeting the Ox axis from thesouth pole (0,−R). Or we an projet the Oy axis from (R, 0) or from

(−R, 0). It is also possible to projet from the north pole a straightline through the south pole, et.
�Problem 5: Ellipse.Parametrize the ellipse E = {(x, y) : x2

a2 + y2

b2
= 1, a > b > 0}a) Using an angular oordinate.b) Projeting a oordinate axis on E from a vertex of the ellipse.



1.1. PARAMETRIZED CURVES 19Solution:a) By analogy with the irumferene we may suspet that
γ(θ) = (a cos θ, b sin θ), θ ∈ [0, 2π]ould be the sought for parametrization of E. If we substitute x =

a cos θ, y = b sin θ into the equation de�ning E we obtain the identity
1 = 1 showing that γ(θ) ∈ E, ∀θ ∈ [0, 2π], so γ(θ) is on E. The pointis whether we traverse the whole ellipse or not; to answer this questionlet us study the geometrial meaning of θ. It annot possibly be thepolar angle from the enter of the ellipse:

x
.

y

θ

p =(x,y)

beause then
x = |p| cos θ, y = |p| sin θand substituting into the equation of E we have

|p|2
a2

cos2 θ +
|p|2
b2

sin2 θ = 1 ⇒ |p| =
ab√

b2 cos2 θ + a2 sin2 θleading to the parametrization
ϕ(θ) =

ab√
b2 cos2 θ + a2 sin2 θ

(cos θ, sin θ),whih is not our favourite one. Nevertheless the analogy with the ir-umferene strongly favours θ being a polar angle from the origin; the



20 CHAPTER 1. CURVESonlusion is that θ is the polar angle of points not on the ellipse. Let'stry with points of the irumsribed irumferene; the following pi-ture may emerge:
x

θ

θ ,(acos θ)a sin

θ ,(acos bsinθ )
b

.

y

a

Those points are (a cos θ, a sin θ), θ ∈ [0, 2π]; the �rst oordinate of theprojetion on E is a cos θ and we ompute the seond oordinate using
E's equation:

a2 cos2 θ

a2
+
y2

b2
= 1Then y2 = b2 sin2 θ ⇒| y |= b | sin θ | and taking y = b sin θ all signsare right. This is the geometri sense of θ and we now see that ourparametrization overs the whole of E in a 'time-interval' of 2π.By the way, what if we had used the insribed irumferene?

θ , b θ ) sin y

x
a

θ

.

b

          θ(a cos , b sinθ).

(b cos 



1.1. PARAMETRIZED CURVES 21If we projet horizontally, the point (b cos θ, b sin θ) of the insribedirumferene goes onto the point (a cos θ, b sin θ) on the ellipse and wehave another geometri onstrution of the same parametrization.b) Lets imitate ) of the preeding problem and projet the Ox axis onthe ellipse E from N = (0, b):
x

.

y

P(u,0)

(x,y)

N(0,b)

The straight line through N = (0, b) and P = (u, 0) uts E at
X = tu
Y = (1 − t)b

x2

a2 + y2

b2
= 1







⇒ t =
2a2

u2 + a2
⇒

{

x = 2ua2

u2+a2

y = b(u2−a2)
u2+a2and we obtain the parametrization of the ellipse

γ(u) = (
2ua2

u2 + a2
,
b(u2 − a2)

u2 + a2
), u ∈ RWe an ompare with the orresponding parametrization of the irum-ferene:

γ(u) = (
2uR2

u2 +R2
,
R(u2 − R2)

u2 +R2
), u ∈ R

�



22 CHAPTER 1. CURVESProblem 6: Moving along the ellipse γ(θ) = (a cos θ, b sin θ).The point (a cos θ, a sin θ) moves uniformly along the irumferene S1
a butthe orresponding point on the ellipse (a cos θ, b sin θ) moves with a nonon-stant elerity |γ′(θ)| =

√
a2 sin 2θ + b2 cos 2θ.a) At what points of the ellipse has the elerity its maximums (mini-mums)?b) Is the angular veloity onstant along the ellipse ?) Is the areal veloity onstant?Solution:This problem has suh an astronomial �avour that it is sound thinking about

θ as time running.a) We �nd the points of extremum of a funtion equating to 0 its deriva-tive. The elerity is a di�erentiable funtion exept when |γ′(θ)| =
0 ⇔ a2 sin 2θ + b2 cos 2θ = 0 ⇔ sin θ = cos θ = 0 but this is impossible.So |γ′(θ)| > 0, the elerity is a di�erentiable funtion and to �nd theextremums we write

d

dθ
|γ′(θ)| =

1

|γ′(θ)|(a
2 − b2) sin θ cos θ = 0Assuming a 6= b this is equivalent to

sin θ cos θ =
1

2
sin 2θ = 0with solutions in [0, 2π)

θ = 0, π/2, π, 3π/2that orrespond to the verties of the ellipse, A,B,C,D respetively:
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��

�� ����

�
�
�
�

x

y

Α

D

C

Β

Assuming a > b the sign of the derivative is the same as that of sin 2θ;we see that |γ′(θ)| inreases in (0, π/2) and dereases in (π/2, π). Weonlude that the elerity has a maximum at θ = π/2, that is at thepoint B. Similarly we an see it has another maximum at D and min-imums at A,C.b) The angle ϕ the radius vetor of the point (a cos θ, b sin θ) makes withthe OX axis is:
tanϕ =

b sin θ

a cos θ
⇔ ϕ = arctan(

b

a
tan θ)(we must exlude the values of the parameter θ = π/2, 3π/2). Theangular veloity is the derivative of this angle

ω =
dϕ

dθ
=

a

a2 cos 2θ + b2 sin 2θwhih is not a onstant.) Lets �rst ompute A(θ), the area of the region swept by the radiusvetor of the point (a cos θ, b sin θ) when the parameter varies between
0 and θ:
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,bsin θ)

y

x

(acosθ

a

b

The upper semiellipse is the graph of the funtion
y(x) = b

√

1 − x2

a2So the area seeked is
A(θ) =

ab sin θ cos θ

2
+

∫ a

a cos θ

b

√

1 − x2

a2
dxTo evaluate the integral we make the hange of variable















x = a cosu
dx = −a sin u du
x = a cos θ, u = θ
x = a, u = 0













For θ ∈ [0, π] we have
∫ a

a cos θ

b

√

1 − x2

a2
dx =

∫ 0

θ

b
√

1 − cos 2u(−a sin u) du =

= ab

∫ θ

0

sin 2u du = ab

∫ θ

0

1 − cos 2u

2
du =

= ab(
θ

2
− sin 2θ

4
)the area is

A(θ) =
ab sin θ cos θ

2
+ ab(

θ

2
− sin 2θ

4
) = ab

θ

2



1.1. PARAMETRIZED CURVES 25and the areal veloity is
d

dθ
A(θ) =

ab

2
,a onstant. Notie the radius vetor emanates from the origin; shouldit emanate from a fous, a similar alulation shows that

A(θ) = ab(
θ

2
− sin 2θ

4
) +

(a cos θ −
√
a2 − b2)b sin θ

2
=

= ab
θ

2
− b sin θ

√
a2 − b2

2and d
dθ
A(θ) is not onstant.Inidentally this shows that this parametrization does not desribeplanetary motion, sine the seond Kepler's law stipulates that theareal veloity is a onstant (if the radius vetor is taken from a fous,where the Sun is).

�Problem 7: Hyperbola.We want to parametrize the hyperbola H = {(x, y) : x2 − y2 = 1}.a) Prove that for every point in the right branh, (x, y) ∈ H+ = H ∩{x >
0}, there is one and only one u ∈ R suh that

x = cosh u, y = sinh u(Notie the lose analogy with the irumferene.)b) Parametrize H− = H ∩ {x < 0}, the left branh of the hyperbola.) Parametrize K+ = {(x, y) : y2 − x2 = 1, y > 0}, the upper branh ofthe hyperbola y2 − x2 = 1.d) Parametrize K− = {(x, y) : y2 − x2 = 1, y < 0}, the lower branh ofthe preeding hyperbola.e) Let R be the region swept by the radius vetor from the origin to thepoint γ(u) = (cosh u, sinh u), u ∈ [0, a]. Show that the area of R is a/2.



26 CHAPTER 1. CURVESSolution:
−Η Η+

+Κ

−Κ

x

y

a) Reminding the graph of y = sinh u we see that for every y ∈ R there isonly one u ∈ R suh that y = sinh u:
u

y

The x oordinate of P ∈ H+ is:
x2−y2 = 1 ⇔ x2−sinh2 u = 1 ⇔ x2 = 1+sinh2 u = cosh2 u⇔ |x| = cosh uBut x > 0 inH+and then x = |x| = cosh u; we have the parametrizationof the right branh of the hyperbola:

γ(u) = (cosh u, sinh u), u ∈ R



1.1. PARAMETRIZED CURVES 27b) If P ∈ H− then x < 0 and x = −|x| = − cosh u and a parametrizationof the left branh of the hyperbola is
γ1(u) = (− cosh u, sinh u), u ∈ R) Here for every x ∈ R there is a unique u ∈ R suh that x = sinh u andthe y oordinate of a point of K+ must satisfy

y2 − x2 = 1 ⇔ y2 = 1 + sinh2 u = cosh2 u⇔ |y| = cosh uand a parametrization of the upper branh of the hyperbola is
Γ(u) = (sinh u, coshu), u ∈ Rd) Finally it is lear that a parametrization of K− is

Γ1(u) = (sinh u,− cosh u), u ∈ Re) It su�es to subtrat from 1
2
cosh u sinhu, the area of the triangleOPQ,the area of the region 1PQ under the hyperbola

x

y

1

O

Q

P

the area of the region 1PQ is
∫ cosh u

1

√
x2 − 1dx = {x = cosh u} =

∫ u

0

√

cosh2 u− 1 sinh udu =

=

∫ u

0

sinh2 udu = (
sinh 2u

4
− u

2
) |u0=

sinh 2u

4
− u

2
=



28 CHAPTER 1. CURVESand the sought for area isA =
1

2
cosh u sinh u− (

sinh 2u

4
− u

2
) =

u

2

�Problem 8: A method.a) The orthogonal projetion on the plane z = 0 of a parametrized urve
γ(t) ontained in the paraboloid z = x2+y2 is Γ(t) = (e−t cos t, e−t sin t, 0);�nd γ.b) Point a) suggests that if we are able to parametrize the projetionon the plane z = 0, then we an 'limb' and parametrize the urve.Parametrize the intersetion of the sphere

S√
2 = {(x, y, z) : x2 + y2 + z2 } = 2and the plane P = {(x, y, z) : x+ y + z = 0}.Solution:

γ

Γ

y

z

xa) Being z = x2 + y2 we must have
γ(t) = (e−t cos t, e−t sin t, e−2t(cos2 t+sin2 t)) = (e−t cos t, e−t sin t, e−2t)



1.1. PARAMETRIZED CURVES 29b) Eliminating z from the system
x2 + y2 + z2 = 2
x+ y + z = 0

}we have the projeting ylinder , that ontains the intersetion urve:
x2 + y2 + (−x− y)2 = 2that is

x2 + y2 + xy = 1The intersetion of this ylinder with z = 0 is the projetion of theurve, a oni we want to parametrize. Completing squares
(x+

1

2
y)2 +

3

4
y2 = 1and the hange of variables

{

u = x+ 1
2
y

v = y

}shows the ellipse
u2 +

v2

( 2√
3
)2

= 1that we know how to parametrize:
ϕ(t) = (u(t), v(t)) = (cos t,

2√
3

sin t), t ∈ [0, 2π]In the (x, y) oordinates we have
ψ(t) = (x(t), y(t)) = (cos t− 1√

3
sin t,

2√
3

sin t), t ∈ [0, 2π]and limbing to the plane we obtain �nally
γ(t) = (cos t− 1√

3
sin t,

2√
3

sin t,− cos t− 1√
3

sin t)

�



30 CHAPTER 1. CURVESProblem 9: Minimum distane.Let γ : [a, b] → Rn be a parametrized urve that doesn't pass through theorigin. If γ(t0) is the point nearest the origin (does it exist? is it unique?)and we assume γ′(t0) 6= 0, prove that γ(t0) and γ′(t0) are perpendiular. Canwe generalize this result? If the urve is on a sphere entered at the origin,is the result still valid? Is the reiproque orret in this ase?Solution:The ontinuous funtion d on the ompat set [a, b]

d : [a, b] → R+

t 7→ d(γ(t), 0)aesses the absolute extremums. This proves the existene of a point at aminimum distane from the origin. A irumferene entered at the originhas all its points at a minimum distane (and a maximum distane as well),showing that the extremum points need not be unique.If t0 is a value of the parameter giving the absolute minimum of d and,moreover, it is an interior point of [a, b], we have:
d′(t0) = 0and then

d2(t) = γ(t) · γ(t) ⇒ 0 = 2d(t0)d
′(t0) = 2γ(t0) · γ′(t0),shows the orthogonality of γ(t0) and γ′(t0) at the minimum.

x

y

If the absolute minimum is aessed at t0 = a or at t0 = b the orthogo-nality may fail:
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Q P

y

xThe result is true for eah loal extremum of d orresponding to parametervalues interior to [a, b]. For instane, for an ellipse entered at 0 the radiusvetor is orthogonal to the ellipse in the verties.If a urve C is on a sphere entered at the origin, eah point of C is aloal minimum (and maximum) of d and we have
γ(t)⊥γ′(t), ∀t ∈ [a, b]Reiproally if γ(t) is a parametrized urve suh that γ(t) 6= 0, γ(t)⊥γ′(t), ∀t ∈

[a, b], we have
d

dt
(d2(γ(t), 0)) = 2γ(t) · γ′(t) = 0showing that the distane to the origin is onstant and that γ is on a sphere.Note: There is a more geometrial way to prove the orthogonality of theradius vetor and the tangent vetor, using the pattern of the tangent levelurve. The level urves of the distane funtion are irumferenes enteredat 0. The extremums of the distane to the origin along the urve, are foundwhere the urve is tangent to the level urve. Then the tangent vetor to theurve is as well tangent to the irumferene, whene the result (see Polya).Analitially the pattern translates to the simplest ase of Lagrange's un-determined multiplier method.

�Problem 10:Prove that the trae of the parametrized urve, expressed in polar oordinates
r(θ) =

9

5 − 4 cos θ
, θ ∈ [0, 2π]



32 CHAPTER 1. CURVESis an ellipse and obtain the artesian equation.Solution:The traversed path is ontained in an ellipse:
5r − 4r cos θ = 9

5r = 9 + 4x
25r2 = 81 + 72x+ 16x2

25(x2 + y2) = 81 + 72x+ 16x2

. . . . . . . . .
(x−4)2

52 +y2

32 = 1,the ellipse with semiaxes 5, 3 and enter at (4, 0); when θ ∈ [0, 2π] we traversethe whole urve.
�1.2 CyloidsCyloids are urves with remarkable properties; we shall meet some of themin the following problems.Problem 11: Etymology.Fix a point of light P to the tyre of a byile and look in the darkness thetrajetory of P , assuming the wheel turns without sliding on a �at ground.The path followed by P is properly named a yloid.a) Make a sketh of the yloid.b) Parametrize it taking the ground as Ox axis.) Is the parametrization di�erentiable, regular ?



1.2. CYCLOIDS 33Solution:a) The yloid looks like this
y

xb) Take the turned angle as the parameter:
y

xO Q

R

P(x,y)

θ

As there is no sliding OQ = Rθ and the oordinates of P are:
γ(θ) =

{

x(θ) = R(θ − sin θ)
y(θ) = R(1 − cos θ)

, θ ∈ R) Where the wheel ends a omplete turn we have a sharp point; indeedthe diretion of the tangent vetor γ′(θ) = R(1 − cos θ, sin θ) satisfyes
lim

θ→2π−

sin θ

1 − cos θ
= 0

0

lim
θ→2π+

sin θ

1 − cos θ
= 0

0Using l'H�pital's rule we have respetively
lim

θ→2π−

cos θ

sin θ
= −∞

lim
θ→2π+

cos θ

sin θ
= +∞



34 CHAPTER 1. CURVESand the diretion hanges abruptly, in a disontinuous form. Neverthe-less the derivative exists:
γ′(2π) = (0, 0)and, as we have seen in preeding problems, it is preisely the vanishingof the derivative what makes the di�erentiability possible; of oursethe parametrization is not regular at the values of the parameter θ =

n2π, n ∈ Z.
�Problem 12: Parametrization of the yloid by ar-length.a) Compute the length of the ar of a yloid orresponding to a ompleteturn of the generating wheel.b) Reparametrize by ar-length.Solution:a) The formula for the ar-length of a parametrized urve is L =

∫ b

a
|γ′(t)|dt(see p.92). Let's apply it:

γ′(θ) = R(1 − cos θ, sin θ)

|γ′(θ)| = R
√

(1 − cos θ)2 + sin 2θ = R
√

2
√

1 − cos θ

L = R
√

2

∫ 2π

0

√
1 − cos θdθ = {1 − cos θ = 2 sin 2 θ

2
} =

= R
√

2

∫ 2π

0

√
2| sin θ

2
|dθ = 2R

∫ 2π

0

sin
θ

2
dθ = 8Rb) For θ ∈ [0, 2π] the ar-length parameter is

s(θ) =

∫ θ

0

|γ′(t)|dt = 2R

∫ θ

0

sin
t

2
dt = 4R(1 − cos

θ

2
)

θ = 2 arccos(1 − s

4R
)



1.2. CYCLOIDS 35and the reparametrization is:
x(s) = R(2 arccos(1 − s

4R
) − sin(2 arccos(1 − s

4R
))) =

= 2R arccos(1− s

4R
)− 2R sin(arccos(1− s

4R
)) cos(arccos(1− s

4R
))) =

= 2R arccos(1 − s

4R
) − 2R(1 − s

4R
)

√

1 − (1 − s

4R
)2The other oordinate is:

y(s) = R(1 − cos(2 arccos(1 − s

4R
))) =

= R(1 − cos2(arccos(1 − s

4R
)) + sin2(arccos(1 − s

4R
))) =

= R(1 − (1 − s

4R
)2 + 1 − (1 − s

4R
)2) = 2R(1 − (1 − s

4R
)2) =

= s− s2

8R

�Problem 13: Tautohronous property of yloids (tauto=equal, hronos=time).Consider in a vertial plane artesian axes with Oy oriented down and thear of yloid
γ(θ) = (θ − sin θ, 1 − cos θ), 0 ≤ θ ≤ 2πProve that a ball left alone with zero veloity from any point of the y-loid under the ation of gravity, arrives at the downmost point in a timeindependent of the starting plae.Hint: Use energy onservation to show that the elerity after a fall ofdeepness h is √2gh.Solution:If a mass falls to ground starting from a height H the total energy is then

ET = mgH . When it has fallen a distane h the potential energy will be
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mg(H−h) and the kineti energy will be 1

2
mv2. From the priniple of energyonservation we obtain

mgH = mg(H − h) +
1

2
mv2 ⇒ v =

√

2ghNotie that this result is independent of the path followed by the mass.Now assume a ball starts with null veloity from a point of the yloid ofoordinate y0.
y

0

y

x

P

O

The elerity at a point with oordinate y is:
v =

ds

dt
=

√

2g
√
y − y0 ⇒

dt

ds
=

1√
2g
√
y − y0We separate the variables

dt =
1√

2g
√
y − y0

dsand integrate respet to t with limits 0 and T (y0) (the time of arrival at P )and respet to s with limits s0 (the ar-length of y0) and 4 (the ar-lengthof P ):
T (y0) =

∫ T (y0)

0

dt =

∫ 4

s0

1√
2g

√
y − y0

dsThe expressions of y, y0 in terms of the ar-length are:
y = s− s2

8
= −1

8
(s2 − 8s) = −1

8
((s− 4)2 − 16)
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y0 = s0 −

s2
0

8
= −1

8
((s0 − 4)2 − 16)

√
y − y0 =

1√
8

√

(s0 − 4)2 − (s− 4)2 =
|s0 − 4|√

8

√

1 − (
s− 4

s0 − 4
)2Then

T (y0) =
1√
2g

√
8

|s0 − 4|

∫ 4

s0

1
√

1 − ( s−4
s0−4

)2
ds = {

s−4
s0−4

= u

ds = (s0 − 4)du
} =

=
2√
g

1

|s0 − 4|

∫ 0

1

1√
1 − u2

(s0 − 4)duWe may safely assume that 0 ≤ s0 ≤ 4; then s0−4
|s0−4| = −1 and we have

T (y0) =
2√
g

∫ 1

0

1√
1 − u2

du =
2√
g
(arcsin 1 − arcsin 0) =

2√
g

π

2
=

π√
ga value independent of the starting point. This is then the tautohronousproperty of the yloids. Put it another way: two balls left alone fromdi�erent heights will arrive at the downmost point at the same instant, theywill ollide at P . Should we have started with a yloid generated by awheel of radius R the result would be T (y0) = π√

g

√
R.

Ball 2

Ball 1

At several siene museums there is a gadget that allows the visualizationof this fat: two independent elevators leave two balls at the heigth we hoose.Then a swith liberates both balls at the same time and we an see theollision taking plae exatly at the downmost point of the yloid.
�



38 CHAPTER 1. CURVESProblem 14: Huygens's pendulum.The period of a pendulum depends on the amplitude of the osillations; theformula T = 2π
√

g
l
is only an approximation that omes from sin θ ≃ θ,quite a rough one for a lok. Using two solid yloids Huygens onstruteda pendulum whose period was independent of the amplitude. In the following�gure the length of the rope is half the length of an ar of yloid

O

y

x

M

s

O ’
4 − s

P

Prove that the path of the suspended mass M is a yloid, and explainwhy the period is independent of the osillations amplitude.Solution:Let us assume the radius of the generating wheel is 1 unit, and the length ofthe rope is 4 units. The parametrization of the right hand side yloid is
γ(θ) = (θ − sin θ, 1 − cos θ)with tangent vetor
γ′(θ) = (1 − cos θ, sin θ)

|γ′(θ)| =
√

2
√

1 − cos θ = 2 sin
θ

2
, 0 ≤ θ ≤ 2πIn the �gure the rope touhes the yloid from O to P , and the rest of therope is tangent to the yloid. We hoose as diretion vetor of the tangentline the unit vetor

v =
1

2 sin θ
2

(1 − cos θ, sin θ) = (sin
θ

2
, cos

θ

2
)



1.2. CYCLOIDS 39The tangent line through P is
(

x
y

)

=

(

θ − sin θ
1 − cos θ

)

+ λ

(

sin θ
2

cos θ
2

)Reminding that the ar-length parameter for a yloid is s = 4(1 − cos θ
2
),we see that the point M traes the urve given for the value of λ

λ = 4 − s = 4 − 4(1 − cos
θ

2
) = 4 cos

θ

2So M is
(

x
y

)

=

(

θ − sin θ
1 − cos θ

)

+ 4 cos
θ

2

(

sin θ
2

cos θ
2

)

=

(

θ + sin θ
3 + cos θ

)Taking a new origin at O′ = (−π, 2), or what is the same thing, making thehange of variables
{

X = x+ π
Y = y − 2we obtain a parametrization of the path followed by M :

Γ(θ) = (θ + sin θ + π, 3 + cos θ − 2)If we hange the parameter to ϕ = θ + π we get
Γ(ϕ) = (ϕ+ sin(ϕ− π), 1 + cos(ϕ− π)) = (ϕ− sinϕ, 1 − cosϕ),a yloid.The period of this pendulum is independent of the amplitude beause ofthe tautohronous property.

�Problem 15: Papiro�exy.a) Show that the orthogonal projetion of a helix on a plane parallel tothe axis of the helix is the graph of a funtion sin.b) Take a point of the helix and the tangent line there as the diretion ofa projetion on a plane orthogonal to the axis of the helix. Show thatthe projetion of the helix is a yloid.



40 CHAPTER 1. CURVESLet us 'onstrut' the helix by means of a �lm tranpareny as explained inproblem 1. If we put a white paper parallel to the helix axis we will seethe sinus funtion of point a). If we put a white paper on a table and ourhelix with its axis perpendiular to the table, then looking with one eye andadjusting our point of view we an see learly the yloid of point b) with itssharp points.Solution:a) If we onsider the parametrization of the helix
γ(t) = (cos t, sin t, t)then the projetion on the plane yz is the urve (sin t, t), the graf ofthe desired sinus funtion.b) The tangent vetor to the helix at the point of parameter t is

γ′(t) = (− sin t, cos t, 1)Assume we �x the point (1, 0, 0) whose parameter is t = 0. The tangentvetor is
γ′(0) = (0, 1, 1)and the tangent line





x
y
z



 =





cos t
sin t
t



 + λ





0
1
1



From the third equation we see that the projetion on the plane z = 0takes plae when λ = −t and then
x = cos t, y = sin t− tChanging the parameter to τ = −t gives
x = cos τ, y = τ − sin τ,then hanging the orientation of the Ox axis produes
x = − cos τ, y = τ − sin τ,



1.2. CYCLOIDS 41and, �nally, hoosing a new origin at (−1, 0) we obtain
X = 1 − cos τ, Y = τ − sin τ,a yloid.

�Problem 16: Not every urve has the tautohronous property.Consider the helix γ(t) = (cos t, sin t, t) and a point mass that falls along itunder the ation of gravity. Assuming that the point starts from a height
z = z0 > 0 with vanishing initial speed, ompute the time elapsed to arriveat the height z = 0.Solution:

z
0

The norm of the tangent vetor is
γ′(t) = (− sin t, cos t, 1), |γ′(t)| =

√
2and measuring lengths from γ(0) = (1, 0, 0) we have

s(t) =

∫ t

0

√
2dt =

√
2tWe know from the problem in p.35, that at a height z the elerity will be

ds

dt
= −

√

2g(z0 − z)



42 CHAPTER 1. CURVESHeight z orresponds to the parameter t = z and to the ar-length parameter
s =

√
2z. Then

ds

dt
= −

√

2g(
s0 − s√

2
) = −C

√
s0 − s , C =

√√
2gSeparating variables and integrating

∫ T (z0)

0

dt = − 1

C

∫ 0

s0

ds√
s0 − sFinally

T (z0) = − 1

C
(−2

√
s0 − s)|0s0

=
2

C

√
s0 = 2

√

z0
gthat depends on z0.Atually yloids are the only urves possessing the tautohronous prop-erty (see L.Landau and E.Lifhitz, Méanique, Editions en langues étrangères,Mosou, p.87).

�Problem 17: Cyloid on a irumferene =: epiyloid.A 'byile' wheel of radius r turns without sliding on the exterior of a ir-umferene of radius R. The path traversed by a point P on the wheel is aurve named epiyloid.a) Parametritze the epiyloid.b) Show that if R
r

= n ∈ N the wheel returns to its starting position.Compute the length of the path followed by the point P until thathappens.) What if R
r
∈ Q \ N?d) Same question when R

r
∈ R \ Q.



1.2. CYCLOIDS 43Solution:

O

R

r
Q

P

P’Q’ S

ϕ

θM

N

a) The ars of irumferene MN and MP have the same length beausethere is no sliding, so
Rϕ = rθTo ompute P we need the angle

Q̂′QP = ϕ+ θ − π

2The oordinates of P in terms of ϕ are:
x = (R + r) cosϕ+ r sin(ϕ+ θ − π

2
) =

= (R + r) cosϕ− r cos(ϕ+ θ) =

= (R + r) cosϕ− r cos(1 +
R

r
)ϕ

y = (R + r) sinϕ− r(1 +
R

r
) sinϕand we have the parametrization of the epiyloid

γ(ϕ) = ((R+r) cosϕ−r cos(1+
R

r
)ϕ, (R+r) sinϕ−r sin(1+

R

r
)ϕ), ϕ ∈ R



44 CHAPTER 1. CURVESb) For ϕ = 2π we have θ = R
r
ϕ = n2π: the turning wheel returns to thestarting position in n omplete turns. A way to visualize this result isto streth both irumferenes as segments, one for the turning wheeland another for the supporting irumferene. The result amounts tosay that if R

r
= n ∈ N then the length of the wheel divides the lengthof the irumferene, an obvious thing. Following this point of view itis easy to examine what happens when r

R
= n ∈ N and translate that,if so needed, to the world of the irumferenes.Now we ompute the length of one of the n ars of the epiyloid; writethe parametrization in the form

γ(ϕ) = ((R+ r) cosϕ− r cos(1 + n)ϕ, (R+ r) sinϕ− r sin(1 + n)ϕ)The tangent vetor is
x′(ϕ) = −(R+ r) sinϕ+ r(1 + n) sin(1 + n)ϕ =

= −(R+ r) sinϕ+ (r +R) sin(1 + n)ϕ =

= (R+ r)(sin(1 + n)ϕ− sinϕ)

y′(ϕ) = (R+ r) cosϕ− r(1 + n) cos(1 + n)ϕ =

= (R+ r) cosϕ− (r +R) cos(1 + n)ϕ =

= (R+ r)(cosϕ− cos(1 + n)ϕ)and its length is
|(x′, y′) | = (R+ r)

√

2 − 2(sinϕ sin(1 + n)ϕ+ cosϕ cos(1 + n)ϕ) =

=
√

2(R+ r)
√

1 − cosnϕ =
√

2(R+ r)

√

2 sin2 n

2
ϕ

= 2(R+ r)| sin n
2
ϕ|The length of one ar is then

l = 2(R+ r)

∫ 2π/n

0

| sin n
2
ϕ|dϕ =

= 2(R+ r)

∫ 2π/n

0

sin
n

2
ϕdϕ =

= 2(R+ r)
2

n
(− cos

n

2
ϕ) |2π/n

0 =

= 4
R+ r

n
(− cosπ + 1) = 8

(R+ r)

n



1.2. CYCLOIDS 45The whole length up to the return event is
L = 8(r +R)) In ase R

r
∈ Q \ N let R

r
= p

q
(irreduible), and assume to �x the senethat p > q. From the 'segment' point of viewwe may assume (using an adequate unit) that the wheel's segmentmeasures q while the irumferene's segment measures p. The �rstreturn point takes plae for the smaller integers m,n suh that
nq = mpand, being p

q
irreduible, n = p,m = q is the obvious solution. Thewheel has made p omplete turns and has ompleted q windings aroundthe irumferene.From the angle point of view we an say that there is a ontat of Pwith the supporting irumferene whenever

θ = 0, 2π, 2 · 2π, 3 · 2π, . . . , m · 2π, . . .
ϕ = 0, 2π q

p
, 2 · 2π q

p
, 3 · 2π q

p
, . . . , m · 2π q

p
, . . .The epiyloid loses when two ontats have the same ϕ (mod 2π)whih happens for the �rst time when m = p. We have ϕ = 2πq, thatreveals the q times that the wheel winds around the irumferene, andthen θ = p · 2π showing the p omplete turns that the wheel has made.The reader an �ll in what happens when p < q.d) If R

r
∈ R/Q the ontat points of P with the basis irumferene forma dense set. This means that there are ontat points in every interval,however small, on the irumferene. Notie �rst that they are alldi�erent; if we had two oiniding ontat points then

m · 2π r
R

≡ n · 2π r
R

(mod 2π) ⇔ ∃N ∈ N : (m− n) · 2π r
R

= N2π ⇔

⇔ (m− n) · r
R

= Nbut this is impossible sine r/R is irrational.Now, �x a positive integer k and divide the irumferene in k equalangular setors of amplitude 2π/k. Among the k+1 �rst ontats there



46 CHAPTER 1. CURVESwill be two in the same setor (this is known as Dirihlet's priniple:if we put k + 1 balls in k boxes, there will be two or more balls atleast in one box). Let those ontats orrespond to ϕ = n · 2π r
R
and

ϕ′ = m ·2π r
R
; then α = (m−n)2π r

R
is a ontat in the �rst setor andthe ontats

α, 2α, . . . , nα, . . .di�er less than 2π/k.Finally given ǫ > 0, hoose k suh that 2π/k < ǫ; then in any intervalof angular amplitude less than ǫ there is a ontat whih was to beproved.
�Problem 18: Cyloid under irumferene:=hypoyloid.A wheel of radius r turns without sliding on the interior of a irumfereneof radius R. The path followed by a point P on the wheel is a urve namedhypoyloid.a) Parametrize the hypoyloid.b) Show that if R

r
= n ∈ N the wheel returns to its starting position.Compute the length of the path followed by the point P until thathappens.) What if R

r
∈ Q \ N?d) Same question when R

r
∈ R \ Q



1.2. CYCLOIDS 47Solution:

P

θ

π/2−ϕ

ϕ

.

N

M

Q

O Q’a) The ars of irumferene MN and MP have the same length beausethere is no sliding, so
Rϕ = rθTo ompute P we need the angle

Q̂′QP = π − θ − (π/2 − ϕ) =
π

2
+ ϕ− θThen

x = (R− r) cosϕ+ r sin(
π

2
+ ϕ− θ) =

= (R− r) cosϕ+ r cos(ϕ− θ) =

= (R− r) cosϕ+ r cosϕ(1 − R

r
)

y = (R− r) sinϕ+ r sinϕ(1 − R

r
)gives a parametrization of the hypoyloid.



48 CHAPTER 1. CURVESb) To ompute the asked for length we have
x′(ϕ) = −(R − r) sinϕ− (r − R) sinϕ(1 − R

r
)

y′(ϕ) = (R− r) cosϕ+ (r − R) cosϕ(1 +
R

r
)

|(x′, y′) |2= (R−r)2+(r−R)2+2(R−r)(r−R)(cosϕ cosϕ(1−R
r

)+sinϕ sinϕ(1−R
r

)) =

= 2(R− r)2(1 − cos(
R

r
ϕ))

|(x′, y′) |=
√

2(R− r)

√

1 − cos(
R

r
ϕ) = 2(R− r)| sin(

R

2r
ϕ)|The length of one turn of the wheel is

l = 2(R− r)

∫ 2πr/R

0

| sin(
R

2r
ϕ)|dϕ = −2(R − r)2

r

R
cos(

R

2r
ϕ)|2πr/R

0 =

= −4(R− r)
r

R
(cosπ − 1) = 8

r

R
(R− r)The whole length up to the return event is

L = n8
r

R
(R− r) = 8(R− r)) Let R

r
= p

q
(irreduible). Assume p > q and by the same reasoningof the preeding problem we see that the hypoyloid loses when thewheel has made p omplete turns.d) Exatly as in the preeding problem we may see that the ontats aredense in the irumferene.

�Before leaving the yloids we should mention the brahystohrone prop-erty: being given two points P,Q in a vertial plane what is the urve on-neting P and Q along whih the time of fall of a mass under gravity's ationis minimum? A straight line segment? An ar of a parabola? As the readerprobably suspets it is an ar of a yloid. Around 1620 Johan Bernouilli



1.2. CYCLOIDS 49working on a hallenge of Newton proved that fat using a heuristi argumentrooted in the refration laws (!) (see [Pol℄ p.177).Cyloids & o are a partiular ase of a bigger family of urves namedtrooids. The reader wanting to experiment vividly with those urves maydo so in http://temasmatematios.uniandes.edu.oa nie work by Aquiles Páramo.
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Chapter 2Vetor �elds
2.1 Fields
T

• A wheat �eld has a wheat spike at eah point (um grano salis).
• A salar �eld in an open set U ⊂ Rn has a salar at eah point x ∈ U ;so it is simply a funtion that takes numerial values, a real funtion:

f : U → R

x 7→ f(x)

• A vetor �eld in an open set U ⊂ Rn has a vetor at eah point x ∈ U ;it is a funtion that takes vetor values:
F : U → Rn

x 7→ F(x)A �eld (salar or vetor) is of lass Ck or C∞ if the funtion de�ningthe �eld is.Geometrially a vetor �eld assigns to eah point x ∈ U a vetor F(x) thatwe shall draw emanating from x: 51



52 CHAPTER 2. VECTOR FIELDS
F(x)

U

x

Problem 19: Radial �elds and entral �elds.a) Find the general form of a radial �eld (:= that has at eah point thediretion of the position vetor) de�ned in Rn − {0}.b) Find the general form of a entral �eld (:= that has at eah point thediretion of the position vetor and has onstant module on eah sphereentered at 0; brie�y: it is radial and spherially simmetri) de�ned in
Rn − {0}.Solution:We shall often use the familiar 'physis' notation r = (x, y, z), r = |r| =

√

x2 + y2 + z2. In Rn it is r = (x1, . . . , xn),r = |r| =
√

(x1)2 + · · · + (xn)2.Then:a) F(r) = f(r)r, f : Rn \ {0} → R being an arbitrary funtion.b) F(r) = φ(r)r, φ : R+ \ {0} → R being an arbitrary funtion.
�Fore �elds versus veloity �elds

T We an look at a vetor �eld F(x) in an open set U ⊂ Rn from two pointsof view:a) As a fore �eld (gravitational, eletri, magneti or other), the vetor
F(x) represents the fore exerted on a unit partile (unit mass, harge



2.1. FIELDS 53or pole intensity, et.) at the point x. We often integrate fore �eldsalong urves.b) As a veloity �eld, the vetor F(x) represents the veloity of the par-tiles of a �uid when they pass through x. We often integrate veloity�elds on surfaes.
�Problem 20: Work and �ux.a) Let F be a onstant fore �eld; ompute the work done by the �eld inmoving a unit partile along a segment [p,q].b) Let v be a onstant veloity �eld; ompute the volume of �uid thatrosses a retangular surfae R per unit time.Solution:a) The fore exerted on the unit partile is F and the work done by the�eld is due to the omponent of the �eld in the diretion of the segment.Then

W = (F ·
−→pq

|−→pq|)|
−→
pq| = F · −→pqb) We must previously hoose a sense of rossing the surfae. Then weshall ount the volume that has rossed the surfae as positive if itdoes in the sense hoosen and as negative if the volume rosses in theopposite sense. To assign a sense we hoose a unit vetor n perpendi-ular to the surfae. In the following �gure we show the two possibleorientations of R.

R

v

R

v
n

n



54 CHAPTER 2. VECTOR FIELDSAssume �rst that v is perpendiular to R and that it has the samesense as n as shown in the �rst �gure. The partiles oupying nowpositions on R will be a unit of time later at positions on the upperfae of the parallalepiped shown. The volume that has rossed R in aunit of time is:
φ = Area (R)|v| = Area (R)n · vIf n and v have opposite senses the formula will take that into aountand we shall obtain a negative value.If v is not perpendiular to R but has the same sense as n, we have toompute the volume of the following �gure:
vv

v

R

vn ..

wih is
φ = Area (R) · height= Area (R)n · vand, as in the preeding ase, the formula takes into aount when vand n have opposite senses, giving a negative value.

�Observation:The formula in a) is the foundation of the integration of a �eld along a urve.The formula in b) is the foundation of the integration of a �eld on a surfae.2.2 Newtonian �elds
T Newtonian �elds are an important example of fore �elds. A newtonian�eld is a entral �eld of the form F(r) = 1

r3r; well known examples are thegravitational �eld of a point mass, the eletrostati �eld of a point harge andthe �elds from a magneti pole. A basi referene for those �elds is [Kell℄.



2.2. NEWTONIAN FIELDS 55
�2.2.1 Newton's law for a partile

T A mass point M at the point q exerts on a mass point m at the point pat a distane r a gravitational attration of strength
F = G

Mm

r2
,direted along the line through p and q and oriented from p to q. Of oursethe priniple of ation and reation tells us that the partile at p exerts anequal strength attration on the partile at q. If we want to mentally isolatethe attration of q on p we all q the attrating partile and p the attratedpartile (and so we avoid the wandering between two fores).Then the attrating partile of mass M at q = (u, v, w) exerts on theattrated partile of mass m at p = (x, y, z) a fore

F = −GMm

r2

r

r
,where

r = (x− u, y − v, z − c), r = |r| =
√

(x− u)2 + (y − v)2 + (z − c)2

q(u,v,w)

p

F

p

M q

.

(x,y,z) m

We shall write the preeding formula as
F = −GMm

r

r3Note that the origin of r is at the soure of the �eld (the attrating mass)and its end point lies where we want to ompute the exerted fore. We shalluse this onvention and we even give it a name: from the soure to the point.



56 CHAPTER 2. VECTOR FIELDSDe�nition: The gravitational �eld at the point p = (x, y, z) reated by apoint mass M at the point q = (u, v, w) is the fore exerted on a unit massat p:
g(x, y, z) = −GM r

r3

p

M q

.

m=1

g

If instead of a unit mass at p we have there a mass m, the gravitationalattration is F = mg.The onstant G is the gravitational onstant and is extremely small; that,among other things, makes its preise determination di�ult. The value of
G in the .g.s system of units is G = 6.664 × 10−8. It is probably theworse known physial onstant; reent results show disrepanies in the �fthdeimal plae.Let us de�ne the attration unit as the gravitational fore exerted by amass point of 1g on an idential partile at 1m; then G = 1 and we get ridof the onstant. The equivalene is1 attration unit =6.664 × 10−8dinIn the new unit we have

F = −Mm
r

r3

g = −M r

r3The gravitational �eld satis�es the superposition priniple: the �eld re-ated at p by masses M1, . . . ,Mk at the points q1, . . . ,qk is the addition of



2.2. NEWTONIAN FIELDS 57the �elds generated at p by eah partile:
g(x, y, z) =

k
∑

i=1

gi(x, y, z) =

k
∑

i=1

−Mi
ri

r3
i

M1
M

2

M
k

g
1

g
2

g
k

pm=1

g

.

This �eld is de�ned in the open set U = R3 − {q1, . . . ,qk}.
�2.2.2 Newton's law for extended bodies

T Take two bodies, divide them in small elements (as is done in integralalulus) and assume the mass of eah element onentrated at a point inthe element. In that way we obtain two systems of partiles.Then the attration of one body on the other is the limit of the attrationthat its system of partiles exerts on the system of partiles of the other body,when the diameter of the elements tend to zero.Remark that this law is not derivable from Newton's law for partiles forthe reason that, minute as an be the elements of the deomposition, theynever beome point masses.Linear densityConsider a urve C and the same urve expanded to a tube of mass M .Considering the mass onentrated at C we obtain the onept of a materialwire, all it l.
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Cp

M

L

To alulate the density of the material wire at a point p ∈ C, takesegments of the urve ontaining p; the average linear density of eah segmentis λ = m
L
, m being the mass of the segment and L its length. The lineardensity at p is

λ(p) = lim
l→0

m

L

�Problem 21: Gravitational �eld of a segment.Consider a homogeneous mass segment (:=the mass of any piee is propor-tional to the length of the piee; the proportionallity onstant λ is the lineardensity). Compute the gravitational �eld due to the mass at a point of thestraight line ontaining the segment, but exterior to it.Solution:Take the segment on the positive Ox axis with its left end at the origin ofoordinates. Let's follow the instrutions given in Newton's law for extendedbodies:
• Assume �rst that L < x. Divide the segment in elements [uk, uk+1]of length ∆uk = uk+1 − uk and assume their masses ∆mk = λ∆ukonentrated at a point u′k of eah element:

uk uk+1

ku’

0 L
.p(x,0,0)

• For every suh mass point ompute the gravitational �eld generated atthe point p = (x, 0, 0), x > L exterior to the segment and add thoseontributions:
∆g =

∑

k

−∆mk
(x− u′k, 0, 0)

(x− u′k)
3

=
∑

k

−λ∆uk
(1, 0, 0)

(x− u′k)
2
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• We let the diameter of the elements tend to zero:

g(x, 0, 0) = lim
∆uk→0

∑

k

−λ (1, 0, 0)

(x− u′k)
2
∆uk =

∫ L

0

−λ (1, 0, 0)

(x− u)2
du =

= −λ(u, 0, 0)

(x− u)
|u=L
u=0 = (− λL

x(x− L)
, 0, 0) = (− M

x(x− L)
, 0, 0)

• Similarly we obtain the �eld at p = (x, 0, 0), x < 0 adding the ontri-butions of the elements
∆g =

∑

k

−∆mk
(x− u′k, 0, 0)

(−(x− u′k))
3

=
∑

k

λ∆uk
(1, 0, 0)

(x− u′k)
2and following the preeding line we arrive at

g(x, 0, 0) = (
M

x(x− L)
, 0, 0)Both results are summarized in the formula

g(x, 0, 0) = (− M

| x | (x− L)
, 0, 0), x < 0 or L < x

�Problem 22: Gravitational �eld of a mass distribution.Consider a ontinuous mass distribution in a region R ⊂ R3; that is tosay that we are given the density of the distribution χ(x, y, z), a ontinuousfuntion. Compute the gravitational �eld generated by the distribution atan exterior point p = (x, y, z).Solution:We use Newton's law for extended bodies:
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p (x,y,z)

r(u’,v’,w’) (u’,v’,w’)

. 

R

• Divide R in elements ∆V ; being χ ontinuous, the mean value the-orem for integrals applies, so that the mass of an element will be
χ(u′k, v

′
k, w

′
k)∆V for a ertain point (u′k, v

′
k, w

′
k) in the element. Con-sider the mass of the element onentrated at that point.

• For every suh mass point ompute the gravitational �eld generated atthe point p = (x, y, z) and add those ontributions:
∆g = −

∑

k

χ(u′k, v
′
k, w

′
k)∆V

r(u′k, v
′
k, w

′
k)

|r(u′k, v′k, w′
k)|3where r(u′k, v

′
k, w

′
k) = (x − u′k, y − v′k, z − w′

k). The ∆ in front of greminds that we are still in the elements level.
• We let the diameter of the elements tend to zero:

g(x, y, z) = −
∫ ∫ ∫

R

χ(u, v, w)
r(u, v, w)

|r(u, v, w)|3dudvdwor in omponents:
g(x, y, z) = −

∫ ∫ ∫

R

χ(u, v, w)
(x− u, y − v, z − w)

(
√

(x− u)2 + (y − v)2 + (z − w)2)3
dudvdwNow the ∆ has disappeared sine we are now in the 'real', ontinuousworld.
�



2.2. NEWTONIAN FIELDS 612.2.3 Eletrostati �eldProblem 23: Eletrostati �eld.By analogy with the gravitational �eld, write formulae for:a) The eletrostati �eld of a point harge.b) The eletrostati �eld of a system of point harges.) The eletrostati �eld of a harge distribution.Solution:Coulomb's law gives the atration/repulsion that a harge q at q exerts on aharge q′ at p

F = ǫqq′
r

r3Now q, q′ an be negative and we don't need the minus sign that is required inNewton's gravitational law. To onvine oneself of that it su�es to examinenext �gure
q

p
r

+

−

−

+

F

F

F

F

−

+
+

−

.

q

p

q

p

q

p

q

p

Choosing adequate units, as we shall assume, we have ǫ = 1. The eletro-stati �eld produed at point p by a harge q at point q is the fore exertedby this harge on the unit positive harge at point p.



62 CHAPTER 2. VECTOR FIELDSa) Coulomb's law gives
E(x, y, z) = q

r

r3

.

p

+

p E(p)
E(p)

q q
−The fore exerted on a harge q′ at p is F = q′E.b) If the harges q1, . . . , qk are at the points q1, . . . ,qk, the priniple ofsuperposition gives:
E(p) =

∑

i

qi
rk

rk
3) For a ontinuous distribution with density funtion χ, using a Coulomb'slaw for extended harges, the eletri �eld is written thus:

E(x, y, z) =

∫ ∫ ∫

R

χ(u, v, w)
(x− u, y − v, z − w)

(
√

(x− u)2 + (y − v)2 + (z − w)2)3
dudvdwor in vetor form

E(p) =

∫ ∫ ∫

R

χ(u, v, w)
r(u, v, w)

|r(u, v, w)|3dudvdw =

∫ ∫ ∫

R

χ
r

r3

�2.3 Veloity �elds2.3.1 Fluid
T The movement of a �uid is a 'material' model of some usual more abstratonepts suh as: �ux of a vetor �eld through an oriented surfae, unipara-metri groups, assoiated �elds, solution of a system of di�erential equationset. Moreover the model gives an intuitive view of a ertain derivative of a�eld.



2.3. VELOCITY FIELDS 63Assume a partile P of the �uid oupies the position (x0, y0, z0) at theinstant t0 (whih we all initial instant). The positions suessively oupiedby P as time goes by form the trajetory of P , a urve that passes through
(x0, y0, z0) at the instant t0:







x(t) = x(x0, y0, z0, t)
y(t) = y(x0, y0, z0, t)
z(t) = z(x0, y0, z0, t)De�ning:

φ(x0, y0, z0, t) = (x(x0, y0, z0, t), y(x0, y0, z0, t), z(x0, y0, z0, t)),we synthetise all the trajetories in a unique funtion that we shall want tobe di�erentiable, the �ow :
φ : R3 × R → R3

(x0, y0, z0, t) 7→ φ(x0, y0, z0, t)

• The �ow gives the trajetory of a point P :
γP : R → R3

t 7→ γP (t) = φ(P, t)Notie that γP (t0) = P .
• The �ow generates a transformation during the time t (starting at t =
t0):

φt : R3 → R3

Q 7→ φt(Q) = φ(Q, t)Notie that φt0(Q) = Q or φt0 = Id R3.Besides being di�erentiable we want φ to be suh that if we ompose a trans-formation during the time t with a transformation during the time t′ weobtain a transformation during the time t+ t′ :

(φt′ ◦ φt)(Q) = φt+t′(Q)If φ has this property it also satis�es the ommutative property φt′ ◦ φt =
φt ◦ φt′.

�



64 CHAPTER 2. VECTOR FIELDSProblem 24: Trajetories and transformations.a) Show that the funtion φ(x0, y0, z0, t) = (x0e
t, y0e

−t, z0), t0 = 0 is a�ow.b) Show that the trajetories are plane urves (and the movement of the�uid is then alled planar).) Find the position at the instant t = 0.1 of the partile that was at
(2, 3, 1) at the instant t = 0.d) What was the position at t = 0 of a partile that is at (1, 2, 3) when
t = 5?e) Find the transformation during the time t = 4.Solution:a) The funtion φ satis�esi) φ(x0, y0, z0, 0) = (x0, y0, z0).ii) φ is di�erentiable.iii) The law of omposition:

φt′(φt(x0, y0, z0)) = φt′(x0e
t, y0e

−t, z0) =

= (x0e
tet′ , y0e

−te−t′ , z0) = φt+t′(x0, y0, z0)b) The z-omponent of φ is onstant; the movement takes plae in theplane z = z0.) φ(2, 3, 1, 0.1) = (2e0.1, 3e−0.1, 1).d) Just solve the system






1 = x0e
5

2 = y0e
−5

3 = z0that is
x0 = e−5, y0 = 2e5, z0 = 3e) φ4(x, y, z) = φ(x, y, z, 4) = (xe4, ye−4, z)

�



2.3. VELOCITY FIELDS 652.3.2 Veloity �eld of a �uid
T The veloity at the instant t of the partile that for t = t0 was at
(x0, y0, z0) is

dφ

dt
= (

dx

dt
(x0, y0, z0, t),

dy

dt
(x0, y0, z0, t),

dz

dt
(x0, y0, z0, t))Let's denote by

v(x, y, z, t) = (X(x, y, z, t), Y (x, y, z, t), Z(x, y, z, t))the veloity of the partile that is at (x, y, z) at the instant t, a vetor �eldalled the veloity �eld of the �ow.
�Problem 25: Veloity �eld.Compute the veloity �eld of the �ow

φ(x0, y0, z0, t) = (x0e
t, y0e

−t, z0), t0 = 0.Solution:The veloity at the instant t of the partile that for t = t0 was at (x0, y0, z0)is
dφ

dt
= (x0e

t,−y0e
−t, 0)Now we �nd the position for t = 0 of the partile that is at (x, y, z) at theinstant t. To this end solve the system (x0e
t, y0e

−t, z0) = (x, y, z) to obtain
x0 = xe−t, y0 = yet, z0 = z. Then

v(x, y, z) = (xe−tet,−yete−t, 0) = (x,−y, 0)This veloity �eld is independent of t and the �eld is alled stationary.
�Problem 26: Nonstationary veloity �eld.Compute the veloity �eld of the �ow

φ(x0, y0, z0, t) = (x0 + t, y0 + t2, z0), t0 = 0.



66 CHAPTER 2. VECTOR FIELDSSolution:We proeed as in the preeding problem
dφ

dt
= (1, 2t, 0),that does not depend on (x0, y0, z0) and the veloity �eld is

v(x, y, z) = (1, 2t, 0),an example of a nonstationary �eld.
�Problem 27:Compute the veloity �eld of the �uidsa) φ(x0, y0, z0, t) = (x0+y0

2
et + x0−y0

2
e−t, x0+y0

2
et − x0−y0

2
e−t, z0), t0 = 0.b) φ(x0, y0, z0, t) = (x0 + sin t, y0 + 1 − cos t, z0), t0 = 0.Solution:a) First

dφ

dt
= (

x0 + y0

2
et − x0 − y0

2
e−t,

x0 + y0

2
et +

x0 − y0

2
e−t, 0),and now we ompute the position at t = 0 solving the system:







x = x0+y0

2
et + x0−y0

2
e−t

y = x0+y0

2
et − x0−y0

2
e−t

z = z0

;adding and subtrating the �rst two equations:
{

x0 + y0 = (x+ y)e−t

x0 − y0 = (x− y)etand the veloity �eld is:
v(x, y, z, t) = (

x+ y

2
e−tet − x− y

2
ete−t,

x+ y

2
e−tet +

x− y

2
ete−t, 0) =

= (y, x, 0)



2.3. VELOCITY FIELDS 67b) Now we have
dφ

dt
= (cos t, sin t, 0)that is independent of the initial position. Then:

v(x, y, z, t) = (cos t, sin t, 0),a nonstationary �eld.
�Observation:The data of a �rst order system of ordinary di�erential equations is a vetor�eld; the solution is a �ow (at least under suitable onditions) that has thegiven �eld as its veloity �eld. For instane:Problem 28: Flow generated by a �eld.In the system dx

dt
= x the given �eld is v(x) = x. Solve this system in R2 andobtain a �ow that has v as its veloity �eld.Solution:In omponents the system is:

{

dx
dt

= x
dy
dt

= ythat is easily solved beause the equations are unoupled. The solutions ofthe �rst equation are x(t) = x0e
t and those of the seond are y(t) = y0e

t.Eah urve γ(t) = (x0e
t, y0e

t) is a solution of the system. The �ow is then
φ(x0, y0, t) = (x0e

t, y0e
t), t0 = 0

�Problem 29:In the system dx
dt

= (−y, x) the given �eld is v(x) = (−y, x). Solve thissystem in R2 and obtain a �uid that has v as its veloity �eld.



68 CHAPTER 2. VECTOR FIELDSSolution:In omponents the system is:
{

dx
dt

= −y
dy
dt

= xNow, in ontrast with the preeding problem, the equations are oupled. Tak-ing into aount that x(t), y(t) must be di�erentiable funtions satisfying thesystem, we see that dx
dt
, dy

dt
are di�erentiable funtions as well. Di�erentiatingthe �rst equation we obtain

d2x

dt2
= −x,the harmoni osillator equation; we know that the solution is

x(t) = A cos t+B sin tand we obtain −y(t) di�erentiating x(t):
y(t) = A sin t− B cos tLet (x0, y0) be the position at t = 0; then A = x0, B = −y0 and the solutionis

x(t) = (x0 cos t− y0 sin t, x0 sin t+ y0 cos t)The �ow generating the �eld is
φ(x0, y0, t) = (x0 cos t− y0 sin t, x0 sin t+ y0 cos t), t0 = 0

�2.4 Field derivatives
T There are several di�erentiation operators ating on �elds. The operator
∇ (nabla)

∇ = (
∂

∂x
,
∂

∂y
,
∂

∂y
)is useful when writing the derivatives of �elds. Let U ⊂ R3 be an open set;de�ne:
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• If f : U → R is a di�erentiable salar �eld

∇f = (
∂f

∂x
,
∂f

∂y
,
∂f

∂y
) the gradient of f , a vetor �eld.

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
the laplaian of f , a salar �eld.

• If F : U → R3,F = (X, Y, Z) is a di�erentiable vetor �eldrot F = ∇× F =

∣

∣

∣

∣

∣

∣

i j k

∂x ∂y ∂z

X Y Z

∣

∣

∣

∣

∣

∣

the rotational of F, a vetor �eld.div F = ∇ · F = ∂xX + ∂yY + ∂zZ the divergene of F, a salar �eld.For �elds in R2 there are gradient, laplaian and divergene operators, butthe rotational is not de�ned.
�Problem 30: Gradient.Remind the notation r = (x, y, z), r = |r|; ompute the gradient of thefollowing salar �elds:a) f(x, y, z) = rb) f(x, y, z) = log r (logarithmi potential)) f(x, y, z) = 1

r
(newtonian potential)d) f(x, y, z) = 1

rn , n = 2, 3, . . .e) f(x1, . . . , xn) = 1
rn−2 (generalized newtonian potential in Rn)



70 CHAPTER 2. VECTOR FIELDSSolution:It is useful to have in mind the derivatives
∂xr =

2x

2
√

x2 + y2 + z2
=
x

r
, ∂yr =

y

r
, ∂zr =

z

r
.a)

∇r =
1

r
(x, y, z) =

r

r
=: er, a entral �eld.b)

∇ log r =
1

r2
(x, y, z) =

r

r2
=

1

r

r

r
=

1

r
er, a entral �eld.)

∇(
1

r
) = − 1

r3
(x, y, z) = − r

r3
= − 1

r2
er,preisely the gravitational �eld at point r of a unit mass at the origin.d)

∇(
1

rn
) = −n 1

rn+2
(x, y, z) = −n 1

rn+1
er, a entral �eld.e)

∇(
1

rn−2
) = (2 − n)

1

rn
(x1, . . . , xn) =

2 − n

rn−1
erNotie that from a) we may dedue that ∇φ(r) = φ′(r)er.

�Problem 31: Rotational and divergene.Compute the rotational and the divergene of the following �elds:a) F(x, y, z) = (x, y, 0)b) F(x, y, z) = (−y, x, 0)) F(x, y, z) = (x, y, z)d) F(x, y, z) = (y, z, x)e) F(x, y, z) = (z, x, y)f) v(x, y, z) = (a, b, c) × (x, y, z) = w × r
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∇× F =

∣

∣

∣

∣

∣

∣

i j k

∂x ∂y ∂z

x y 0

∣

∣

∣

∣

∣

∣

= (0, 0, 0)

∇ · F = ∂xx+ ∂yy + ∂z0 = 2b)
∇× F =

∣

∣

∣

∣

∣

∣

i j k

∂x ∂y ∂z

−y x 0

∣

∣

∣

∣

∣

∣

= (0, 0, 2)

∇ · F = ∂x(−y) + ∂yx+ ∂z0 = 0)
∇× F =

∣

∣

∣

∣

∣

∣

i j k

∂x ∂y ∂z

x y z

∣

∣

∣

∣

∣

∣

= (0, 0, 0)

∇ · F = 3d)
∇× F =

∣

∣

∣

∣

∣

∣

i j k

∂x ∂y ∂z

y z x

∣

∣

∣

∣

∣

∣

= (−1,−1,−1)

∇ · F = 0e)
∇× F =

∣

∣

∣

∣

∣

∣

i j k

∂x ∂y ∂z

z x y

∣

∣

∣

∣

∣

∣

= (1, 1, 1)

∇ · F = 0f)
v = (bz − cy, cx− az, ay − bx)

∇× v =

∣

∣

∣

∣

∣

∣

i j k

∂x ∂y ∂z

bz − cy cx− az ay − bx

∣

∣

∣

∣

∣

∣

= 2(a, b, c)

∇ · v = 0

�



72 CHAPTER 2. VECTOR FIELDSProblem 32: Leibniz's rule (uv)′ = u′v + uv′.Let f, g be numerial funions de�ned in R3 and let F,G be vetor �elds in
R3; observe the following shema

∇f → ∇(fg), ∇(F · G)
∇ · F → ∇ · (fF), ∇ · (F× G)
∇× F → ∇× (fF), ∇× (F × G)and then show:a) ∇(fg) = (∇f)g + f(∇g)b) ∇ · (fF) = ∇f · F + f∇ · F) ∇× (fF) = (∇f) × F + f(∇× F)d) ∇ · (F× G) = (∇× F) · G − F · (∇× G)e) ∇× (F × G) = (∇ · G)F− (∇ · F)G + (G · ∇)F − (F · ∇)Gf) ∇(F · G) = (F · ∇)G + (G · ∇)F + F × (∇×G) + G × (∇× F)Solution:Let F = (X, Y, Z) and G = (P,Q,R).a)

∇(fg) = (∂x(fg), ∂y(fg), ∂z(fg)) =

= (g∂xf + f∂xg, g∂yf + f∂yg, g∂yf + f∂yg) = g∇f + f∇gWe may say that Leibniz's rule is satis�ed.b)
∇ · (fF) = ∂x(fX) + ∂y(fY ) + ∂z(fZ) =

= X∂xf + Y ∂yf + Z∂zf + f(∂xX + ∂yY + ∂zZ) =

= ∇f · F + f∇ · Fand we have Leibniz's rule satis�ed again. Notie that one we knowthat this is so, then the formula is easy to remember.



2.4. FIELD DERIVATIVES 73) Both terms of the formula are additive in F. Then, as we an write any�eld in the form F = Xi+Y j+Zk, it su�es to prove the equality forthe �elds Xi, Y j, Zk; for instane if F = Xi we have
∇× (fXi) = det





i j k

∂x ∂y ∂z

fX 0 0



 = (0, ∂z(fX),−∂y(fX))Observe that in those simple ases we an alulate thus:
∇× (fXi) = (∂xi + ∂yj + ∂zk) × (fXi) = −∂y(fX)k + ∂z(fX)jWe do so in the next derivation; the seond term is:

(∇f) × (Xi) + f(∇× (Xi)) =
= (∂xf i + ∂yf j + ∂zfk) × (Xi) + f((∂xi + ∂yj + ∂zk) × (Xi)) =
= −X(∂yf)k +X(∂zf)j − f(∂yX)k + f(∂zX)j =
= ∂z(fX)j− ∂y(fX)kWe proeed in the same way with Y j, Zk and so we have proved theformula. Again Leibniz's rule is satis�ed.d) As in ) both terms in the formula are additive in F and G. Now wemust onsider all possible ouples of �elds hoosen among Xi, Y j, Zkand P i, Qj, Rk.If there is a repeated basi vetor, suh as Xi and P i, the left handterm vanishes and for the right hand term we have as well

(∇× F) · G = (∇×Xi) · P i = ((∂zX)j− (∂yX)k) · P i = 0Choose now a ouple suh as Xi and Qj; the left hand term is:
∇ · (F× G) = ∇ · (Xi ×Qj) = ∇ · (XQk) = ∂z(XQ)and the right hand term is:

(∇×Xi) ·Qj −Xi · (∇×Qj) = ((∂zX)j− (∂yX)k) ·Qj−
−((∂zQ)i − (∂xQ)k) ·Xi =

= Q∂zX +X∂zQ = ∂z(XQ)and we have Leibniz's rule for those two �elds. Obviously the same istrue for all other ouples and Leibniz rule works for any two �elds. Inapplying it we have to be arefull; if we start the di�erentiation with
(∇ ·F)×G, we see that it has no sense (beause ∇ ·F is a salar) andagain the the formula is then 'evident'.



74 CHAPTER 2. VECTOR FIELDSe) One more both terms are additive in F and in G and we an proeedas in d). If there is a repeated basi vetor, suh as Xi and P i we have:
∇× (Xi × P i) = 0and the right term is

(∇ · P i)Xi − (∇ ·Xi)P i + (P i · ∇)Xi − (Xi · ∇)P i =

= (X∂xP )i − (P∂xX)i + (P∂xX)i − (X∂xP )i = 0For a ouple suh as Xi and Qj we have:
∇× (Xi ×Qj) = ∇× (XQk) = ∂y(XQ)i − ∂(XQ)jand

(∇ ·Qj)Xi − (∇ ·Xi)Qj + (Qj · ∇)Xi − (Xi · ∇)Qj =

= X(∂yQ)i −Q(∂xX)j +Q(∂yX)i −X(∂xQ)j =

= ∂y(XQ)i − ∂x(XQ)jWe proeed in the same way with the other ouples and so we haveproved the formula. In this ase Leibniz's rule is not satis�ed.f) Following the same line of the preeding ase, for F = Xi and G = P iwe have:
∇(Xi · P i) = ∇(XP ) = ∂x(XP )i + ∂y(XP )j + ∂z(XP )kand the right hand term is:

(Xi · ∇)P i + (P i · ∇)Xi +Xi × (∇× P i) + P i × (∇×Xi) =

= (X∂xP )i+(P∂xX)i+Xi×(∂zP )j−(∂yP )k+P i×(∂zX)j−(∂yX)k =

= (X∂xP )i + (P∂xX)i + (X∂yP )j + (X∂zP )k + (∂yX)j + (P∂zX)k =

= ∂x(XP )i + ∂y(XP )j + ∂z(XP )kFor ouples suh as F = Xi i G = P j we have:
∇(Xi · P j) = ∇(0) = 0



2.4. FIELD DERIVATIVES 75and the right hand term is:
(Xi · ∇)P j + (P j · ∇)Xi +Xi × (∇× P j) + P j× (∇×Xi) =

= (X∂xP )j+(P∂yX)i+Xi× (∂xPk−∂zP i)+P j× (−∂yXk+∂zXj) =

= (X∂xP )j + (P∂yX)i − (X∂xP )j− (P∂yX)i = 0So Leibniz's rule is not true in this ase.Observation:The language of di�erential forms allows shorter and learer proofs of manyof the preeding fats. You may want to look at Algebrai and di�erentialforms by the same author.
�Problem 33: Rotational and divergene.Compute the rotational and the divergene of the following �elds:a) F(r) = rb) F(r) = 1

r
r) F(r) = − 1
r2 rd) F(r) = − 1
r3 re) F(r) = (x2 + y2 + z2)(3i + 4j + 5k)f) F(r) = 1

x2+y2+z2 (yz, zx, xy)Solution:The �rst four �elds have the form F(r) = f(r)r and from the preedingproblem, points b) and ), we have:
∇× (f(r)r) = ∇f × r + f(r)∇× r = f ′(r)

r

r
× r + 0 = 0

∇ · (f(r)r) = (∇f) · r + f∇ · r = f ′(r)
r

r
· r + 3f(r) = rf ′(r) + 3f(r)We obtain



76 CHAPTER 2. VECTOR FIELDSa)
∇× (1r) = 0

∇ · (1r) = 3b)
∇× (−1

r
r) = 0

∇ · (−1

r
r) = r

1

r2
− 3

1

r
= −2

r)
∇× (− r

r2
) = 0

∇ · (− r

r2
) = −(−r 2

r3
+ 3

1

r2
) = − 1

r2d)
∇× (− r

r3
) = 0

∇ · (− r

r3
) = −(−r 3

r4
+ 3

1

r3
) = 0e)

F(r) = r2(3, 4, 5)We an apply Leibniz's rule:
∇× (r2(3, 4, 5)) = (∇r2) × (3, 4, 5) + r2∇× (3, 4, 5) =

= 2r
r

r
× (3, 4, 5) = r × (6, 8, 10) =

= (10y − 8z, 6z − 10x, 8x− 6y)The divergene an be omputed diretly:
∇·F = ∂x(3r

2)+∂y(4r
2)+∂z(5r

2) = 6r
x

r
+8r

y

r
+10r

z

r
= 6x+8y+10zor we may use Leibniz's rule one more:

∇ · F = 2r
r

r
· (3, 4, 5) + r2∇ · (3, 4, 5) == 6x+ 8y + 10z
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F(r) =

1

r2
(yz, zx, xy)

∇× (
1

r2
(yz, zx, xy)) = ∇(

1

r2
) × (yz, zx, xy) +

1

r2
∇× (yz, zx, xy) =

= − 2

r3

r

r
× (yz, zx, xy) +

1

r2
∇× (yz, zx, xy)We evaluate both terms:

∇× (yz, zx, xy) =

∣

∣

∣

∣

∣

∣

i j k

∂x ∂y ∂z

yz zx xy

∣

∣

∣

∣

∣

∣

= 0

−2
r

r4
× (yz, zx, xy) = − 2

r4

∣

∣

∣

∣

∣

∣

i j k

x y z
yz zx xy

∣

∣

∣

∣

∣

∣

=

= − 2

r4
(x(y2 − z2), y(z2 − x2), z(x2 − y2))and then

∇× F(r) = − 2

r4
(x(y2 − z2), y(z2 − x2), z(x2 − y2))The divergene is:

∇ · ( 1

r2
(yz, zx, xy)) = ∇(

1

r2
) · (yz, zx, xy) +

1

r2
∇ · (yz, zx, xy) =

= − 2

r3

r

r
· (yz, zx, xy) = − 2

r4
3xyz

�Problem 34: Around the vetor produt.Let A,B,C,D be vetors in R3 and E a vetor �eld in R3; prove the followingformulae:a) (A ×B) · (C × D) = det

(

A · C A · D
B · C B · D

)b) A × (B × C) = (A ·C)B − (A · B)C) ∇× (∇× E) = ∇(∇ · E) −∇2E



78 CHAPTER 2. VECTOR FIELDSSolution:a) The left hand term
ϕ(A,B,C,D) = (A ×B) · (C × D)is a linear funtion in eah entry. And so is the right hand term

ψ(A,B,C,D) = det

(

A · C A ·D
B ·C B · D

)Sine both terms are linear in eah entry to prove the desired equality itsu�es to verify it on a basis, the anonial one i, j,k say. We an savework if we observe that both funtions are alternate in A,B and alter-nate inC,D for then we know that (i, j, j,k) = −(j, i, j,k) = −(i, j,k, j)et. In brief, we only have to hek the following ombinations:
(i, j, i, j) (i,k, i, j) (j,k, i, j)

(i, j, i,k) (i,k, i,k) (j,k, i,k)

(i, j, j,k) (i,k, j,k) (j,k, j,k)Let us do it for the �rst:
ϕ(i, j, i, j) = (i × j) · (i × j) = k · k = 1and

ψ(i, j, i, j) = det

(

i · i i · j
j · i j · j

)

= det

(

1 0
0 1

)

= 1The other ases are similar.b) If B×C = 0 then B = λC and both terms vanish. If B×C 6= 0 then
A× (B×C) is orthogonal to B×C wih tells us that A× (B×C) ∈
〈B,C〉:

A × (B × C) = aB + bC,To �nd a, b it seems reasonable to make the salar produt with B and
C:

aB · B + bC · B = (A × (B× C)) · B
aB · C + bC · C = (A× (B ×C)) · C

}



2.4. FIELD DERIVATIVES 79Using the yli permutability of a triple produt
(P × Q) · R = (Q ×R) · P = (R× P) ·Q,we an hange the independent terms of the system to

(A × (B× C)) · B = (B× A) · (B× C) = det

(

B · B B ·C
A · B A · C

)

(A × (B× C)) · C = (C ×A) · (B ×C) = det

(

C · B C ·C
A · B A ·C

)

.The determinant of the system is
∆ = det

(

B · B C · B
B · C C · C

)and applying Cramer's rule we obtain:
a =

1

∆
det









det

(

B · B B · C
A · B A ·C

)

C · B

det

(

C ·B C · C
A · B A ·C

)

C · C









=

=
1

∆
det

(

(B · B)(A · C) − (A · B)(B · C) (B · C)
(B ·C)(A · C) − (A · B)(C ·C) (C · C)

)

=

=
1

∆
det

(

(B · B)(A · C) (B · C)
(B · C)(A ·C) (C · C)

)

=
1

∆
(A · C)∆ = A · CIn a similar way one obtains b = −A · B and b) is proved. There aremuh shorter proofs, but this one only needs endurane.) The laplaian of F = (X, Y, Z) is the �eld

∇2F = (∇2X,∇2Y,∇2Z)Both terms in the formula
∇× (∇× E) = ∇(∇ ·E) −∇2E



80 CHAPTER 2. VECTOR FIELDSare linear in E and it su�es to hek the equality on terms of the form
f(x, y, z)i, g(x, y, z)j, h(x, y, z)k. For instane if E = gj the left handmember is
∇× (∇× gj) = ∇× (−∂zg, 0, ∂xg) = (∂2

yxg,−∂2
xxg − ∂2

zzg, ∂
2
yzg)and the right hand member is

∇(∇ · gj) −∇2gj = ∇(∂yg) − (∂2
xxg + ∂2

yyg + ∂2
zzg)j =

= (∂2
xyg, ∂

2
yyg, ∂

2
zyg) − (0, ∂2

xxg + ∂2
yyg + ∂2

zzg, 0) =

= (∂2
xyg,−∂2

xxg − ∂2
zzg, ∂

2
zyg)and they oinide whenever there is equality of mixed seond orderderivatives.

�2.5 Fluid expansion; divergene
T Next we give a 'physial' interpretation of the divergene using a �uid asa model.In the going by of time any region of the �uid hanges its form. Letsthink about a �uid region R0 at the instant t = t0 being olored. At a laterinstant t the oloring will show R, a di�erent region; what is the time rateof hange of the region's volume in terms of the veloity �eld?

R
0

x

z

y
instant t0 x

y

z
R

instant  t

�



2.5. FLUID EXPANSION; DIVERGENCE 81Problem 35: Movement of regions in a �uid.Consider the �ow φ(x0, y0, z0, t) = (x0e
t, y0e

−t, z0), t0 = 0, and for t = 0 aregion R0. Find the tranformed region R at time t, the volume of this regionand the time rate of hange of the region's volume, in partiular at t = 0,when:a) R0 = {(x0, y0, z0) : x2
0 + y2

0 = a2, 0 ≤ z0 ≤ 1}, a straight irularylinder of radius a and height 1.b) R0 = {(x0, y0, z0) : 0 ≤ x0 ≤ a, 0 ≤ y0 ≤ a, 0 ≤ z0 ≤ a}, a ube of side
a with a vertex at the origin.) R0 = {(x0, y0, z0) :| x0 |≤ 1, | y0 |≤ 1, | z0 |≤ 1}, a ube of side 2entered at the origin.d) R0 = {(x0, y0, z0) : x2

0 + y2
0 + z2

0 = a2}, a sphere of radius a entered atthe origin.Solution:The point that was at (x0, y0, z0) at the instant t = 0, is at x = x0e
t, y =

y0e
−t, z = z0 at the instant t. To �nd the equation of the transformed regionwe make the substitutions x0 = xe−t, y0 = yet, z0 = z:a)

(xe−t)2 + (yet)2 = a2, 0 ≤ z ≤ 1

x2e−2t + y2e2t = a2, 0 ≤ z ≤ 1that we an rewrite as
x2

(aet)2
+

y2

(ae−t)2
= 1, 0 ≤ z ≤ 1,showing an ellipti ylinder with volume V (t) = πaetae−t = πa2; then

dV
dt

= d
dt

(πa2) = 0 and in partiular d
dt
|t=0(πa

2) = 0.



82 CHAPTER 2. VECTOR FIELDS
R0

z

x

z=1

y

instant t

R

a exp(−t)
a exp(t)

z

a

x

a

z=1

y

instant t=0b) We proeed as in a) :
0 ≤ xe−t ≤ a, 0 ≤ yet ≤ a, 0 ≤ z ≤ a

0 ≤ x ≤ aet, 0 ≤ y ≤ ae−t, 0 ≤ z ≤ aa parallelepiped with volume V (t) = aetae−ta = a3; now dV
dt

= d
dt

(a3) =
0 and d

dt
|t=0(a

3) = 0.) Analogously
| xe−t |≤ 1, | yet |≤ 1, | z |≤ 1

| x |≤ et, | y |≤ e−t, | z |≤ 1a parallelepiped with volume V (t) = ete−t = 1 and dV
dt

= d
dt

(1) = 0,
d
dt
|t=0(1) = 0 .d) In this ase

(xe−t)2 + (yet)2 + z2 = a2

x2

(aet)2
+

y2

(ae−t)2
+
z2

a2
= 1an ellipsoid of volume V (t) = 4

3
πaetae−ta = 4

3
πa3 and

dV

dt
=

d

dt
(
4

3
πa3) = 0

d

dt
|t=0(

4

3
πa3) = 0Why is it that all derivatives vanish?

�



2.5. FLUID EXPANSION; DIVERGENCE 83Problem 36:Do the same as in the preeding problem for the �ow
φ(x0, y0, z0, t) = (x0 + t, y0e

t, z0), t0 = 0.Solution:a)
(x− t)2 + (ye−t)2 = a2, 0 ≤ z ≤ 1

(x− t)2

a2
+

y2

(aet)2
= 1an ellipti ylinder entered at (t, 0, 0) with volume V (t) = πaaet =

πa2et and derivative d
dt

(πa2et) = πa2et and
d

dt
|t=0(πa

2et) = πa2.b)
0 ≤ x− t ≤ a, 0 ≤ ye−t ≤ a, 0 ≤ z ≤ a

t ≤ x ≤ a+ t, 0 ≤ y ≤ aet, 0 ≤ z ≤ aa parallelepiped with a vertex at (t, 0, 0), volume V (t) = aaeta = a3etand derivative d
dt

(a3et) = a3et whih at the instant t = 0 is
dV

dt
|t=0 = a3)

| x− t |≤ 1, | y |≤ et, | z| ≤ 1a parallelepiped with volume V (t) = 8et and d
dt

(8et) = 8et and
d

dt
|t=0(8e

t) = 8.d)
(x− t)2 + (ye−t)2 + z2 = a2

(x− t)2

a2
+

y2

(aet)2
+
z2

a2
= 1



84 CHAPTER 2. VECTOR FIELDSan ellipsoid with volume V (t) = 4
3
πaaeta = 4

3
πa3et with d

dt
(4

3
πa3et) =

4
3
πa3et and then

d

dt
|t=0(

4

3
πa3et) =

4

3
πa3

�

T In points a), b) an d) of the preeding problem the time rate of hangeof volume at the instant t = 0 depends on the bigness of the �gure we olor(it depends on a). To get rid of this fat we enter our attention on
1

V

dV

dt
|t=0Then we have, respetively:

1

πa2

dV

dt
|t=0 =

πa2

πa2
= 1

1

a3

dV

dt
|t=0 =

a3

a3
= 1

1

8

dV

dt
|t=0 =

8

8
= 1

1
4
3
πa3

dV

dt
|t=0 =

4
3
πa3

4
3
πa3

= 1Relation of 1
V

dV
dt
|t=0 with the divergene of the �eld v(x)Consider the �ow

φ(x0, y0, z0, t) = (x(x0, y0, z0, t), y(x0, y0, z0, t), z(x0, y0, z0, t)), t0and a region R0 at the initial instant t0. Let
φt(x0, y0, z0) = (x(x0, y0, z0, t), y(x0, y0, z0, t), z(x0, y0, z0, t))be the transformation during time t, Jt(x0) = det( ∂φt

∂x0
, ∂φt

∂y0
, ∂φt

∂z0
)|(x0,t) the ja-obian determinant of the transformation, and R(t) = φt(R0) the tranformedregion. Then the hange of variables theorem for integrals gives:

V (t) = Vol (R(t)) =

∫ ∫ ∫

R

dxdydz =

∫ ∫ ∫

R0

|Jt(x0)|dx0dy0dz0



2.5. FLUID EXPANSION; DIVERGENCE 85Assuming Jt(x0) > 0 in R we have
dV

dt
=

∫ ∫ ∫

R0

d(Jt(x0))

dt
dx0dy0dz0

• Let's ompute the integrand; we have:
d(Jt(x0))

dt
=

= det(
∂2φt

∂t∂x0
,
∂φt

∂y0
,
∂φt

∂z0
)|(x0,t)+det(

∂φt

∂x0
,
∂2φt

∂t∂y0
,
∂φt

∂z0
)|(x0,t)+det(

∂φt

∂x0
,
∂φt

∂y0
,
∂2φt

∂t∂z0
)|(x0,t)As we want to ompute dV

dt
|(x0,t0) let us work for t = t0; for instane

∂φt

∂x0

|(x0,t0) = lim
h→0

φ(x0 + h, y0, z0, t0) − φ(x0, y0, z0, t0)

h
=

= lim
h→0

(x0 + h, y0, z0, t0) − (x0, y0, z0, t0)

h
= (1, 0, 0)and analogously:

∂φt

∂y0
|t=t0 = (0, 1, 0),

∂φt

∂z0
|t=t0 = (0, 0, 1)

• For the seond derivatives notie that ∂φt

∂t
|(x0,t) is the veloity at theinstant t of the partile that was at x0 at the instant t0; then

∂φt

∂t
|(x0,t0) = (X(x0, t0), Y (x0, t0), Z(x0, t0)),the veloity �eld at x0.

• Thus
d(Jt(x0))

dt
|t=t0 = det





∂X
∂x0

0 0
∂Y
∂x0

1 0
∂Z
∂x0

0 1



 det





1 ∂X
∂y0

0

0 ∂Y
∂y0

0

0 ∂Z
∂y0

1



+det





1 0 ∂X
∂z0

0 1 ∂Y
∂z0

0 0 ∂Z
∂z0



 =

= (
∂X

∂x0
+
∂Y

∂y0
+
∂Z

∂z0
)|(x0,t0)and

dV

dt
|t=t0 =

∫ ∫ ∫

R0

(
∂X

∂x0

+
∂Y

∂y0

+
∂Z

∂z0
)|(x0,t0)dx0dy0dz0



86 CHAPTER 2. VECTOR FIELDSNow the mean value theorem for integrals asserts there is a point P ∈ R0suh that
dV

dt
= (

∂X

∂x0
+
∂Y

∂y0
+
∂Z

∂z0
)|PVFinally letting V → 0, at eah point x0 ∈ R0 we have

lim
V →0

1

V

dV

dt
=
∂X

∂x0
+
∂Y

∂y0
+
∂Z

∂z0
= ∇ · vand we see that the divergene of the veloity �eld of the �uid is the instan-taneous time rate of hange of volume per unit volume.

�Problem 37:Chek this last result in the two preeding problems.Solution:a) The veloity �eld of the �ow φ(x0, y0, z0, t) = (x0e
t, y0e

−t, z0), t0 = 0 is
v(x) = (x,−y, 0) by problem 25, and its divergene is ∇·v = 1−1 = 0that agrees whith problem 35.b) For φ(x0, y0, z0, t) = (x0 + t, y0e

t, z0), t0 = 0 we have
dφ

dt
= (1, y0e

t, 0)and the veloity �eld is v(x) = (1, y, 0); then ∇ · v = 1 in agreementwith problem 36.
�



Chapter 3Integration of �elds over urves
3.1 Integration of salar �elds
T Let γ : [a, b] → U be a C1 parametrized urve in the open set U ⊂ Rnand let f : U → R be a ontinuous funtion. The integral of f along γ is

∫

γ

fdl =

∫ b

a

f(γ(t))|γ′(t)|dtIf C is a urve in the open set U ⊂ Rn the integral of f along C is
∫

C

fdl =

∫ b

a

f(γ(t))|γ′(t)|dt

γ : [a, b] −→ U being a parametrization of C of lass C1; this de�nitionmakes sense beause it is independent of whih one among the equivalentparametrizations of C we hoose (see problem p.90).We an as well integrate on a pieewise C1 urve: we simply integrate oneah of the subintervals where the urve is C1 and add the results.Taking f ≡ 1 we obtain the length of the urve; to have the true geometrilength we use regular parametrizations.
L =

∫ b

a

|γ′(t)|dtNote that as |γ′(t)| is the elerity, |γ′(t)|dt is the length of that part of theurve traversed during the small time interval dt. We get the total lengthadding (i.e.: integrating). 87



88 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESProblem 38: Salar �eld.Compute ∫

C
fdl in eah of the following ases (γ is a parametrization of C):a) f(x, y, z) = x+ y + z, γ(t) = (cos t, sin t, t), 0 ≤ t ≤ 2π.b) f(x, y, z) = z, γ(t) = (t cos t, t sin t, t), 0 ≤ t ≤ T.) f(x, y) = 2x− y, γ(t) = (t4, t4),−1 ≤ t ≤ 1.d) f(x, y) = x2 + y2, C the square with vertexs (±1, 0), (0,±1) traversedin the positive sense.e) f(x, y, z) = x+ y, C the part of the irumferene

{

x2 + y2 + z2 = R2

y = xin the �rst otant.Solution:a) γ′(t) = (− sin t, cos t, 1),
|γ′(t)| =

√
2

∫

C

(x+ y + z)dl =

∫ 2π

0

(cos t+ sin t+ t)
√

2dt = 2π2
√

2b) γ′(t) = (cos t− t sin t, sin t+ t cos t, 1),

|γ′(t)| =
√

(cos t− t sin t)2 + (sin t+ t cos t)2 + 1 =
√

2 + t2

∫

C

zdl =

∫ T

0

t
√

2 + t2dt =
1

2

∫ T

0

2t
√

2 + t2dt =
1

2

2

3
(2+t2)3/2|T0 =

1

3
[(2+T 2)3/2−23/2]) γ′(t) = (4t3, 4t3),

|γ′(t)| = 4
√

2t6 = 4
√

2|t|3
∫

C

(2x− y)dl =

∫ 1

−1

(2t4 − t4)4
√

2|t|3 = 4
√

2(2

∫ 1

0

t7dt) =
√

2



3.1. INTEGRATION OF SCALAR FIELDS 89d) We traverse the square in the order P = (1, 0), Q = (0, 1), R = (−1, 0), S =
(0,−1).

γ
1

γ
2

γ
3

γ
4

P(1,0)

S(0,−1)

R(−1,0)

Q(0,1)

Observe that if γ1 parametrizes the segment [P,Q] then γ3 = −γ1parametrizes [R, S]; analogously, if γ2 parametrizes the segment [Q,R]then γ4 = −γ2 parametrizes [S, P ]. We have:
γ1(t) = (1 − t)

(

1
0

)

+ t

(

0
1

)

=

(

1 − t
t

)

, 0 ≤ t ≤ 1

γ2(t) = (1 − t)

(

0
1

)

+ t

(

−1
0

)

=

(

−t
1 − t

)

, 0 ≤ t ≤ 1and
γ′1(t) =

(

−1
1

)

, γ′2(t) =

(

−1
−1

)

|γ′1(t)| =
√

2 , |γ′2(t)| =
√

2Now we an ompute the integrals:
∫

γ1

(x2 + y2)dl =

∫ 1

0

[(1− t)2 + t2]
√

2dt =
√

2

∫ 1

0

(2t2 −2t+1)dt =
2
√

2

3and, taking into aount that the squares in the integrand eliminateminus signs, we also have ∫

γ3
(x2 + y2)dl = 2

√
2

3
. On the other side

∫

γ2

(x2+y2)dl =

∫ 1

0

((−t)2+(1−t)2)
√

2dt =
√

2

∫ 1

0

(2t2−2t+1)dt =
2
√

2

3



90 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESand we also have ∫

γ4
(x2 + y2)dl = 2

√
2

3
. Finally

∫

C

(x2 + y2)dl =
8
√

2

3e) Take the parametrization
γ(ϕ) = (

R√
2

cosϕ,
R√
2

cosϕ,R sinϕ), 0 ≤ ϕ ≤ π

2

γ′(ϕ) = (− R√
2

sinϕ,− R√
2

sinϕ,R cosϕ)

| γ′(ϕ) |=
√

R2

2
sin 2ϕ+

R2

2
sin 2ϕ+R2 cos 2ϕ = R

x

y

z

R

ϕ

We obtain
∫

γ

(x+ y)dl =

∫ π/2

0

2R√
2

cosϕRdϕ =
√

2R2

∫ π/2

0

cosϕdϕ =
√

2R2

�Problem 39: Independene of the parametrization.Prove that
∫

C

fdl



3.1. INTEGRATION OF SCALAR FIELDS 91does not depend on the parametrization of the urve C.Solution:Let γ(t), t ∈ [a, b] be a parametrization of C, t = h(τ) a hange of variable
h : [a, b] → [c, d]

t 7→ τ = h(t)and Γ(τ) the orresponding reparametrization: γ(t) = Γ(h(t)). Then
γ′(t) = Γ′(h(t))h′(t)To use the hange of variables theorem for integrals in one variable notiethat as h is a di�eomorphism it has a nonvanishing derivative. Then if

h′ > 0, h is inreasing, h(a) = c, h(b) = d and if h′ < 0, h is dereasing and
h(a) = d, h(b) = c. Now apply the theorem:

I =

∫ d

c

f(Γ(τ))|Γ′(τ)|dτ =

{

τ = h(t)
dτ = h′(t)dt

}

=

=

{
∫ b

a
f(Γ(h(t)))|Γ′(h(t))|h′(t)dt if h′ > 0

∫ a

b
f(Γ(h(t)))|Γ′(h(t))|h′(t)dt if h′ < 0

}In the �rst ase |h′(t)| = h′(t) and
I =

∫ b

a

f(Γ(h(t)))|Γ′(h(t))h′(t)|dt =

∫ b

a

f(γ(t))|γ′(t)|dtIn the seond ase |h′(t)| = −h′(t) and
I =

∫ a

b

f(Γ(h(t)))|Γ′(h(t))|h′(t)dt = −
∫ b

a

f(Γ(h(t)))|Γ′(h(t))|h′(t)dt =

=

∫ b

a

f(Γ(h(t)))|Γ′(h(t))|(−h′(t))dt =

∫ b

a

f(Γ(h(t)))|Γ′(h(t))h′(t)|dt =

=

∫ b

a

f(γ(t))|γ′(t)|dt

�



92 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVES3.1.1 Ar-length
T Let γ : [a, b] → Rn be a regular parametrized urve; the funtion

s(t) =

∫ t

c

|γ′(t)|dt, c, t ∈ [a, b]measures the length of the ar of the urve from the point γ(c) to the point
γ(t) and is alled the ar-length parameter of the urve:

γ(t)
γ(t)

γ (c)

x

s(t)>0

s(t)<0

y

Notie that the ar-length parameter has a positive value for t > c anda negative value for t < c. If we hoose c = b then all the values of thear-length parameter will be negative, while they will all be positive if c =
a. Think about the urve as a deformed interval of R with its own origin(the point γ(c)), its positive points and its negative points, as shown in thepreeding �gure.If we assume γ to be regular then s′(t) = |γ′(t)| > 0, the ar-lengthparameter is a stritly inreasing funtion and so it is inversible. Substituting
t = t(s) into γ we obtain the ar-length reparametrization.Problem 40: Reparametrization by ar-length.Compute the length and reparametrize by ar-length:a) A irumferene of radius R.b) The ar of the helix γ(t) = (cos t, sin t, t) for 0 ≤ t ≤ 2π.) A omplete turn of the helix γ(t) = (a cos t, a sin t, bt) for 0 ≤ t ≤ 2π.d) The ar of a spiral γ(t) = (et cos t, et sin t), 0 ≤ t ≤ T .



3.1. INTEGRATION OF SCALAR FIELDS 93Solution:a) Take the parametrization
γ(t) = (R cos t, R sin t), t ∈ [0, 2π]

γ′(t) = (−R sin t, R cos t), |γ′(t)| = R.Then
L =

∫ 2π

0

Rdt = 2πR

s(t) =

∫ t

0

Rdt = Rt⇒ t =
s

RSubstituting t = t(s) into the parametrization Γ we obtain the reparametriza-tion by ar-length :
Γ(s) = (R cos

s

R
,R sin

s

R
), s ∈ [0, 2πR]b)

γ′(t) = (− sin t, cos t, 1), |γ′(t)| =
√

2

L =

∫ 2π

0

√
2dt = 2π

√
2

s(t) =

∫ t

0

√
2dt = t

√
2 ⇒ t =

s√
2The reparametrization by ar-length is:

Γ(s) = (cos(
s√
2
), sin(

s√
2
),

s√
2
), s ∈ [0, 2π

√
2])

γ′(t) = (−a sin t, a cos t, b), |γ′(t)| =
√
a2 + b2

L =

∫ 2π

0

√
a2 + b2dt = 2π

√
a2 + b2

s(t) =

∫ t

0

√
a2 + b2dt =

√
a2 + b2t⇒ t =

s√
a2 + b2



94 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESThe reparametrization by ar-length is:
Γ(s) = (a cos(

s√
a2 + b2

), a sin(
s√

a2 + b2
), b

s√
a2 + b2

), s ∈ [0, 2π
√
a2 + b2]Notie that if √a2 + b2 = 1 the helix is already parametrized by ar-length.d)

γ′(t) = et(cos t− sin t, cos t+ sin t), |γ′(t)| = et
√

2

L =

∫ T

0

√
2etdt =

√
2(eT − 1)

s(t) =

∫ t

0

√
2etdt =

√
2(et − 1) ⇒ t = log(

s√
2

+ 1)The reparametrization by ar-length is:
Γ(s) = (

s√
2

+ 1)(cos(log(
s√
2

+ 1)), sin(log(
s√
2

+ 1)))

�Problem 41: Parameter ar.Disuss the following assertion: a regular parametrized urve γ : [a, b] → Rnis parametrized by ar-length i� |γ′(t)| = 1, that is to say i� the elerityalong the urve is unity.Solution:a) For γ(t) to be parametrized by ar-length it should be a reparametriza-tion by ar-length of a ertain parametrization α(τ), τ ∈ [c, d]. If thatis the ase we have
t(τ) =

∫ τ

ξ

|α′(τ)|dτ, ξ ∈ [c, d]

dt

dτ
= |α′(τ)| > 0 ⇒ dτ

dt
=

1

|α′(τ)|and
γ(t) = α(τ(t)) ⇒ γ′(t) = α′(τ(t))τ ′(t)



3.1. INTEGRATION OF SCALAR FIELDS 95and we obtain
|γ′(t)| = |α′(τ(t))| 1

|α′(τ(t))| = 1From a physial point of view we have a 'lok' s (the ar-length) thatruns so as to have a displaement along the urve equal in measure tothe 'time' elapsed. Now it's lear-ut that the elerity will be 1.b) Reiproally, assume that |γ′(t)| = 1; then the ar-length parameterfrom c ∈ [a, b] is
s(t) =

∫ t

c

|γ′(t)|dt = t− c⇒ t = s+ cand the new parametrization Γ(s) = γ(s + c) just shows that we takethe origin of the new measure of lengths at the point of the urveorresponding to t = c. We may reasonably say that the urve isparametrized by ar-length. In the partiular ase that 0 ∈ [a, b] wean take the parameter ar s(t) =
∫ t

0
|γ′(t)|dt and then s = t, the urveis parametrized by ar-length.

�Problem 42: Length of a graph.If f : [a, b] → R is a C1 funtion, the length of its graph is that of theparametrized urve γ(t) = (t, f(t)), t ∈ [a, b].a) Show that the length of f 's graph is
L =

∫ b

a

√

1 + (f ′(t))2dtb) Compute the length of the graph of f(t) = cosh t over the interval [0, 1].Solution:a)
γ′(t) = (1, f ′(t)), |γ′(t)| =

√

1 + (f ′(t))2

L =

∫ b

a

√

1 + (f ′(t))2dt
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L =

∫ 1

0

√

1 + sinh2 tdt =

∫ 1

0

√

cosh2 tdt =

∫ 1

0

cosh t dt =

= sinh t|10 = sinh 1 =
1

2
(e− 1

e
)

�Problem 43:Let C be a plane losed urve that has a regular parametrization and let φbe the angle the tangent vetor t makes with the Ox axis. Prove that
∫

C

cosφdl =

∫

C

sinφdl = 0Solution:Let's make a �gure
φ(s)

s=0
s

y

t

xLet γ(s) be a parametrization of C by ar-length, de�ned in [0, L] (L thelength of C); in this way the tangent vetor t = γ′(s) will be unitary and
cosφ and sinφ will be easily omputable. We have:

cos φ(s) = t(s) · i = (x′(s), y′(s)) · (1, 0) = x′(s)
∫

C

cosφ(s)ds =

∫ L

0

x′(s)ds = x(L) − x(0) = 0 (C is losed)
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sinφ(s) = t(s) · j = (x′(s), y′(s)) · (0, 1) = y′(s)

∫

C

sinφ(s)ds =

∫ L

0

y′(s)ds = y(L) − y(0) = 0 (C is losed)

�Problem 44: A urve in polar oordinates.a) Show that the integral of a ontinuous funtion f(x, y) along the urvegiven in polar oordinates by
r = r(θ), θ1 ≤ θ ≤ θ2is

∫ θ2

θ1

f(r(θ) cos θ, r(θ) sin θ)

√

r(θ)2 + (
dr

dθ
)2dθb) Compute the length of a ardioid r = 1 + cos θ, 0 ≤ θ ≤ 2π.) Compute ∫

C
arctan( y

x
) dl along the urve r = 2θ, 0 ≤ θ ≤ 2.d) Find a formula for the urve r = r(t), θ = θ(t).Solution:a) Have a look at the following �gure

θ1

θ2

θ1

θ2

y(θ))

r x

yθ

(x(θ),



98 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESIn artesian oordinates we have
γ(θ) = (r(θ) cos θ, r(θ) sin θ)

γ′(θ) = (r′(θ) cos θ − r(θ) sin θ, r′(θ) sin θ + r(θ) cos θ)

|γ′(θ)| =
√
r2 + r′2and

∫

C

fdl =

∫ θ2

θ1

f(r cos θ, r sin θ)

√

r2 + (
dr

dθ
)2dθb) We make a �gure and use the preeding formula

x

y

L =

∫ 2π

0

√

(1 + cos θ)2 + sin2 θdθ =

∫ 2π

0

√

2(1 + cos θ)dθ =

= 2
√

2

∫ π

0

√
1 + cos θdθ = 2

√
2

∫ π

0

√

2 cos2(
θ

2
)dθ =

= 4

∫ π

0

cos(
θ

2
)dθ = 8 sin(

θ

2
)|π0 = 8) Still the same formula

∫

C

arctan(
y

x
) dl =

∫ 2

0

arctan(tan θ)
√

4θ2 + 4 dθ =

=

∫ 2

0

2θ
√
c1 + θ22dθ =

2

3
(1 + θ2)3/2|20 =

=
2

3
(53/2 − 1)



3.1. INTEGRATION OF SCALAR FIELDS 99d) In artesian oordinates we have the urve
γ(t) = (r(t) cos θ(t), r(t) sin θ(t))

γ′(t) = (r′(t) cos θ(t) − r(t)θ′(t) sin θ(t), r′(t) sin θ(t) + r(t)θ′(t) cos θ(t))

|γ′(t)| =
√
r′2 + r2θ′2and the formula is
∫

C

fdl =

∫ t2

t1

f(r cos θ, r sin θ)
√
r′2 + r2θ′2dt

�3.1.2 Averages
T We start with the elementary idea that the average of two numbers a, bis a+b

2
and develop several assoiated ideas.Average of n numbersThe average of the numbers y1, . . . , yn is

〈y〉 =
y1 + · · ·+ yn

nWe an think those numbers as a �nite quantity of magnitudes disretelydistributed:
y
1

y
2

y
3

y
4

y5

y
n1 2

3

4 5
n

If we form retangles of basis 1 and heights yj, the total algebrai area (:=areas below the axis ounted as negative) is
A = 1 · y1 + · · · + 1 · yn
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y
1

y
2

y
3

y
4

y5

y
n1 4 5

n

2
3

From the de�nition of the average we obtain:
A = y1 + · · ·+ yn = n〈y〉that tells us that 〈y〉 is the height of a retangle with basis n that has thesame algebrai area:

y

n

<y>

nAverage of a funtionLet us draw a magnitude ontinuously distributed on the segment [a, b]:
y

a bx

y(x)

...

x



3.1. INTEGRATION OF SCALAR FIELDS 101We have a bar at eah point of the segment; that is we have a funtion y(x)de�ned in [a, b]. By analogy with the disrete ase we de�ne the average ofthe funtion y(x) on [a, b] by
〈y〉 =

′ ∑′
i y(i)

♯(i)
=

∫ b

a
y(x)dx

b− awhere loosely speaking ♯(i) is the 'number of indexes'; the length of theinterval is a measure of this number. ′ ∑′ is the orresponding analog tothe sum of the disrete ase; the integral of y(x) does that. The analogytakes roots if we notie that in the disrete ase we an write y1, . . . , yn inthe form y(1), . . . , y(n), a funtion de�ned in {1, 2, . . . , n}.Geometrially 〈y〉 is the height of a retangle with basis [a, b] that hasthe same algebrai area as that under the graph of the funtion:
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

a bx x a b x

yy

<y>

The �rst mean value theorem for integrals tells us that if y is ontinuousthere is c ∈ [a, b] suh that 〈y〉 = y(c): the average value is aessed.Average on a urveThe average of a funtion f de�ned on a urve is a onept lose to thepreeding one. It is lear that we should de�ne
〈f〉 =

1

L

∫

C

fdl

�



102 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESProblem 45: Average on a urve.Let γ(t) = (sin t, cos t, t), t ∈ [0, 2π] be a parametrization of an helix; om-pute the average of f whena) f(x, y, z) = x+ y + zb) f(x, y, z) = cos zSolution:a)
∫

C

(x+ y + z)dl =

∫ 2π

0

(sin t+ cos t+ t)
√

cos2 t+ sin2 t+ 1dt =

=
√

2
t2

2
|2π
0 = 2π2

√
2

L =

∫

C

1dl =

∫ 2π

0

√
2dt = 2π

√
2

〈f〉 =
2π2

√
2

2π
√

2
= πb)

∫

C

cos zdl =

∫ 2π

0

cos t
√

2dt = 0 ⇒ 〈f〉 = 0

�3.1.3 Averages with weights
T Disrete aseTo assign weights m1, m2 to the numbers x1, x2 is something like ountingthe number x1 �m1 times� and the number x2 �m2 times� (we have written �� beause in general m1, m2 need not be integer numbers). From this pointof view the average should be de�ned as

〈x〉m =
x1+

m1). . . +x1 + x2+
m2). . . +x2

1+ m1). . . +1 + 1+ m2). . . +1
=
m1x1 +m2x2

m1 +m2



3.1. INTEGRATION OF SCALAR FIELDS 103Geometrially, we put weights (or masses) m1, m2 at the points of the linewith oordinates x1, x2.The point that equilibrates the fulrum of the �gure is alled the system'senter of mass.
x

2
x

1
xg

m
1

m
2

x

.

The enter of mass oordinate xg must satisfy the fulrum law:
(xg − x1)m1 = (x2 − xg)m2or

xg =
m1x1 +m2x2

m1 +m2We see that the oordinate of the enter of mass oinides with the averagevalue with weights, a somewhat remarable result.
�Problem 46: Center of mass.De�ne the enter of mass ofa) k points in a line.b) k points in spae.Solution:a) Consider masses m1, . . . , mk at the points with oordinates x1, . . . , xk.Then

〈x〉m =
m1x1 + · · ·+mkxk

m1 + · · ·+mkb) Consider massesm1, . . . , mk at the points with position vetors x1, . . . ,xk.Now
〈x〉m =

m1x1 + · · ·+mkxk

m1 + · · · +mk

�



104 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESContinuous ase
T If a material wire has linear density λ (see p.57), its total mass is

M =

∫

C

λdlNotie that any kind of density (lineal, surfae, volume, probability, et.)ends up being integrated, like in the preeding formula. Speaking aboutdensities notie also that we an think about the veloity as being the densityof spae with respet to time.Consider a material segment [a, b] (we ould equally well say 'onsider amass distribution on the segment [a, b]'). By analogy with the disrete asewe de�ne the enter of mass of the segment through
〈x〉λ =

′ ∑′
i x(i)♯(i)

′ ∑′
i ♯(i)

=

∫ b

a
xλ(x)dx

∫ b

a
λ(x)dx

λ(x) being the linear density of the segment and the denominator its totalmass.
�Problem 47: Center of mass of a segment.Compute the enter of mass oordinate of a material segment whose lineardensity λ is proportional to the distane from one end.Solution:Take the origin of oordinates at the end where the density vanishes:

x

λ=KxO LThen λ(x) = Kx and
M =

∫ L

0

Kxdx = K
L2

2
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∫ L

0

xKxdx = K
L3

3

〈x〉λ =
K L3

3

K L2

2

=
2

3
L

�

T If we have a material wire C in R3 with linear density λ, the enter ofmass oordinates are
〈x〉λ =

∫

C
xλdl

∫

C
λdl

, 〈y〉λ =

∫

C
yλdl

∫

C
λdl

, 〈z〉λ =

∫

C
zλdl

∫

C
λdl

,or, expressed vetorially:
〈x〉λ =

∫

C
xλdl

∫

C
λdl

�Problem 48: A speial density.Compute de enter of mass of a material wire extended along the irumfer-ene of radius R and enter at (0, 0) if the linear density is λ(x, y) = |x|+ |y|.Solution:Parametrize the irumferene
γ(t) = (R cos t, R sin t), t ∈ [0, 2π]Then

M =

∫

C

λdl =

∫ 2π

0

(|R cos t|+|R sin t|)Rdt = R2

∫ 2π

0

(| cos t|+| sin t|)dt = 8R2and the enter of mass oordinates are
〈x〉λ =

1

M

∫

C

xλdl =
1

M

∫ 2π

0

R cos t(|R cos t| + |R sin t|)Rdt = 0and, analogously 〈y〉λ = 0.
�



106 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESProblem 49: Center of mass of a material wire.Let C be the parametrized urve
γ(t) = (0, R sin t, R cos t), t ∈ [0, π], R > 0a) Compute the average of eah oordinate.b) If the urve is a material wire with onstant linear density λ = 2,ompute the total mass and the oordinates of the enter of mass.) Same question if the density is the restrition to C of the funtion

λ(x, y, z) = x+ y + z.d) Same question if the density at eah point is the double of the ar-lengthmeasured from the point (0, 0, R).Solution:The urve is a semiirumferene in the plane yz:
x

y

z

a) From the piture we see that 〈x〉 = 〈z〉 = 0. Let's see this analytially:
γ′(t) = (0, R cos t,−R sin t), |γ′(t)| =

√

R2 cos2 t+R2 sin2 t = R
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∫

C

xdl = 0

∫

C

ydl =

∫ π

0

R sin t Rdt = 2R2

∫

C

zdl =

∫ π

0

R cos t Rdt = 0

L = πRand we obtain
〈x〉 = 0, 〈y〉 =

2R2

πR
=

2R

π
, 〈z〉 = 0b)

∫

C

x2dl = 0
∫

C

y2dl = 4R2

∫

C

z2dl = 0

M =

∫

C

2dl = 2πRand
〈x〉λ = 〈z〉λ = 0, 〈y〉λ =

4R2

2πR
=

2R

π)
∫

C

x(x+ y + z)dl = 0

∫

C

y(x+ y + z)dl =

∫ π

0

R sin t(R sin t+R cos t)Rdt =
πR3

2
∫

C

z(x+ y + z)dl =

∫ π

0

R cos t(R sin t+R cos t)Rdt =
πR3

2

M =

∫

C

(x+ y + z)dl =

∫ π

0

(R sin t+R cos t)Rdt = 2R2and
〈x〉λ = 0, 〈y〉λ = 〈z〉λ =

πR3

2

2R2
=
πR

4



108 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESd) The ar-length parametrization is
Γ(s) = (0, R sin(

s

R
), R cos(

s

R
)), s ∈ [0, Rπ]Then

∫

C

xλdl = 0

∫

C

yλdl =

∫ Rπ

0

R sin(
s

R
)2sds = 2πR3

∫

C

zλdl =

∫ Rπ

0

R cos(
s

R
)2sds = −4R3

M =

∫ Rπ

0

2sds = π2R2and
〈x〉λ = 0, 〈y〉λ =

2πR3

π2R2
=

2R

π
, 〈z〉λ =

−4R3

π2R2
= −4R

π2

�Problem 50: A mass.Find the mass of a material wire c extended along the intersetion of thesphere x2 + y2 + z2 = 2 and the plane x + y + z = 0 if the linear density isthe restrition to the wire of the funtion λ(x, y, z) = x2.Solution:We give two solutions:a) Projet the urve on the plane z = 0, parametrize the projetion and'limb' to the urve; see p.28. There we met a parametrization of c.
γ(t) = (cos t− 1√

3
sin t,

2√
3

sin t,− cos t− 1√
3

sin t), t ∈ [0, 2π]

γ′(t) = (− sin t− 1√
3

cos t,
2√
3

cos t, sin t− 1√
3

cos t)and then
| γ′(t) |=

√
2
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M =

∫ 2π

0

(cos t− 1√
3

sin t)2
√

2dt =

=

∫ 2π

0

(cos2 t+
1

3
sin2 t− 2√

3
cos t sin t)

√
2dt =

=
√

2(π +
1

3
π) =

4
√

2

3
πb) The intersetion urve is a meridian of the sphere. If we take newoordinates (x̄, ȳ, z̄) suh that the plane x + y + z = 0 beomes theplane z̄ = 0 then we will see the intersetion urve as a irumfereneof radius 2 entered at the origin and this we know ho to parametrize.We must hoose ē3 = 1√

3
(1, 1, 1) and we an �nd ē1, ē2 beause theyare perpendiular to ē3 and unit vetors. The matrix of the hange ofbasis appears to be:

C =







− 1√
2

− 1√
6

1√
3

1√
2

− 1√
6

1√
3

0 2√
6

1√
3





The parametrization of c in the bar oordinates is
Γ(t) = (

√
2 cos t,

√
2 sin t, 0), t ∈ [0, 2π]

Γ′(t) = (−
√

2 sin t,
√

2 cos t, 0)

| Γ′(t) | =
√

2The linear density must satisfy λ̄(x̄, ȳ, z̄) = x2; the hange of oordi-nates gives
x = − 1√

2
x̄− 1√

6
ȳ +

1√
3
z̄and

x2 =
1

2
x̄2 +

1

6
ȳ2 +

1

3
z̄2 +

1√
3
x̄ ȳ − 2√

6
x̄ z̄ − 2√

18
ȳ z̄.Then

M =

∫

c

(
1

2
x̄2 +

1

6
ȳ2 +

1

3

1

3
z̄2 +

1√
3
x̄ ȳ − 2√

6
x̄ z̄ − 2√

18
ȳ z̄)dl =

=

∫ 2π

0

(
1

2
2 cos2 t+

1

6
2 sin2 t+

1√
3
2 sin t cos t)

√
2dt =

4
√

2

3
π



110 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVES
�3.1.4 Gravitational �eld of wiresGravitational �eld

T If we have a material wire C with linear density λ we an use Newton'slaw for extended bodies (see p.57) to ompute the gravitational �eld at apoint; we arrive at
g(x, y, z) = −

∫

C

λ
r

r3
dlwhere in the integral (x, y, z) is where we want to know the �eld, (u, v, w) isa variable point in the material wire, r = (x−u, y−v, z−w) and r = |r|. Weare still applying the onvention 'from the soure to the point' (see p.55).

�Problem 51:Let C be a material wire with the form of an ar of a irumferene of radius
R. Assuming the linear density λ to be onstant, ompute the gravitational�eld at the enter.Solution:This is learly a bidimensional problem; take the irumferene in the xyplane with its enter at the origin and an ar of angle 2α.

y

..

x

(u,v)

r
2α

R



3.1. INTEGRATION OF SCALAR FIELDS 111Parametrize that ar by
γ(θ) = (R cos θ, R sin θ), θ ∈ [0, 2α]The �eld at the enter is

g(0, 0) = −
∫

C

λ
(−u,−v)

R3
dland its omponents are:

X =

∫

C

λ

R3
udl =

λ

R3

∫ 2α

0

R cos θ Rdθ =
λ

R
sin 2α

Y =

∫

C

λ

R3
vdl =

λ

R3

∫ 2α

0

R sin θ Rdθ =
λ

R
(1 − cos 2α)The module of the �eld has a value

|g|2 =
2λ2

R2
(1 − cos 2α) ⇒ |g| =

√
2λ

R

√

2 sin2 α =
2λ

R
| sinα|The angle of g with the Ox axis satis�es

tanβ =
Y

X
=

1 − cos 2α

sin 2α
=

2 sin 2α

2 sinα cosα
=

sinα

cosα
= tanα⇒ β = αwhere we an see that β is half the total amplitude of the ar as was ex-petable from the symmetry.

�Problem 52: Gravitational �eld of a irumferene at points of its axis.Let C be a material wire that has the form of a irumferene and onstantlinear density λ. Compute the gravitational �eld at the points of its axis.



112 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESSolution:

x

z

P(0,0,z)

r

Q(u,v,0)
y

d

A parametrization of the irumferene is
γ(t) = (R cos t, R sin t, 0), t ∈ [0, 2π]

dl = RdtThe gravitational �eld at a point in the axis is
g(0, 0, z) = −

∫

C

λ
(−u,−v, z)

r3
dlIf g = (X, Y, Z) it is lear by symmetry that X = Y = 0; the onlynonvanishing oordinate is

Z(0, 0, z) = −λ
∫

C

z

r3
dl = −λ

∫ 2π

0

z

(
√
u2 + v2 + z2)3

Rdt = −λ2πRz

d3
= −M

d3
zwhere d =

√
R2 + z2 and M = λ2πR is the wire's mass.As a hek note that for z = 0 we have d3 = R3and Z(0, 0, 0) = 0.

�Problem 53: Gravitational �eld of a segment.Compute the gravitational attration of a material segment C with onstantlinear density, at points of spae exterior to the segment.



3.1. INTEGRATION OF SCALAR FIELDS 113Solution:Put the segment C on the Ox axis, C = [0, L]:
eρ

C

d
d

L

0

L

P(x,y,z)

Q

α
Lα0

O

z

y

x

d d

and parametrize it by γ(u) = (u, 0, 0), u ∈ [0, L], dl = du.The gravitational �eld reated by the segment at points out of the segmentis
g(x, y, z) = −

∫

C

λ
r

r3
dl = −

∫ L

0

λ
(x− u, y, z)

r3
duTo ompute the omponents of g = (X, Y, Z) put d =
√

y2 + z2, d0 =

|(x, y, z)| =
√
x2 + d2, dL =

√

(x− L)2 + d2; we an see those magnitudes inthe �gure. We have:a)
X = −

∫ L

0

λ
x− u

((x− u)2 + d2)3/2
du = −λ((x− u)2 + d2)−1/2|L0 =

= −λ(
1

dL
− 1

d0
)As a hek we see that this omponent of the �eld vanishes on thebisetor plane of the segment x = L

2
, as expeted by symmetry.
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Y = −

∫ L

0

λ
y

((x− u)2 + d2)3/2
du =

= −λy
∫ L

0

1

((x− u)2 + d2)3/2
duWe must end up with an integral of the form

∫

dz

(z2 + 1)3/2
= { z = tan t

dz = 1
cos2 t

dt
} =

∫

1

cos2 t
· 1

(tan2 t+ 1)3/2
dt =

=

∫

cos tdt = sin t =
z√
z2 + 1We now use this result to �nd Y :

∫ L

0

1

((x− u)2 + d2)3/2
du =

1

d3

∫ L

0

1

((x−u
d

)2 + 1)3/2
du = {

x−u
d

= v
du = −d dv } =

= − 1

d2

∫ x−L
d

x
d

1

(v2 + 1)3/2
dv = − 1

d2

v√
v2 + 1

|
x−L

d
x
d

=

= − 1

d2
(
x− L

dL

− x

d0

)and �nally we obtain the Y omponent of the �eld:
Y = λ

y

d2
(
x− L

dL
− x

d0
)) Analogously

Z = λ
z

d2
(
x− L

dL
− x

d0
)

• We have solved the problem and we now give more geometrial ontentto the solution. The triangle PQL is retangle at Q and
LQ

dL

=
x− L

dL

= cosαL, αL = ∠(axis segment, line dL)The triangle POQ is retangle at Q and
OQ

dL
=

x

d0
= cosα0, α0 = ∠(axis segment, line d0)



3.1. INTEGRATION OF SCALAR FIELDS 115The radial part of the �eld is gρ = (0, Y, Z) beause in terms of a unitradial vetor eρ = (0.y.z)
d

we have
gρ = λ(

x− L

dL
− x

d0
)
1

d
eρ =

= λ(cosαL − cosα0)
1

d
eρThe module of this �eld is onstant on a irumferene with enter at

(x, 0, 0) passing through P . It is a radial �eld, type '1
r
' . If we put

gs = −λ( 1
dL

− 1
d0

)(1, 0, 0) the whole �eld an be written as
g = gs + gρ

• At points of the segment's axis we have dL =| x−L |, d0 =| x |. Thereis no radial omponent and we obtain
g(x, 0, 0) = (−λ(

1

| x− L | −
1

| x |), 0, 0)Now if x > L

X(x, 0, 0) = −λ(
1

x− L
− 1

x
) = −λx− (x− L)

x(x− L)
=

= −λx− (x− L)

x(x− L)
= − λL

x(x− L)
=

= − M

x(x − L)

• If x < 0

X(x, 0, 0) = −λ(
1

L− x
+

1

x
) =

M

x(x− L)that oinides with the result in problem on p.58.
�



116 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESLogarithmi �eldProblem 54: Field of an in�nite wire.At eah point in free spae (:= points free of masses) �nd the limit positionof the gravitational �eld generated by a material segment of onstant lineardensity λ, when we make the length of the segment go to in�nity. This isthe �eld of an in�nite wire. Notie a omplement to the present problem inp.120.Solution:Let a segment extend between the points (−L/2, 0, 0) and (L/2, 0, 0) and let
d =

√

y2 + z2, d1 =
√

(x+ L
2
)2 + d2, d2 =

√

(x− L
2
)2 + d2.

d

d2

1

(−L/2,0,0) (L/2,0,0)

P(x,y,z)

 

y

z

xFrom the preeding problem we know that the �eld g = (X, Y, Z) gener-ated by the segment is
X = −λ(

1

d2
− 1

d1
)

Y = λ
y

d2
(
x− L

2

d2
− x+ L

2

d1
)

Z = λ
z

d2
(
x− L

2

d2

− x+ L
2

d1

)Let the �eld of the in�nite wire be gE = (X ,Y ,Z). To ompute it we let
L tend to in�nity; as limL→±∞ d1 = limL→±∞ d2 = ∞ we have:
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X = lim

L→∞
X = lim

L→∞
−λ(

1

d2
− 1

d1
) = 0and the �eld is perpendiular to the wire, a reasonable result by sym-metry.b)

Y = lim
L→∞

Y = lim
L→∞

λ
y

d2
(
x− L

2

d2

− x+ L
2

d1

) =

= λ
y

d2
lim

L→∞
(− L

2d2

− L

2d1

)Lets ompute �rst
lim

L→∞

L

d2
= lim

L→∞

L
√

(x− L
2
)2 + d2

= lim
L→∞

1
√

( x
L
− 1

2
)2 + d2

L2

= 2

lim
L→∞

L

d1
= lim

L→∞

L
√

(x+ L)2 + d2
= lim

L→∞

1
√

( x
L

+ 1
2
)2 + d2

L2

= 2Then
Y = −2λ

y

d2) Analogously
Z = −2λ

z

d2Summing up
gE(x, y, z) = −2λ(0,

y

d2
,
z

d2
)Let us fous the attention on the plane perpendiular to the wire throughthe origin; put r = (y, z) and then

gE(0, y, z) = L(r) = −2λ
r

r2
= −2λ

1

r

r

ra entral �eld analogous to the newtonian �eld but now of the form 1
r
. Thepoint mass 2λ generating this �eld is named a logarithmi partile (beauseits potential is logarithmi).
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P

λ

�Problem 55: Logarithmi �eld.Find the �eld generated at p by a logarithmi partile of mass m at q. Showthat this �eld has zero divergene in R2 − {q}.Solution:Let q = (a, b),p = (x, y), r = (x− a, y − b), r = |r|,L = (X, Y ). Then
X(x, y) = −m x− a

(x− a)2 + (y − b)2

Y (x, y) = −m y − b

(x− a)2 + (y − b)2The divergene is
∂xX = −m(x− a)2 + (y − b)2 − 2(x− a)2

((x− a)2 + (y − b)2)2
= −m (y − b)2 − (x− a)2

((x− a)2 + (y − b)2)2

∂yY = −m(x− a)2 + (y − b)2 − 2(y − b)2

((x− a)2 + (y − b)2)2
= −m (x− a)2 − (y − b)2

((x− a)2 + (y − b)2)2so div L = 0

�



3.1. INTEGRATION OF SCALAR FIELDS 119Problem 56: Field of a logarithmi irumferene.Let C be a material irumferene with onstant linear mass density λ on-stituted of logarithmi partiles. Compute the �eld at points exterior to thewire.Solution:First at all we parametrize C
γ(θ) = (R cos θ, R sin θ), θ ∈ [0, 2π].

(u,v)

(x,y)

r

The �eld is L(x, y) = −
∫

C
λ (x−u,y−v)

r2 dl; by symmetry we need to omputeonly
L(x, 0) = −

∫

C

λ
(x− u, v)

r2
dl, x > 0 :

r

(x,0)

(u,v)



120 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESOn the irumferene we have
r2 = (x− u)2 + v2 =

= (x− R cos θ)2 +R2 sin2 θ =

= x2 +R2 − 2xR cos θand
X(x, 0) = −

∫

C

λ
x− u

r2
dl =

= −λ
∫ 2π

0

x−R cos θ

x2 +R2 − 2xR cos θ
Rdθ =

{

0 if 0 < x < R
−M

x
if R < xwhere M = λ2πR. This integral is best evaluated using omplex variabletehniques (do the substitution z = eiθ and integrate along the unit irleusing the residue theorem).On another hand:

Y (x, 0) = −
∫

C

λ
−v
r2
dl = −

∫ 2π

0

λ
−R sin θ

(x− R cos θ)2 +R2 sin2 θ
Rdθ

= 0 (we integrate over a period an odd funtion respet to π)We obtain
L(x, y) = L(r) =

{

0 if 0 ≤ r < R
−M

r
r
r

if R < r

�Problem 57: In�nite wire in R4.As the �eld of an in�nite wire in R3 generates in R2 a logarithmi �eld wemight suspet that the gravitational �eld of an in�nite wire in R4 generatesthe ordinary gravitational �eld in R3.Assume a newtonian gravitational attration in R4 = {(x, y, z, u) : x, y, z, u ∈
R} to be of the form ' 1

r3 ' and take an in�nite material wire of linear density
λ along the axis (0, 0, 0, u). Show that the �eld in R3 (the hiperplane u = 0)has the form ' 1

r2 '. Compare with p.116.



3.1. INTEGRATION OF SCALAR FIELDS 121Solution:We denote by G' the gravitational onstant in R4and assume the attrationbetween two point masses m,m′ to be
F = −G′mm

′

r3

r

rThen the �eld at a point (x, y, z, 0) of the hiperplane u = 0 is:
g(x, y, z, 0) = −G′

∫ ∞

−∞

r

r4
λdl, r = (x, y, z,−u), r = |x| =

√
d2 + u2, d2 = x2+y2+z2Let us �rst ompute the integral

∫ a

0

1

r4
du =

∫ a

0

1

(d2 + u2)2
duUsing Hermitte's method write

1

(d2 + u2)2
=

d

du
(
Au+B

d2 + u2
) +

Cu+D

d2 + u2and after �nding the indeterminate oe�ients A,B,C,D we obtain
1

(d2 + u2)2
=

d

du
(
(1/2d2)u

d2 + u2
) +

1/2d2

d2 + u2Then
∫ a

0

1

r4
du = (

1

2d2

u

d2 + u2
+

1

2d3
arctan

u

d
)|a0 =

=
1

2d2

a

d2 + a2
+

1

2d3
arctan

a

d

lim
a→+∞

∫ a

0

1

r4
du =

1

2d3

π

2and due to the evenness of the integrand
lim

a→+∞

∫ 0

−a

1

r4
du =

1

2d3

π

2We have obtained
∫ +∞

−∞

1

r4
du =

π

2d3



122 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESThen, as the symmetry already shows, the fourth omponent of the �eldvanishes and we have
g(x, y, z, 0) = −G′

∫ ∞

−∞

r

r4
λdl =

= −G′ λπ

2d3
(x, y, z, 0)If r = (x, y, z) we an write

g(x, y, z) = −G′λπ

2

r

r
3and we see that the �eld indued in R3 has the form of the familiar newtoniangravitational �eld.

�3.2 Integration of vetor �elds
T Let γ : [a, b] → U be a C1 parametrized urve in the open set U ⊂ Rnand F a ontinuous vetor �eld in U . The line integral of F along γ (orirulation of F a long γ, or work done by F) is

∫

γ

F · dl =

∫ b

a

F(γ(t)) · γ′(t)dtThe boldfae in dl reminds us that it is a vetor element of line. For arigorous study of that onept see [Jän℄, pp.169,173.Two parametrizations γ and Γ are positively equivalent if the hange ofvariable h : [a, b] → [c, d] doing the reparametrization satis�es h′(t) > 0. Anoriented urve C is the olletion of all positively equivalent parametrizedurves.Let γ : [a, b] → U be a parametrization of the oriented urve C; then
A = γ(a) is the origin and B = γ(b) the end point of the oriented urve.Now let k : [a, b] → [c, d] be a hange of variable with k′(t) < 0, t ∈ [a, b]; thenthe equivalene lass of the reparametrized urve Γ is that of the oppositeurve C−. It has the origin at Γ(c) = γ(k−1(c)) = γ(b) = B, the end pointof C, and the end point at Γ(d) = γ(k−1(d)) = γ(a) = A:
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Α

Β

Α

Β

γ Γ

Let C be an oriented urve in the open set U ⊂ Rn; the integral of F along
C is

∫

C

F · dl =

∫

γ

F · dl

γ : [a, b] → U being a parametrization of C. This de�nition is independentof the parametrization hoosen (positively equivalent); see p.128.
�3.2.1 MedleyProblem 58:Let F(x, y, z) = xi + yj + zk. Compute the line integral of F along thefollowing oriented urves:a) γ(t) = (t, t, t), 0 ≤ t ≤ 1.b) γ(t) = (cos t, sin t, 0), 0 ≤ t ≤ 2π.) The ar of parabola y = x2, z = 0, from x = −1 up to x = 2.
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γ
F · dl =

∫ 1

0
(t, t, t) · (1, 1, 1)dt =

∫ 1

0
3tdt = 3

2
.

y

z

x

(1,1,1)

b) ∫

γ
F · dl =

∫ 2π

0
(cos t, sin t, 0) · (− sin t, cos t, 0)dt =

∫ 2π

0
0dt = 0.

y

z

x) Parametrize the ar of parabola by γ(t) = (t, t2, 0),−1 ≤ t ≤ 2 andthen
∫

γ

F · dl =

∫ 2

−1

(t, t2, 0) · (1, 2t, 0)dt =

∫ 2

−1

(t+ 2t3)dt = 9
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x

y

z

2

−1

�Problem 59:Let R > 0 and C the semiirumferene
(x− R)2 + y2 = R2, y ≥ 0traversed from (2R, 0) up to (0, 0). Let F be a vetor �eld with diretion andsense the same as those for going from (x, y) to (0, 0), and onstant module

c. Compute
∫

C

F · dlSolution:We make a �gure
θθ/2

F

y

(R,0) x

c

...

(2R,0)
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θ is the polar angle of points of C as seen from the enter of the irum-ferene. The �eld is

F(x, y) = −c (cos
θ

2
, sin

θ

2
)and a parametrization of C is

γ(θ) = (R +R cos θ, R sin θ), θ ∈ [0, π]

γ′(θ) = (−R sin θ, R cos θ)The irulation is
∫

C

F · dl = −c
∫ π

0

(cos
θ

2
, sin

θ

2
) · (−R sin θ, R cos θ)dθ =

= −cR
∫ π

0

(− cos
θ

2
sin θ + sin

θ

2
cos θ)dθ =

= cR

∫ π

0

sin
θ

2
dθ = 2c

�Problem 60: Agnesi's urve.A straight line r passing through the origin uts at the point A the irum-ferene S
x2 + (y − R/2)2 = R2/4and uts l, the tangent line to S at (0, R), at the point B. The lines through

A and B and respetively parallel to Ox and Oy ut inM . The path followedby M as r varies is Agnesi's urve.a) Parametrize Agnesi's urve.b) Find the line integral of F(x, y) = (y, x) along Agnesi's urve between
(−R,R/2) and (R,R/2).
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B

A M

x

y

(0,R/2)

(0,R)
l

r

.

a) Let y = mx be the equation of r. Geometrially we see that m = 0must be exluded for both lines are paral.lel. From the �gure as well,it is easy to see that limm→±∞M(m) = (0, R)Now:
y oordinate of A

x2 + (y − R/2)2 = R2/4
y = mx

}

⇒ y =
m2

1 +m2
R

x oordinate of B
x =

1

m
RParametrization of the urve

γ(m) = (
1

m
R,

m2

1 +m2
R), m ∈ (−∞,+∞) \ {0}.If we prefer to use an angular parameter m = tan θ we have

Γ(θ) = (R cot θ, R sin2 θ), θ ∈ [−π/2, π/2] \ {0}.Notie those formulae give Γ(±π/2) = (0, R) that equals the limitpoint.



128 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESb) The point (−R,R/2) orresponds to a value of the parameter θ1 = 3π/4and the point (R,R/2) orresponds to θ2 = π/4. On another hand
Γ′(θ) = (−R 1

sin2 θ
, 2R sin θ cos θ)We have:

∫

C

F · dl =

∫ π/4

3π/4

(R sin2 θ, R cot θ) · (−R 1

sin2 θ
, 2R sin θ cos θ)dθ =

= R2

∫ π/4

3π/4

(2 cos 2θ − 1)dθ = R2

∫ π/4

3π/4

cos 2θdθ = R2

�Problem 61:Let C be an oriented urve and F a vetor �eld. Show that the de�nition
∫

C

F · dl =

∫

γ

F(γ(t)) · γ′(t) dtdoes not depend on the positively equivalent parametrization γ used.Solution:Let γ(t), t ∈ [a, b] be a parametrization of C, τ = h(t) a hange of variablesuh that h′(t) > 0
h : [a, b] → [c, ]d

t 7→ τ = h(t)
,and Γ(τ) the orresponding reparametrization. Then γ(t) = Γ(h(t)), γ′(t) =

Γ′(h(t))h′(t) and by the hange of variable theorem for integrals we have
∫

Γ

F · dl =

∫ d

c

F(Γ(τ)) · Γ′(τ)dτ =

{

τ = h(t)
dτ = h′(t)dt

}

=

=

∫ b

a

F(Γ(h(t))) · Γ′(h(t))h′(t)dt =

=

∫ b

a

F(γ(t)) · γ′(t)dt =

∫

γ

F · dl
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∫

Γ

F · dl =

∫ d

c

F(Γ(τ)) · Γ′(τ)dτ =

{

τ = h(t)
dτ = h′(t)dt

}

=

=

∫ a

b

F(Γ(h(t))) · Γ′(h(t))h′(t)dt =

= −
∫ b

a

F(γ(t)) · γ′(t)dt = −
∫

γ

F · dlshowing that
∫

C−

F · dl = −
∫

C

F · dl

�Notation
T Writing γ(t) = (x1(t), . . . , xn(t)) and γ′(t) = (dx1

dt
, . . . , dxn

dt
) one has

∫

C

F · dl =

∫ b

a

(F1, . . . , Fn) · (dx1

dt
, . . . ,

dxn

dt
)dt =

=

∫ b

a

F1dx1 + · · ·+ Fndxn =

=

∫

C

F1dx1 + · · ·+ Fndxn

�Problem 62:Evaluate the following line integrals:a) ∫

γ
xdy − ydx, γ(t) = (cos t, sin t), t ∈ [0, 2π].b) ∫

C
yzdx+ zxdy + xydz, C the triangle P = (1, 0, 0), Q = (0, 1, 0), R =

(0, 0, 1).) ∫

C
xdz, C the ar of the urve resulting from the intersetion of thesphere x2 + y2 + z2 = 1 and the ylinder x2 + y2 = y satisfying x ≥

0, y ≥ 0, z ≥ 0 (Viviani's urve).
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∫

γ

xdy − ydx =

∫ 2π

0

(cos t cos t− sin t(− sin t))dt = 2πb) We are not given an orientation on the urve; we use the one given by
PQR. Let us integrate along eah side; on the segment PQ this is





x
y
z



 = t





0
1
0



 + (1 − t)





1
0
0



 =





1 − t
t
0



 , t ∈ [0, 1]

∫

C

yzdx+ zxdy + xydz =

∫ 1

0

0 dt = 0along QR we have




x
y
z



 = t





0
0
1



 + (1 − t)





0
1
0



 =





0
1 − t

0



 , t ∈ [0, 1]

∫

C

yzdx+ zxdy + xydz =

∫ 1

0

0 dt = 0et. and the integral vanishes.Alternatively we may observe that the segments lie in the oordinateplanes. Thus PQ is in the z = 0 plane and the integral amounts to
∫

C
xydz that vanishes beause dz = 0.) Taking into aount that the ylinder is x2 + (y − 1

2
)2 = (1

2
)2 and thatthe urve lies in the �rst otant we obtain the following �gure:
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z

y

x

i) This problem is related to the one in p.28. So we �rst parametrizethe projetion of the urve on z = 0 using polar oordinates.
O x

y

d

t

(0,1/2)

In the �gure we see that d = sin t and a parametrization is
γ(t) = (sin t cos t, sin2 t), t ∈ [0,

π

2
],and 'limbing' to the sphere we obtain a parametrization of Vi-viani's urve

Γ(t) = (sin t cos t, sin2 t,
√

1 − (sin2 t cos2 t+ sin4 t) =

= (sin t cos t, sin2 t, cos t)Now we an integrate
∫

C

xdz =

∫ π/2

0

sin t cos t(− sin t)dt =

∫ π/2

0

− sin2 t cos t dt =

= −sin3 t

3
|π/2
0 = −1

3



132 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESii) Alternatively we may identify the points in the �rst otant of thesphere through its spherial oordinates
x = sinϕ cos θ

y = sinϕ sin θ

z = cosϕwith ϕ ∈ [0, π
2
], θ ∈ [0, π

2
], take into aount that the points of Csatisfy x2 − y + y2 = 0, and obtain the relation

sin2 ϕ cos2 θ − sinϕ sin θ + sin2 ϕ sin2 θ = 0or
sinϕ(sinϕ− sin θ) = 0 ⇒

{

sinϕ = 0 ⇒ ϕ = 0
sinϕ = sin θ ⇒ ϕ = θThe ase ϕ = 0 orresponds to the north pole; when we integrateone point doesn't matter. The ase ϕ = θ leads to the sameparametrization:

Γ(θ) = (sin θ cos θ, sin2 θ, cos θ), θ ∈ [0,
π

2
].

�Problem 63:Let C be the intersetion of the ylinder x2+y2 = 1 with the plane z = ax+by.Find a, b with a2 + b2 = 1 suh that
I =

∫

C

ydx+ (z − x)dy − ydz = 0Solution:Still using the method in p.28 we parametrize C by:
γ(θ) = (cos θ, sin θ, a cos θ + b sin θ), θ ∈ [0, 2π]

γ′(θ) = (− sin θ, cos θ,−a sin θ + b cos θ)
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I =

∫ 2π

0

(sin θ, (a−1) cos θ+b sin θ,− sin θ)·(− sin θ, cos θ,−a sin θ+b cos θ)dθ =

=

∫ 2π

0

(a− 1)dθ = 2π(a− 1)and we see that it su�es to take a = 1, b = 0.
�Problem 64:Compute the integral

I =

∫

C

dx+ dy

|x| + |y|
C being the square with vertexs (1, 0), (0, 1), (−1, 0), (0,−1).Solution:Take the segments C1, C2, C3, C4 with the orientation of the �gure:

γ
1

γ
2

γ
3

γ
4

P(1,0)

S(0,−1)

R(−1,0)

Q(0,1)

Remind (see p.88) that if γ1 parametrizes C1, then −γ1 parametrizes C3;and the same happens with C2 and C4. Then



134 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESParametrization of C1

γ1(t) =

(

x
y

)

= (1 − t)

(

1
0

)

+ t

(

0
1

)

=

(

1 − t
t

)

, γ′1 =

(

−1
1

)Parametrization of C2

γ2(t) =

(

x
y

)

= (1 − t)

(

0
1

)

+ t

(

−1
0

)

=

(

−t
1 − t

)

, γ′2 =

(

−1
−1

)Now ompute the integrals
∫

C1

dx+ dy

|x| + |y| =

∫ 1

0

−dt+ dt

|1 − t| + |t| = 0

∫

C3

dx+ dy

|x| + |y| =

∫ 1

0

dt− dt

|t− 1| + | − t| = 0

∫

C2

dx+ dy

|x| + |y| =

∫ 1

0

−dt− dt

| − t| + |1 − t| = −2

∫ 1

0

dt

t+ (1 − t)
= −2

∫

C4

dx+ dy

|x| + |y| =

∫ 1

0

dt+ dt

|t| + |t− 1| = 2

∫ 1

0

dt

t+ (1 − t)
= 2Adding the partial results:

I = 0

�Problem 65: Dependene on path.Evaluate the work done by the �eld F(x, y, z) = (y, 0, 0) in moving a unitmass point from (0, 0, 0) up to (1, 1, 0) along:a) The polygonal line with verties at (0, 0, 0), (1, 0, 0), (1, 1, 0).b) The polygonal line with verties at (0, 0, 0), (0, 1, 0), (1, 1, 0).) The parabola y = x2, z = 0 from (0, 0, 0) up to (1, 1, 0).d) Show there are paths joining (0, 0, 0) to (1, 1, 0) along whih the workdone by F is as big as we please.



3.2. INTEGRATION OF VECTOR FIELDS 135Solution:a) Parametrize the path pieewise:
y

xP(0,0,0) Q(1,0,0)

R(1,1,0)

[P,Q] : γ1(t) = (t, 0, 0), t ∈ [0, 1]

[Q,R] : γ2(t) = (1, t, 0), t ∈ [0, 1]and ompute the work integrating:
W =

∫ 1

0

(0, 0, 0) · (1, 0, 0)dt+

∫ 1

0

(t, 0, 0) · (0, 1, 0)dt = 0b) Now
y

P(0,0,0)

R(1,1,0)

x

Q(0,1,0)

[P,Q] : γ1(t) = (0, t, 0), t ∈ [0, 1]

[Q,R] : γ2(t) = (t, 1, 0), t ∈ [0, 1]



136 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESand integrate the �eld:
W =

∫ 1

0

(t, 0, 0) · (0, 1, 0)dt+

∫ 1

0

(1, 0, 0) · (1, 0, 0)dt = 1) The path is
P(0,0,0)

y
R(1,1,0)

xwhih we parametrize by
γ(t) = (t, t2, 0), t ∈ [0, 1]and the work is

W =

∫ 1

0

(t2, 0, 0) · (1, 2t, 0)dt = 1/3d) Consider the path in the �gure
P(0,0,0) xL

y

R(1,1,0)

2

In the vertial segments dx = 0 and the �eld doesn't do work alongthem. Along the horizontal segments the work is
W = 2L− 1

L

2
=

3

2
La value we an make as big as we please taking L big.

�



3.2. INTEGRATION OF VECTOR FIELDS 1373.2.2 Salar potential
T We say that a vetor �eld in an open set F = (F1, . . . Fn) ∈ C1(U),
U ⊂ Rn has potential V ∈ C2(U) if

F = ∇Vor, in omponents,
Fi =

∂V

∂xi
, i = 1, . . . , n.

V is a bit like a primitive of F; a single funtion alone has the informationabout the n omponent funtions of the �eld. Fields that have a potentialfuntion are named gradient �elds.If F ∈ C1(U) has a potential V , being of lass C2 we an invert the orderof derivation:
∂Fi

∂xj
=

∂2V

∂xi∂xj
=

∂2V

∂xj∂xi
=
∂Fj

∂xiWe shall name that neessary ondition for the existene of a potential themixed derivatives ondition; when U ⊂ R3 we may summarize it as rot F = 0.
U ⊂ R3 is alled simply onneted if any losed urve in U an be '�lled'with a surfae ontained in U . Then the neessary ondition is a su�ientone as well:

F is a gradient ⇔ rot F = 0The previous equivalene remains true for U ⊂ R2. In this ase we all Usimply onneted if it has only one 'piee' and, moreover, it has no holes.Then the mixed derivatives ondition is a su�ient one for the existene ofa potential.Let U ⊂ R3 be open and F ∈ C1(U); the following onditions are equiva-lenta) F has a potential V .b) ∫

C
F · dl = 0, for every losed urve C ⊂ U .) ∫

C
F · dl depends only on the endpoints of C.Fields satisfying the third ondition are alled onservative �elds; the equiv-alene above says that gradient �elds and onservative �elds are the same.

�



138 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESProblem 66: Finding the �eld from a potential.Find the �elds that have the following potentials:a) V (x, y) = log 1
r
, r = (x, y), r =| r | logarithmi potenial.b) V (x, y, z) = 1

r
, r = (x, y, z), r =| r | newtonian potenial.) V (x1, . . . , xn) = 1

n−2
r−(n−2), n ≥ 3, r = (x1, . . . , xn), r =| r | generalizednewtonian potential.Solution:a) F(r) = ∇(log 1

r
) = r∇(1

r
) = r(− 1

r2 )
r
r

= − r
r2 .b) F(r) = ∇(1

r
) = − 1

r2

r
r

= − r
r3) F(r) = ∇( 1

n−2
r−(n−2)) = − 1

n−2
(n− 2)r−(n−1) r

r
= − r

rn

�

T The line integral of a gradient �eld F with potential V is partiularlysimple. Observe �rst that if γ is a parametrized urve
d

dt
V (γ(t)) =

∂V

∂x1

γ′1 + · · · + ∂V

∂xn

γ′n = ∇V · γ′and then
∫

C

F · dl =

∫ b

a

F(γ(t)) · γ′(t)dt =

=

∫ b

a

∇V (γ(t)) · γ′(t)dt =

=

∫ b

a

d

dt
V (γ(t))dt = V (γ(b)) − V (γ(a))whih reinfores the idea of the potential being a primitive of the �eld.

�



3.2. INTEGRATION OF VECTOR FIELDS 139Problem 67:Let V (x, y, z) = x
r
; omputea) ∫

C
∇V · dl, C being the ar of the irumferene with enter at (0, 0, 0)joining (1, 0, 0) to (−1, 0, 0).b) ∫

Q
r3∇V · dl, Q being the boundary of the square Q = {(x, y, z) : 0 ≤

x ≤ 1, y = 0, 0 ≤ z ≤ 1}.Solution:a) We need only the end points:
∫

C

∇V · dl = V (−1, 0, 0) − V (1, 0, 0) = −1 − 1 = −2b) A �gure:

x

y

z

Q

1

1Now we must do some omputations
∇(

x

r
) = (

r2 − x2

r3
,−xy

r3
,−xz

r3
)

=
1

r3
(y2 + z2,−xy,−xz)

G = r3∇(
x

r
) = (y2 + z2,−xy,−xz)



140 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESThe �eld we want to integrate is G(x, 0, z) = (z2, 0,−xz) beause Q ⊂
{y = 0}. We parametrize the boundary of Q and integrate:

γ1(t) = (0, 0, t), t ∈ [0, 1]

∫ 1

0

(t2, 0, 0) · (0, 0, 1)dt = 0

γ2(t) = (t, 0, 1), t ∈ [0, 1]

∫ 1

0

(1, 0,−t) · (1, 0, 0)dt = 1

γ3(t) = (1, 0, 1 − t), t ∈ [0, 1]

∫ 1

0

((1 − t)2, 0, t− 1) · (0, 0,−1)dt = 1/2

γ4(t) = (1 − t, 0, 0), t ∈ [0, 1]

∫ 1

0

(0, 0, 0) · (−1, 0, 0)dt = 0Finally
∫

Q

r3∇V · dl = 3/2

�Problem 68: Integral of onservative �elds.a) Compute the line integral ∫
C
ydx+xdy along the segment joining (0, 0)to (2, 3).b) Compute the line integral ∫

C
xdx+ydy+zdz along the segment joining

(0, 0, 0) to (1, 2, 3).Solution:We need not parametrize C beause both �elds have a potential that we an�nd by inspetion:a) V (x, y) = xy is a potential funtion of F(x, y) = (y, x). Then
∫

C

ydx+ xdy = V (2, 3) − V (0, 0) = 6b) V (x, y, z) = 1
2
(x2 + y2 + z2) is a potential funtion of F(x, y, z) =

(x, y, z). So
∫

C

xdx+ ydy + zdz = V (1, 2, 3) − V (0, 0, 0) = 7

�



3.2. INTEGRATION OF VECTOR FIELDS 141Problem 69:Show that the �eld de�ned in R2 \ {0}

F(x, y) = (
−y

x2 + y2
,

x

x2 + y2
)satis�es the mixed derivatives ondition but does not have a potential.Solution:It satis�es the ondition:

∂F1

∂y
= −x2−y2+2y2

(x2+y2)2
= y2−x2

(x2+y2)2

∂F2

∂x
= x2+y2−2x2

(x2+y2)2
= y2−x2

(x2+y2)2

}

⇒ ∂F2

∂x
=
∂F1

∂yIf F had a potential its integral along any losed urve should vanish. Butonsider the urve:
γ(t) = (cos t, sin t), t ∈ [0, 2π],and the line integral

∫

γ

F · dl =

∫ 2π

0

(− sin t, cos t) · (− sin t, cos t)dt =

∫ 2π

0

dt = 2π 6= 0We see that F annot have a potential; note that F is de�ned in R2 \ {0}whih is not simply onneted for it has a hole at the origin.
�To obtain a potential of a gradient �eld it su�es to ompute its lineintegral along a urve that onnets a hoosen �xed point with the pointwhere we want the potential. This is possible when U is a onneted set; ifit is not we apply the proedure to eah onneted omponent.Problem 70: First method to �nd a potential.a) Show that the following �elds have a potential and �nd it.i) F(x, y) = (y2 + 2xy, 2xy + x2)ii) F(x, y, z) = (y + z, z + x, x+ y)b) If the �eld F = (P,Q) de�ned in the whole of R2 has a potential, �nda potential that takes the value 0 at p = (a, b).



142 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESSolution:a) The �elds are de�ned in the whole of R2 or of R3. As they are simplyonneted sets, it su�es to show that they satisfy the mixed derivativesondition.i) We have:
∂y(y

2 + 2xy) = 2y + 2x = ∂x(2xy + x2)and so F has a potential. Using the origin as the �xed point wemay integrate along a segment:
γ(t) = (tx, ty), 0 ≤ t ≤ 1

γ′(t) = (x, y)

V (x, y) =

∫ 1

0

((ty)2 + 2(tx)(ty), 2(tx)(ty) + (tx)2) · (x, y)dt =

= (y2x+ 2x2y + 2xy2 + x2y)

∫ 1

0

t2dt = xy2 + x2yii) Now we have:
∂y(y + z) = 1 = ∂x(z + x)

∂z(y + z) = 1 = ∂x(x+ y)

∂z(z + x) = 1 = ∂y(x+ y)To �nd a potential we proeed as in i)
γ(t) = (tx, ty, tz), 0 ≤ t ≤ 1

γ′(t) = (x, y, z)and
V (x, y, z) =

∫ 1

0

(ty + tz, tz + tx, tx+ ty) · (x, y, z)dt =

= 2(xy + yz + zx)

∫ 1

0

tdt =

= xy + yz + zx



3.2. INTEGRATION OF VECTOR FIELDS 143b) To obtain the value 0 at p = (a, b), we hoose p as the �xed point:
γ(t) = (1 − t)p + tx, 0 ≤ t ≤ 1

γ′(t) = x − pand obtain
V (x, y) =

∫ 1

0

(P ((1 − t)p + tx), Q((1 − t)p + tx)) · (x − p)dt =

= (x− a)

∫ 1

0

(P ((1 − t)p + tx)dt+ (y − b)

∫ 1

0

(Q((1 − t)p + tx)dtIn partiular if p = (0, 0) we obtain the formula
V (x, y) = x

∫ 1

0

P (tx)dt+ y

∫ 1

0

Q(tx)dtWe an use this method in the ase of n variables.
�

T If we want the potential of a onservative �eld in a retangle, thefollowing paths are useful:

x

y

(x,y)

(a,b)

(a,y)

,and we have a potenial
V (x, y) =

∫ x

a

P (x, y)dx+

∫ y

b

Q(a, y)dy,The path
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x

y

(a,b)

(x,y)

(x,b)

.

produes the potential
V (x, y) =

∫ x

a

P (x, b)dx+

∫ y

b

Q(x, y)dyBoth integrations oinide beause the integration depends only on theend points.
�Problem 71: Seond method to �nd a potential.a) Let F = (P,Q) ∈ C1(U), U ⊂ R2 being an open set, a �eld that satis�esthe mixed derivatives ondition ∂Q

∂x
= ∂P

∂y
. Let ∫

P (x, y)dx be anyprimitive of P respet to x de�ned in U . Show that in any neighborhoodof eah point there is a funtion C(y) suh that
∫

P (x, y)dx+ C(y)is a potenial for F.b) Deide whether the following �elds have a potential, and in the a�r-mative ase ompute it:i) F(x, y) = (y2 + 2xy, x2 + 2xy)ii) F(x, y, z) = (y + z, z + x, x+ y).



3.2. INTEGRATION OF VECTOR FIELDS 145Solution:a) Let (a, b) ∈ U and hoose an open retangle K entered at (a, b) andontained in U ; we �nd a potential V in K.
x

y U

(a,b)

If ∫

P (x, y)dx is an x-primitive of P , any other primitive will di�erfrom it in a onstant that depending on y. The funtion ∫ x

a
P (u, y)du+

∫ y

b
Q(a, v)dv is an x-primitive of P as well as a potential for the �eld;so

∫

P (x, y)dx− (

∫ x

a

P (u, y)du+

∫ y

b

Q(a, v)dv) = −C(y)and then
∫

P (x, y)dx+ C(y) =

∫ x

a

P (u, y)du+

∫ y

b

Q(a, v)dvis a potential.b) Both �elds satisfy the mixed derivatives ondition and as we have seenin a) they have loally a potential.i)
∂xV = y2 + 2xy ⇒

V (x, y) =

∫

(y2 + 2xy)dx+ C(y) = y2x+ x2y + C(y)To ompute C(y), we impose the other ondition V (x, y) mustsatisfy:
∂yV = x2 + 2xy ⇒

2yx+ x2 + C ′(y) = x2 + 2xy ⇒ C ′(y) = 0 ⇒ C(y) = onst



146 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESWe have obtained the potenial
V (x, y) = y2x+ x2y + onstii) ∂xV = y+z ⇒ V (x, y, z) =

∫

(y+z)dx+C(y, z) = (y+z)x+C(y, z)To ompute C(y, z) we impose two onditions V (x, y, z) must sat-isfy:
∂yV = z + x⇒ x+ ∂yC(y, z) = z + x⇒ ∂yC(y, z) = z

∂zV = x+ y ⇒ x+ ∂zC(y, z) = x+ y ⇒ ∂zC(y, z) = yAnd now we have a similar problem to that in a):
C(y, z) =

∫

zdy +D(z) = zy +D(z)

y +D′(z) = y ⇒ D′(z) = 0 ⇒ D(z) = onstThe potential is:
V (x, y, z) = (y + z)x+ zy + onst

�Problem 72: Integral of onservative �elds.See whether the following integrals are independent of C:a) ∫

C
(sin y ex sin y, x cos y ex sin y) · dl, between (0, 0) and (1, π).b) ∫

C
(xy2z2, x2yz2, x2y2z) · dl, between (1, 1, 1) and (1, 2, 3).and in the a�rmative ase ompute them.Solution:Both �elds are onservative:a) V (x, y) = ex sin y is a potential and we have

∫

C

(sin y ex sin y, x cos y ex sin y) · dl = V (1, π) − V (0, 0) =

= 1 − 1 = 0



3.2. INTEGRATION OF VECTOR FIELDS 147b) V (x, y, z) = x2y2z2

2
is a potential and we have

∫

C

(xy2z2, x2yz2, x2y2z) · dl = V (1, 2, 3) − V (1, 1, 1) =

= 18 − 1

2
=

35

2

�Problem 73:Compute the line integral
I =

∫

C

(x2 − yz)dx+ (y2 − xz)dy + (z2 − xy)dz,

C being the ar of the irular helix parametrized by γ(t) = (a cos t, a sin t, h
2π
t),from the point A = (a, 0, 0) up to the point B = (a, 0, h).Solution:Let us see whether F(x, y, z) = (x2 − yz, y2 − xz, z2 − xy) has a potential:rot F = det





i j k

∂x ∂y ∂z

x2 − yz y2 − xz z2 − xy



 = (0, 0, 0)and being a di�erentiable �eld de�ned in all of R3 it has a potential. Weompute it integrating along the segment γ(t) = (tx, ty, tz), t ∈ [0, 1]:
V (x, y, z) =

∫ 1

0

t2(x2 − yz, y2 − xz, z2 − xy) · (x, y, z)dt =

=
1

3
(x3 + y3 + z3 − 3xyz)Then

I = V (a, 0, h) − V (a, 0, 0) =
1

3
(a3 + h3 − a3) =

1

3
h3

�



148 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESProblem 74:a) See whether the following integrals are independent of C:i)
I =

∫

C

(2xyz + sin x)dx+ xz2dy + x2ydzii)
J =

∫

C

ydx+ xdy + xyzdzb) Same question if C ⊂ {(x, y, z) : z = 0}.Solution:a) i) rot (2xyz + sin x, xz2, x2y) = 0, V (x, y, z) = x2yz − cosx is apotential and there is independene of Cii) rot (y, x, xyz) = (xz,−yz, 0) doesn't vanish everywhere and thereis dependene on C.b) i) The �eld has a potential and that fat doesn't depend on where
C is.ii) Now we are in the plane z = 0 and ∂

∂x
(y) = 0 = ∂

∂y
(x); a potentialexists, namely V (x, y) = xy and there is independene of theintegral on C.

�Problem 75:Consider the plane z = 0 in R3 and another plane π passing through the Oxaxis. Being given X = (x, y, z) ∈ R3,a) Compute X′, X”, the orthogonal projetions of X on z = 0 and πrespetively.



3.2. INTEGRATION OF VECTOR FIELDS 149b) Show that the �eld
F = X′ + X”has a potential and �nd it.Solution:

x

z

y

X’

X

X’’

πa) Clearly X′(x, y, z) = (x, y, 0); to �nd X” let the equation of π be
ay + bz = 0, a2 + b2 = 1and selet an on basis of π, for instane

(1, 0, 0), (0, b,−a)Then the projetion is
X”(x, y, z) = ((x, y, z) · (1, 0, 0))(1, 0, 0) + ((x, y, z) · (0, b,−a))(0, b,−a) =

= (x, b(by − az),−a(by − az))The �eld is
F(x, y, z) = (2x, y + b(by − az),−a(by − az))b) Let us see �rst whether it an have a potential:rot F = det





i j k

∂x ∂y ∂z

2x y + b(by − az) −a(by − az)



 = (−ab+ab, 0, 0) = 0



150 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESand, moreover, the �eld is everywhere de�ned and so has a potential
V (x, y, z). We ompute it

∂xV = 2x⇒ V = x2 + ϕ(y, z)Now we impose the other two onditions to V and obtain
∂yV = y + b(by − az) : ∂yϕ = y + b(by − az)

∂zV = z − a(by − az) : ∂zϕ = −a(by − az)Integrating the �rst equation
ϕ(y, z) = (1 + b2)

y2

2
− abyz + ψ(z)and substituting into the seond

−aby + ψ′(z) = −a(by − az)

ψ′(z) = a2z

ψ(z) = a2 z
2

2Finally
V (x, y, z) = x2 + (1 + b2)

y2

2
− abyz + a2 z

2

2

�Problem 76:a) Let F be a nowhere vanishing onservative �eld in R3. The �eld linesare those urves tangent to the diretion of the �eld at eah point.Show they an't be losed urves.b) Let f ∈ C1(R3) and C be a urve orthogonal to the level surfaes of f(at ritial points of f there is no orthogonal diretion, so we assumethat C passes through no suh points). Show that C annot be losed.



3.2. INTEGRATION OF VECTOR FIELDS 151Solution:a) Let C be a losed �eld line; being | F |6= 0 we have
0 <

∫

C

| F | dland we an arrange the orientation of C to have
0 <

∫

C

| F | dl =

∫

C

F · tdl =

∫

C

F · dlBut F being assumed onservative we have ∫

C
F·dl = 0, a ontradition.b) The urve has the diretion of F = ∇f at eah one of its points and Fdoesn't vanish. Then we an apply a).

�Problem 77:Let F be a vetor �eld with �xed diretion but whose module and sense ateah point depend on the distane to a �xed referene plane orthogonal tothe diretion of F, and the dependene is C1.a) Show that F has a potential.b) Is the result true if the dependene on the distane is only C0?Solution:Choose the Oz axis in the diretion of the �eld and hoose the origin in thereferene plane. Then
F(x, y, z) = f(z)(0, 0, 1)a) If the dependene is C1, so is the �eld; moreover it has rot F = 0 in R3.It follows that F is onservative.b) A potential is:

V (x, y, z) =

∫ z

0

f(t)dt

�



152 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESProblem 78: Potential of a entral �eld.For a entral �eld F �nd a potential. Apply the result to �nd potentials forthe following �eldsa) The gravitational �eld of a point mass m at the origin.b) The eletrostati �eld of a point harge q at the origin.) A entral �eld with enter at the origin that satis�es Hooke's law.Solution:Consider a entral �eld F(r) = f(r)r, f being a ontinuous funtion andassume it de�ned only in R3 \ {0}. Let us try to guess a potential; it has todo with f(r). What about f as a potential?
∇f(r) = f ′(r)

r

rIt does not work �rst at all beause of the derivative of f that isn't evenassumed to exist. What if we take a primitive of f? Let ϕ(r) =
∫

f(r)dr(reall that f is ontinuous); in this ase
∇ϕ(r) = f(r)

r

rand we are nearer. As r
r
is the gradient of r we guess that V (r) =

∫

rf(r)drwill be a potential. Let us try:
∇V (r) = rf(r)

r

r
= f(r)r = F(r)a) The �eld is g(r) = −m r

r3 , so f(r) = −m 1
r3 and we have V (r) =

−m
∫

r 1
r3dr = m1

r
.b) Now E(r) = q r

r3 and by analogy with a) V (r) = −q 1
r
. In eletriitytexts one sees V (r) = q 1

r
but E = −∇V .) The �eld is F(r) = −kr, f(r) = −k and V (r) = −1

2
kr2.

�



3.2. INTEGRATION OF VECTOR FIELDS 153Problem 79:Let F have potential V ; prove the following are equivalent:a) F(r) = g(r)r (F is radial).b) F(r) = h(r)r (F is entral).) V (r) = f(r) (V is spherially symmetri).Solution:b)⇒a): Evident.a)⇒): It su�es to show that V is onstant on eah sphere SR. Twopoints in the sphere an be onneted by a urve in the sphere γ : [a, b] → SR:
S

Rγ

and we prove V is onstant on γ. Di�erentiate V on γ;
d

dt
(V (γ(t))) = ∇V (γ(t)) · γ′(t) =

= g(γ(t))γ(t) · γ′(t) = 0beause γ(t) and γ′(t) are a radius vetor and a tangent vetor to the sphererespetively; they are orthogonal.)⇒b): From V (r) = f(r) ompute F.
∂V

∂xi
= f ′(r)

xi

r
⇒ F(r) =

f ′(r)

r
r

�



154 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESProblem 80: Energy onservation.Let F = −∇V be a vetor �eld and onsider a mass point m in that �eldsubmitted to Newton's law. Let x(t) be the movement of the mass point.a) Show that the energy E = 1
2
m | ẋ(t) |2 +V (x(t)) is onstant.b) Show that if the partile moves on an equipotential surfae then theelerity is onstant.) If y(t) is a trajetory of F looked upon as a veloity �eld show that

V (y(t)) is noninreasing.Solution:a) Write E = 1
2
mẋ(t) · ẋ(t) + V (x(t)) and di�erentiate

dE

dt
=

1

2
m2ẋ(t) · ẍ(t) + ∇V (x(t)) · ẋ(t)Newton's law is mẍ = F(x(t)) = −∇V (x(t)) and substituting

dE

dt
= ẋ(t) · (−∇V (x(t)) + ∇V (x(t))) = 0and E is onstant along the movement.b) If the mass point moves on an equipotential surfae, being the energyonstant, the kineti term is onstant and so is the elerity.) The law of the trajetory is now ẏ(t) = F(y(t)) and

d

dt
V (y(t)) = ∇V (y(t)) · ẏ(t) = ∇V (y(t)) · F(y(t)) =

= −F(y(t)) · F(y(t)) = − | F(y(t)) |2≤ 0

�



3.2. INTEGRATION OF VECTOR FIELDS 1553.2.3 Vetor potential
T A vetor �eld F ∈ C1(U) in the open set U ⊂ R3 has a vetor potential
A ∈ C2(U) if

F = rot ANot every vetor �eld has a vetor potential beause taking the divergeneof both terms in the preeding expression gives div F = div (rot A) = 0, aneessary ondition for a vetor potential to exist. A �eld suh that divF 6= 0an't have a vetor potential.An open set U ⊂ Rn is star shaped if there is a point p ∈ U that an'see' all the points in U , that is for every x ∈ U one has [p,x] ⊂ U .

x

y

p
U

For suh sets the neessary ondition is su�ient as well, that is:
F has vetor potential ⇔ div F = 0Let U ⊂ R3 be an open set and F ∈ C1(U); the following onditions areequivalent:a) F has a vetor potential A: rot A = F.b) ∫ ∫

S
F · dS = 0, for every losed surfae in U .) ∫ ∫

S
F · dS depends only on ∂S.

�



156 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESFirst method for vetor potential alulusProblem 81:Consider the losed ball Ū = {x ∈ R3 : |x| < R} and F ∈ C1(Ū) suh thatdiv F = 0. We want to prove that
A(x) =

∫ 1

0

F(tx) × (tx)dtis a vetor potential for F. Show:a) If M ∈ C1(U) and N(x) =
∫ 1

0
M(tx)dt then rot N =

∫ 1

0
(rot M)(tx)dt.b) ∇× (F(tx) × (tx)) = 2tF(tx) + t2 d

dt
F(tx).) rot A = F.d) A,A1 are vetor potentials (of the same �eld) ⇔ A1 = A+∇f loally(f an arbitrary funtion).e) Find a vetor potential of F = (0, 0, 1).f) Find a vetor potential of F = (0, 0, 1) satisfying divA = 2x+ y − 1.g) Find a vetor potential of F(x, y, z) = (2x,−y,−z).Solution:a) Let us hek the �rst omponent; using Leibniz's rule for the di�eren-tiation of integrals depending on parameters we have

(rotN)1 = ∂yN3 − ∂zN2

∂yN3 =

∫ 1

0

∂yM3(tx)dt

∂zN2 =

∫ 1

0

∂zM2(tx)dtand
(rot N)1 =

∫ 1

0

(∂yM3 − ∂zM2)(tx)dt =

=

∫ 1

0

(rot M)1(tx)dt



3.2. INTEGRATION OF VECTOR FIELDS 157We an proeed in the same way with the other omponents.b) We use the formula (see p.72)
∇× (F ×G) = (∇ ·G)F − (∇ · F)G + (G · ∇)F − (F · ∇)Gthus

∇×(F(tx)×(tx)) = (∇·(tx))F(tx)−(∇·F(tx))tx+(tx·∇)F(tx)−(F(tx)·∇)txCompute the di�erent terms
∇ · (tx) = 3t

∇ · F(tx) = tdiv F = 0

tx · ∇ = tx∂x + ty∂y + tz∂z

F(tx) · ∇ = F1(tx)∂x + F2(tx)∂y + F3(tx)∂zand obtain
∇× (F(tx) × (tx)) = 3tF(tx) + (tx∂x + ty∂y + tz∂z)F(tx)

−(F1(tx)∂x + F2(tx)∂y + F3(tx)∂z)txThe �rst operator ating on the �rst omponent of F(tx):
(tx∂x + ty∂y + tz∂z)F1(tx) = t2(x(∂xF1)tx + y(∂yF1)tx + z(∂zF1)tx)that we an write as

t2
d

dt
F1(tx) = t2((∂xF1)txx+ (∂yF1)txy + (∂zF1)txz),and analogous results for the other omponents F2, F3. The other op-erator is

(F1(tx)∂x+F2(tx)∂y+F3(tx)∂z)tx = t(F1(tx), F2(tx), F3(tx)) = tF(tx)Finally
∇× (F(tx) × (tx)) = 2tF(tx) + t2

d

dt
F(tx) =

=
d

dt
(t2F(tx))



158 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVES)
(rot A)(x) =

∫ 1

0

∇× (F(tx) × (tx))dt =

=

∫ 1

0

d

dt
(t2F(tx))dt = (t2F(tx))|10 = F(x)d) If A1 = A + ∇f where f is an arbitrary funtion, then A1 is a vetorpotential: rot A1 = rot A + rot (∇f) = rot AReiproally if A,A1 are two vetor potentialsrot(A1 − A) = rot A1 − rot A = F− F = 0and A1 − A = ∇f for some f .e) div F = 0 and we use the formula just proved:

A(x) =

∫ 1

0

(0, 0, 1)× (tx, ty, tz)dt =

=

∫ 1

0

(−ty, tx, 0)dt =
1

2
(−y, x, 0)f) We look for an f suh that A1 = 1

2
(−y, x, 0) + ∇f satis�esdiv A1 = div(1

2
(−y, x, 0) + ∇f) = ∇2f = 2x+ y − 1that is alled a Poisson equation; the variables are separated and weeasily �nd:

f(x, y, x) =
x3

3
+
y3

6
− z2

2Finally
A1 =

1

2
(−y, x, 0) + (x2,

y2

2
,−z)g) Now F(x, y, z) = (2x,−y,−z)

F(tx) × (tx) = det





i j k

2tx −ty −tz
tx ty tz



 = (0,−3t2xz, 3t2xy)
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A(x) =

∫ 1

0

(0,−3t2xz, 3t2xy)dt = (0,−xz, xy)

�Seond method for vetor potential alulus
T Let U ⊂ R3 be a star shaped open set and let F = (P,Q,R) ∈ C1(U)be suh that div F = 0; then we know that F has a vetor potential A =
(X, Y, Z). Write the omponents of the equality rot A = F and obtain thepartial di�erential equations system

∂yZ − ∂zY = P
∂zX − ∂xZ = Q
∂xY − ∂yX = R





We know that an arbitrary gradient an be added to A; using that fat wean assume that X = 0; then
∂xZ = −Q
∂xY = R

}

⇒ Z =
∫ x

x0
−Q(t, y, z)dt+ ϕ(y, z)

Y =
∫ x

x0
R(t, y, z)dt+ ψ(y, z)

}To �nd ϕ, ψ we impose Y, Z to satisfy the �rst equation ∂yZ − ∂zY = P ; wehave
∂yZ−∂zY =

∫ x

x0

−∂Q(t, y, z)

∂y
dt+

∂ϕ(y, z)

∂y
−(

∫ x

x0

∂R(t, y, z)

∂z
dt+

∂ψ(y, z)

∂z
) =

=
∂ϕ

∂y
− ∂ψ

∂z
− (

∫ x

x0

(
∂Q(t, y, z)

∂y
+
∂R(t, y, z)

∂z
)dt) =

=
∂ϕ

∂y
− ∂ψ

∂z
+

∫ x

x0

∂P (t, y, z)

∂x
dt =

∂ϕ

∂y
− ∂ψ

∂z
+ P (x, y, z) − P (x0, y, z)In the middle line we have used that div F = 0. Then the �rst equation issatis�ed if

∂ϕ

∂y
− ∂ψ

∂z
= P (x0, y, z)Choosing ψ = 0 we obtain the solution

ϕ(y, z) =

∫ y

y0

P (x0, t, z)dt



160 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESand a vetor potential is
A = (0,

∫ x

x0

R(t, y, z)dt,

∫ x

x0

−Q(t, y, z)dt+

∫ y

y0

P (x0, t, z)dt)

�Problem 82: Vetor potentials.Find a vetor potential for eah of the following �elds:a) F(x, y, z) = (y, z, x)b) F(x, y, z) = (0, 0, 1)) F(x, y, z) = (x2, 0,−y2)d) F(x, y, z) = (2x,−y,−z)Solution:Let A = (X, Y, Z) and hoose X = 0; then rot A = (∂Z
∂y

− ∂Y
∂z
,−∂Z

∂x
, ∂Y

∂x
)a)

∂Y
∂x

= x ⇒ Y =
∫

xdx+ ϕ(y, z) = x2

2
+ ϕ(y, z)

∂Z
∂x

= −z ⇒ Z = −
∫

zdx = −xzWe impose the �rst ondition
∂Z

∂y
− ∂Y

∂z
= y : −∂ϕ

∂z
= y ⇒ ϕ = −yzand obtain the vetor potential

A = (0,
x2

2
− yz,−xz)b)

∂Y
∂x

= 1 ⇒ Y = x+ ϕ(y, z)
∂Z
∂x

= 0 ⇒ Z = 0



3.2. INTEGRATION OF VECTOR FIELDS 161The �rst equation is
∂Z

∂y
− ∂Y

∂z
= 0 : −∂ϕ

∂z
= 0 ⇒ ϕ = 0and

A = (0, x, 0)) div F 6= 0 and F annot have a vetor potential.d)
∂Y
∂x

= −z ⇒ Y = −
∫

zdx+ ϕ(y, z) = −xz + ϕ(y, z)
∂Z
∂x

= y ⇒ Z = −
∫

ydx = −xyand
∂Z

∂y
− ∂Y

∂z
= 2x : x+ x− ∂ϕ

∂z
= 2x⇒ ϕ = 0Finally

A = (0,−xz, xy)
�3.2.4 Newtonian and logarithmi potentials

T We know that
U(r) = m

1

ris the potential of the gravitational �eld reated by a mass point m at theorigin. As the �eld has the superposition property, the potential has it aswell. We use the same priniple for ontinuous distributions (see [Kell℄).
�Problem 83: Potential of wires.Find the potential ofa) A material wire with onstant linear density λ.b) A homogeneous material segment with onstant linear density λ withorigin and end points at (0, 0, a), (0, 0, b).) A material irumferene with onstant linear density. Find the poten-tial at a point of the axis.



162 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESSolution:a) Using superposition in the ontinuous ase we have
U(x, y, z) =

∫

C

λ
1

r
dl, r =| (x− u, y − v, z − w) |and if γ(t) = (u(t), v(t), w(t)), t ∈ [a, b] is a parametrization of C then

U(x, y, z) =

∫ b

a

λ
1

r(γ(t))
γ′(t)dtb) A �gure:

d
a

d
b

z

y

P(x,y,z)
.

xParametrize the segment putting γ(t) = (0, 0, t), t ∈ [a, b], dl = dt andlet d2 = x2 + y2 where d is the distane from (x, y, z) to the axis. Then
U(x, y, z) = λ

∫ b

a

1
√

d2 + (z − t)2
dt = { t− z = u

dt = du
} =

= λ

∫ b−z

a−z

1√
d2 + u2

duWe ompute a primitive funtion of the integrand
∫

1√
d2 + u2

du = { u = d sinh v
du = d cosh vdv

} =

∫

d cosh v
√

d2(1 + sinh2 v)
dv =

=

∫

cosh v

cosh v
dv = v = sinh−1 u

dthat is
ev − e−v

2
=
u

d



3.2. INTEGRATION OF VECTOR FIELDS 163and isolating v
v = log

u+
√
d2 + u2

d
= log(u+

√
d2 + u2) − log dThe potential is

U(x) = λ

∫ b−z

a−z

1√
d2 + u2

du = λ[log(u+
√
d2 + u2) − log d]b−z

a−z

U(x, y, z) = λ log
b− z +

√

d2 + (z − b)2

a− z +
√

d2 + (z − a)2
=

= λ log
b− z + db

a− z + da

da and db being the distanes form (x, y, z) to the end points of thesegment.) A �gure:
R

d

P(0,0,z)

A parametriztion of the wire is γ(t) = (R cos t, R sin t, 0),t ∈ [0, 2π] andthen
U(0, 0, z) =

∫

C

λ
1

r
dl = λ

∫ 2π

0

1

d
Rdt = 2πRλ

1

d
= M

1

dthe same potential as that of a mass M at the origin.
�Problem 84:Chek that U(x, y) = log 1

r
is a potential for the �eld L(x, y) = − r

r2 generatedby a logarithmi partile of unit mass at the origin.



164 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESSolution:
∂U

∂x
= r

∂

∂x
(
1

r
) = r(− 1

r2
)
x

r
= − x

r2

∂U

∂y
= r

∂

∂y
(
1

r
) = r(− 1

r2
)
y

r
= − y

r2

�Problem 85: Logarithmi irumferene.Let C be a irumferene made of logarithmi partiles; �nd the potential atpoints in the plane of the irumferene. The following integration formulamay be useful:
∫ 2π

0

log(1 − e cos θ)dθ = 2π log
1 +

√
1 − e2

2
, 0 ≤ e < 1Solution:Let r = (x− u, y − v), r =| r |

(u,v)

(x,y)

r

Beause of the symmetry it su�es to ompute U(x, 0), x > 0. Parametriz-ing the irumferene by
γ(θ) = (R cos θ, R sin θ), θ ∈ [0, 2π], dl = Rdθ
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U(x, 0) =

∫

C

λ log
1

r
dl = λ

∫ 2π

0

log(
1

√

(x−R cos θ)2 +R2 sin2 θ
)Rdθ =

= −1

2
λR

∫ 2π

0

log(x2 +R2 − 2xR cos θ)dθ =

= −1

2
λR

∫ 2π

0

log[(x2 +R2)(1 − 2xR cos θ

x2 +R2
)]dθ =

= −1

2
λR(

∫ 2π

0

log(x2 +R2)dθ +

∫ 2π

0

log(1 − 2xR cos θ

x2 +R2
)dθIf e = 2xR

x2+R2 , then 0 ≤ e < 1 and we are allowed to use the formula:
U(x, 0) = −1

2
λR(2π log(x2 +R2) − 2π log

1 +
√

1 − e2

2
)A short omputation gives

1 +
√

1 − e2

2
=

1

2
(1 +

| x2 − R2 |
x2 +R2

)and then
U(x, 0) = −M

2
(log(x2 +R2) + log

1

2
(1 +

| x2 −R2 |
x2 +R2

)) =

= −M
2

log[(x2 +R2)
1

2
(1 +

| x2 −R2 |
x2 +R2

)] =

= − M

2
log

x2 +R2+ | x2 −R2 |
2Two ases are in view:a) Interior points 0 ≤ x < R

U(x, 0) = −M
2

logR2 = M log
1

RThe potential is onstant in the interior; the �eld vanishes there. Thissituation is analogous to that of a material sphere in R3 whih hasvanishing newtonian �eld in the interior.



166 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESb) Exterior points R < x

U(x, 0) = −M
2

log x2 = M log
1

xor, for any exterior point
U(r) = M log

1

r
, r = (x, y), r =| r |and we see that it is the same potential as that of a logarithmi partileof mass M at the enter.

�Dipoles
T We want to desribe the potential generated by two equal point massesof ontrary sign (!) −m,m when they approah along a line. In the limit wehave a dipole and the line is the dipole axis.

Q Q’

P
.

..

d

r’r

−m mNow the potential at P generated by both masses is
U(P ) = −m

r
+
m

r′and if we let d→ 0 we shall have U(P ) → 0. To avoid that we de�ne µ = md,the dipole moment , and maintain it onstant in passing to the limit. Writingthe potential of the two masses in terms of the dipole moment we have
U(P ) =

µ

d
(
1

r′
− 1

r
)
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2
, 0, 0) and m at point Q′ = (d

2
, 0, 0); then

r(x, y, z) =

√

(x+
d

2
)2 + y2 + z2

r′(x, y, z) =

√

(x− d

2
)2 + y2 + z2and notiing that r′(x, y, z) = r(x − d, y, z), we obtain the potential of thedipole at point P = (x, y, z):

U(x, y, z) = lim
d→0

µ

1
r(x−d,y,z)

− 1
r(x,y,z)

d
=

∂

∂x
(
1

r
)We have an x-derivative beause to simplify we have hoosen Q and Q′ alongthe x-axis. The potential of a dipole with moment µ and axis u (a unitarivetor from the negative mass point to the positive one) is

U = µ
∂

∂u
(
1

r
)whih we shall write as well as

U = µ∇(
1

r
) · u

�Problem 86: Field of a dipole.a) Compute the �eld of a dipole with moment µ and axis u = (1, 0, 0).b) Do the same for u = 1√
3
(1, 1, 1).Solution:a)

U = µ
∂

∂u
(
1

r
) = µ

∂

∂x
(
1

r
) = −µ x

r3



168 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESand the omponents of the dipole �eld are
X =

∂U

∂x
= −µr

3 − 3r2 x
r
x

r6
= −µr

2 − 3x2

r5

Y =
∂U

∂y
= −µ−3r2 y

r
x

r6
= −µ3xy

r5

Z =
∂U

∂z
= −µ−3r2 z

r
x

r6
= −µ3xz

r5b)
U = µ

∂

∂u
(
1

r
) = −µ r

r3
· 1√

3
(1, 1, 1) = −µ 1

r3

1√
3
(x+ y + z)and the omponents of the �eld are

X =
µ√
3
(

3

r4

x

r
(x+ y + z) − 1

r3
)

Y =
µ√
3
(

3

r4

y

r
(x+ y + z) − 1

r3
)

Z =
µ√
3
(

3

r4

z

r
(x+ y + z) − 1

r3
)

�Problem 87: A wire of dipoles.Let C be a segment of length a onstituted of dipoles with onstant lineardensity of moments µ with all the axes in the segment's diretion.Solution:Take the segment along the Oz axis; with the notation as in the �gure wehave r = (x, y, z − w)
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x

y

z

(0,0,a)

d

d

0

1

r
.

P(x,y,z)

(0,0,0)

(0,0,w)

The potential of the dipole segment is
U(x, y, z) =

∫

C

µ
∂

∂u
(
1

r
)dl =

∫

C

µ
∂

∂w
(
1

r
)dl =

=

∫ a

0

µ
∂

∂w
(

1
√

x2 + y2 + (z − w)2
)dw =

= µ
1

√

x2 + y2 + (z − w)2
|w=a
w=0=

µ

d1

− µ

d0Bar magnets have two poles and the interation between poles followsNewton-Coulomb law with the intensity of the poles substituting the harge.Both poles of a magnet have the same intensity and opposite signs. Thesegment going from the negative pole to the positive one is alled the axis ofthe magnet.Cutting a magnet in two piees we have two poles in eah piee, withmoreless the same intensity. We infer that a magnet an be seen as formedby mirosopi magnets with aligned axes. At the endpoints the fores amongpoles are not ompensated and we have the two poles of the magnett.If we represent the mirosopi magnets through dipoles, the result of thepreeding problem shows that our point of view is onsistent.
�Problem 88: Logarithmi dipole.De�ne the logarithmi dipole for the potential theory in the plane. Computethe �eld of this dipole.



170 CHAPTER 3. INTEGRATION OF FIELDS OVER CURVESSolution:By analogy with dipoles in spae we de�ne the potential of a logarithmidipole as
U(r) = µ

∂

∂u
(log

1

r
)Assume u = (a, b), a2 + b2 = 1. Then

U = µu · ∇(
1

r
) = µ (a, b) · ( ∂

∂x
(log

1

r
),
∂

∂y
(log

1

r
))

= µ(a, b) · (− x

r2
,− y

r2
) = − µ

r2
(ax+ by)and the �eld is

∂U

∂x
= −µ(− 2

r3

x

r
(ax+ by) +

a

r2
) = − µ

r4
(a(y2 − x2) − 2bxy)

∂U

∂y
= − µ

r4
(−2axy + b(x2 − y2))

�



Chapter 4Surfaes
4.1 Surfaes
T A parametrized surfae of R3 is a difereniable funtion de�ned in a region
D ⊂ R2 with values in R3:

α : D ⊂ R2 → R3

(u, v) 7→ α(u, v) = (x(u, v), y(u, v), z(u, v))

v

u

α

x

y

S

z

D

• The parametrization is regular at those points of D whererank 



∂ux ∂vx
∂uy ∂vy
∂uz ∂vz



 = 2171



172 CHAPTER 4. SURFACESThis ondition says that the vetors ∂uα, ∂vα are linearly independent.If p ∈ α(D) orresponds to a regular point, the plane
Tp = p + 〈∂uα, ∂vα〉is alled the tangent plane at p, and the vetor N = ∂uα × ∂vαis the normal vetor assoiated to the parametrization. We all theparametrization regular if it is everywhere regular

• The parametrization is simple if it is injetive.We will use mainly regular and simple parametrizations.
�Problem 91: Spherial parametrization of a sphere.Parametrize the unit sphere

S2 = {(x, y, z) : x2 + y2 + z2 = 1} ⊂ R3using spherial oordinates and �nd out if it is di�erentiable, regular andsimple.Solution:Using the spherial oordinates ϕ= olatitude, θ= longitude (see the �gurebelow) a parametrization of the sphere is:
α(ϕ, θ) = (sinϕ cos θ, sinϕ sin θ, cosϕ)

D = {(ϕ, θ); 0 ≤ ϕ ≤ π, 0 ≤ θ ≤ 2π}whih is di�erentiable at every point of D (in fat it is di�erentiable in R2)
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ϕπ0

θ

α

ϕ

θ

G

(1,0,0)
D

2π

• Geometrially we see that α is injetive in ◦
D= (0, π)× (0, 2π), the inte-rior of D, but the image α(

◦
D) exludes the 'Greenwih semimeridian'

G = {(sinϕ, 0, cosϕ) : ϕ ∈ [0, π]}

α is a bijetion of ◦
D= (0, π) × (0, 2π) onto S2 −G.

• The tangent vetor to the meridians is ∂ϕα and the tangent vetor tothe parallels is ∂θα:
∂ϕα = (cosϕ cos θ, cosϕ sin θ,− sinϕ)

∂θα = (− sinϕ sin θ, sinϕ cos θ, 0)

δ θα

δϕαϕ

θ

.

N 



174 CHAPTER 4. SURFACESThe normal vetor assoiated to the parametrization and its norm are:
N = ∂ϕα× ∂θα = (sin 2ϕ cos θ, sin 2ϕ sin θ, sinϕ cosϕ)

|N| = (sin4 ϕ+ sin 2ϕ cos 2ϕ)1/2 = | sinϕ| = sinϕWe see that whenever 0 < ϕ < π we have |N| 6= 0 and then N 6= 0: thevetors ∂ϕα and ∂θα are linearly independent and the parametrizationis regular at interior points of D. Note that N points to the exteriorof the sphere as an be seen writing (remind that sinϕ > 0)
N = sinϕ(sinϕ cos θ, sinϕ sin θ, cosϕ) = (sinϕ)α(ϕ, θ)

• α :
◦
D→ S2 is a map (or loal hart see [Jän℄) of S2 it being understoodthat a map need not over the whole sphere, as happens with ordinarygeographial maps. A olletion of maps that over the whole sphereis alled an atlas.Now if we want an atlas of the sphere we need more maps apart from

α. For instane if we de�ne the olatitude ϕ with respet to the Oyaxis and take the negative Ox axis to measure longitudes, we have theparametrization
β(ϕ, θ) = (− sinϕ sin θ, cosϕ, sinϕ cos θ), (ϕ, θ) ∈ D = [0, π] × [0, 2π]

y

zθ

ϕ
x

de�ned in ◦
D= (0, π) × (0, 2π). This new parametrization doesn't overthe semimeridian G′ = {θ = 0}. Then α, β are an atlas of S2:
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x

z

y

G ’
G

�Problem 92: Cartesian parametrization of the sphere.Parametrize the sphere S2 as the graph of a ertain funtion and �nd outwether it is regular and simple.Solution:From the sphere's equation x2 + y2 + z2 = 1 we an isolate several funtions:a) In D1 = {(x, y) : x2 + y2 < 1}

f(x, y) =
√

1 − (x2 + y2)

g(x, y) = −
√

1 − (x2 + y2)

z

x
y

x

y

z
g(x,y)f(x,y)



176 CHAPTER 4. SURFACESb) In D2 = {(x, z) : x2 + z2 < 1}

h(x, z) =
√

1 − (x2 + z2)

k(x, z) = −
√

1 − (x2 + z2)

z

y

x

x

z

y

h(x,z)k(x,z)

) In D3 = {(y, z) : y2 + z2 < 1}

l(y, z) =
√

1 − (y2 + z2)

m(y, z) = −
√

1 − (y2 + z2)

z

y

x

y
l(y,z)

m(y,z) z

x

Let us use as a model
α(x, y) = (x, y, f(x, y)) = (x, y,

√

1 − (x2 + y2)), (x, y) ∈ D1

• α is a parametrization of the upper semisphere (exluding the equator),di�erentiable in ◦
D1, and α is learly injetive; it is a bijetion of ◦

D1onto S2 \ S2
−.
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• The tangent vetors to the oordinate urves are

∂xα = (1, 0,
x

√

1 − x2 − y2
)

∂yα = (0, 1,
y

√

1 − x2 − y2
)and the assoiated normal vetor and its norm are

N = (
x

√

1 − x2 − y2
,

y
√

1 − x2 − y2
, 1)

|N| =
1

√

1 − x2 − y2We see that the normal vetor N points to the exterior of the sphere;again |N| 6= 0 and the parametrization is regular.We an proeed in the same way with the other maps; altogether they arean atlas of S2.
�Problem 93: Stereographi projetion on the sphere.The stereographi projetion from the north pole N = (0, 0, 1) of the plane

π = {z = 0} on the unit sphere S2 sends eah point P of π to the intersetionpoint P ′ of the straight line through P and N with the sphere. Computethe equations of the projetion so obtaining a parametrization of S2 (whosedomain is D = R2).Solution:First make a �gure:
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P’

Q’

P(u,v,0)

N

Q(u,v,0)

We �nd the projetion in two di�erent ways:a) The line uniting P = (u, v, 0) and N is
X(t) = N + t(P −N) = (tu, tv, 1 − t), t ∈ RWe look for the point X(t) ∈ S2

t2(u2 + v2) + (1 − t)2 = 1 ⇒ t = 0, t =
2

1 + u2 + v2the P ′ oordinates are:
α(u, v) = (

2u

1 + u2 + v2
,

2v

1 + u2 + v2
,
u2 + v2 − 1

1 + u2 + v2
), (u, v) ∈ R2.It is geometrially lear that α is injetive and that it's trae is S2−N .The tangent vetors to the oordinate urves are

∂u = (
2(1 − u2 + v2)

(1 + u2 + v2)2
,

e− 4uv

(1 + u2 + v2)2
,

4u

(1 + u2 + v2)2
)

∂v = (
−4uv

(1 + u2 + v2)2
,
2(1 + u2 − v2)

(1 + u2 + v2)2
,

4v

(1 + u2 + v2)2
)and the assoiated normal vetor is

N = −4(
2u

(1 + u2 + v2)3
,

2v

(1 + u2 + v2)3
,
u2 + v2 − 1

(1 + u2 + v2)3
)But N = 0 an only happen if u = v = u2 + v2 − 1 = 0 whih isimpossible, and we onlude that the parametrization is everywhereregular.



4.1. SURFACES 179b) For another derivation we remind the equations of the projetion, fromthe north pole, of the Ox axis on S1:
γ(t) = (

2t

1 + t2
,
t2 − 1

1 + t2
), t ∈ RTake polar oordinates in the plane:

u = ρ cos θ

v = ρ sin θFrom the formula of γ we see that the point (ρ, 0) is projeted on
(

2ρ

1 + ρ2
, 0,

ρ2 − 1

1 + ρ2
) ∈ S2Then P = (ρ cos θ, ρ sin θ) is projeted to

(
2ρ

1 + ρ2
cos θ,

2ρ

1 + ρ2
sin θ,

ρ2 − 1

1 + ρ2
) =

= (
2u

1 + u2 + v2
,

2v

1 + u2 + v2
,
u2 + v2 − 1

1 + u2 + v2
) ∈ S2

�Problem 94: Parametrization of an ellipsoid.By analogy with the angular oordinate in the parametrization of the ellipseand with the spherial oordinates, parametrize the ellipsoid:
E = {(x, y, z) :

x2

a2
+
y2

b2
+
z2

c2
= 1, a > b > c > 0}Find out if the parametrization is regular, injetive.Solution:The analogy suggests the parametrization

α(ϕ, θ) = (a sinϕ cos θ, b sinϕ sin θ, c cosϕ), (ϕ, θ) ∈ D = [0, π] × [0, 2π],



180 CHAPTER 4. SURFACESa C∞ funtion suh that α(ϕ, θ) ∈ E beause
(a sinϕ cos θ)2

a2
+

(b sinϕ sin θ)2

b2
+

(c cosϕ)2

c2
=

= (sinϕ cos θ)2 + (sinϕ sin θ)2 + (cosϕ)2 =

= sin 2ϕ+ cos 2ϕ = 1a) α is injetive in ◦
D= (0, π) × (0, 2π) beause if (x, y, z) ∈ α(D) there isa unique ϕ ∈ (0, π) suh that z = c cosϕ. Then the equations

x = a sinϕ cos θ
y = b sinϕ sin θ

}

⇒ cos θ = x
a sin ϕ

sin θ = y
b sinϕ

}produe a unique θ ∈ (0, 2π) satisfying them.b) To see wether it is exhaustive we take a look at the geometrial meaningof the oordinates ϕ, θ. Cutting E with the plane x = 0 we obtain anellipse e:
y2

b2
+
z2

c2
= 1

x

z

y

c

b

E
z

c
b

y

e

a

whose right part (y > 0) we parametrize by
γ(ϕ) = (b sinϕ, c cosϕ), ϕ ∈ [0, π]

ϕ being the olatitude in the irumsribed irumferene (see Problem5). Cutting E with the plane z = c cosϕ we obtain the ellipse ǫ:
x2

a2
+
y2

b2
+ cos 2ϕ = 1
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x2

(a sinϕ)2
+

y2

(b sinϕ)2
= 1

asinϕ

ϕ       bsin

E

x
y

a

ε

z

b
c

x

y ε

We parametrize ǫ taking θ ∈ [0, 2π] as a parameter:
Γ(θ) = (a sinϕ cos θ, b sinϕ sin θ)And taking into aount that ǫ is in the plane z = c cosϕ we obtain theparametrization α. If

N = (0, 0, c), S = (0, 0,−c), G = {(a sinϕ, 0, c cosϕ) : 0 < ϕ < π}we see that α is a bijetion from ◦
D to E − {N, S,G}.The matrix of the tangent vetors is





a cosϕ cos θ −a sinϕ sin θ
b cosϕ sin θ b sinϕ cos θ
−c sinϕ 0



Whose minors are ∆1 = ab
2

sin 2ϕ,∆2 = bc sin2 ϕ cos θ,∆3 = ac sin2 ϕ sin θ.
∆1 vanishes only for ϕ = π

2
; but for that value ∆2 = bc cos θ,∆3 = ac sin θdon't vanish simultaneously. The parametrization is everywhere regular.

�Problem 95: Cones.A one S with diretrix a plane urve C and vertex at p = (a, b, c) ∈ R3onsists of the half lines emanating from p and passing through the pointsof C.



182 CHAPTER 4. SURFACESa) Parametrize S.b) Parametrize the one with vertex p and diretrix the parabola y2 =
2px, z = 0.) Parametrize the one with vertex p and diretrix the ellipse x2

m2 + y2

n2 = 1.Solution:Here are several ones:
C

C
C

p
p p

a) Let C be given by
γ(t) = (x(t), y(t), z(t)), t ∈ [a, b]The points of the one are X = (1 − s)p + sγ(t), and in omponents

α(s, t) = ((1 − s)a+ sx(t), (1 − s)b+ sy(t), (1− s)c+ sz(t))

(s, t) ∈ R+ × [a, b]b) Parametrize the parabola, γ(y) = (y2

2p
, y, 0), y ∈ R and obtain a parametriza-tion of the one:

α(s, y) = ((1 − s)a+ s
y2

2p
, (1 − s)b+ sy, (1 − s)c)

(s, y) ∈ R+ × R



4.1. SURFACES 183) Parametrize the ellipse, γ(θ) = (m cos θ, n sin θ, 0), θ ∈ [0, 2π] and ob-tain the parametrization of S:
α(s, θ) = ((1 − s)a+ sm cos θ, (1 − s)b+ sn sin θ, (1 − s)c)

(s, θ) ∈ R+ × [0, 2π]

�Problem 96: Cylinders.A ylinder S with diretrix a plane urve C and generatrixs parallel to agiven vetor v onsists of the lines that pass through the points of C and areparallel to v.a) Parametrize S.b) Parametrize the ylinder with diretrix γ(t) = (t, t2, 0) and generatrixsparallel to v = (1, 2, 3).Solution:Here are several ylinders:
C

v
v

C
Ca) Let C be parametrized by γ(t) = (x(t), y(t), 0); then the points in theylinder are

X = γ(t) + sv =





x(t)
y(t)
z(t)



 + s





v1

v2

v3







184 CHAPTER 4. SURFACESor, in omponents:
α(s, t) = (x(t) + sv1, y(t) + sv2, z(t) + sv3)b) Using a) we have

α(s, t) = (t+ s, t2 + 2s, 3s)

�Problem 97: Parametrization of a ruled surfae.Let p > 0 and onsider the straight lines
r : y = 0, z = p

r′ : x = 0, z = −pParametrize the surfae S onsisting of the straight lines that pass througha point of S1 = {(x, y, 0) : x2 + y2 = 1} and ut r and r′.Solution:

x
0

y
0

z
0

( , , )

r y=0, z=p

r’ x=0, z=−p

x

y

z

l

Let (a, b, 1) be the diretor vetor of l, one of the lines in the surfae, and
(x0, y0, 0) a point in S1. The parametri equations of the line are:

x = x0 + λa
y = y0 + λb
z = λ







l



4.1. SURFACES 185The line l uts the line y = 0, z = p and we have
λ = p
λb = −y0

}

⇒ b = −1

p
y0The line l uts the line x = 0, z = −p and we have

λ = −p
λa = −x0

}

⇒ a =
1

p
x0The points in the surfae are of the form

(x, y, z) = (x0, y0, 0) + t(
1

p
x0,−

1

p
y0, 1), t ∈ RAs (x0, y0, 0) is a point in S1 we an write it in the form (cos θ, sin θ, 0)and we obtain the parametrization of the surfae

α(θ, t) = ((1 +
t

p
) cos θ, (1 − t

p
) sin θ, t), t ∈ R, θ ∈ [0, 2π]

�Problem 98:Let S be the parametrized surfae
α(u, v) = (u cos v, u sin v, u+ ln cos v), u ∈ R, v ∈ (−π

2
,
π

2
)Fix two values u1, u2 and onsider the urves γi(t) = α(ui, t), t ∈ (−π

2
, π

2
), i =

1, 2. Show that the length of the ar of Γ(τ) = α(τ, v), τ ∈ R, v �xed, limitedby the intersetions of Γ with γ1 and γ2 is independent of v.Solution:A �gure:
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α

y

z

Γ

γ
2

γ
1

x

S

u2
u1 u

v

v

π/2

−π/2Let τ1 and τ2 the values of the parameter orresponding to the interse-tion of Γ with γ1 and γ2 respetively. To ompute the length of the abovementioned ar we have
Γ(τ) = (τ cos v, τ sin v, τ + ln cos v)

Γ′(τ) = (cos v, sin v, 1)

| Γ′(τ) | =
√

2and
L =

∫ τ2

τ1

√
2dτ =

√
2(τ2 − τ1)We want to see that τ2 − τ1 doen't depend on v. The points of intersetionare given respetively by

u1 cos t1 = τ1 cos v

u1 sin t1 = τ1 sin v

u1 + ln cos t1 = τ1 + ln cos vand
u2 cos t2 = τ2 cos v

u2 sin t2 = τ2 sin v

u2 + ln cos t2 = τ2 + ln cos v



4.1. SURFACES 187From the �rst and seond equations we obtain τ 2
1 = u2

1 and similarly fromthe fourth and the �fth we have τ 2
2 = u2

2. Then τ1 = ±u1 and τ2 = ±u2.On another side the third and sixth equations give
τ2 − τ1 = u2 − u1 + ln cos t2 − ln cos t1 =

= u2 − u1 + ln
cos t2
cos t1Now from the �rst and fourth equations we �nd

0 <
cos t2
cos t1

=
τ2
τ1

· u1

u2
=

±u2

±u1
· u1

u2
= ±1 = 1,beause the quotient is positive. Then

τ2 − τ1 = u2 − u1 + ln 1 =

= u2 − u1that is what we wanted to see. The argument fails if u1 or u2 vanish (theyan't vanish both beause we have two urves); we leave to the are of thereader to �ll in this blak hole if he wants to do so.
�

T Two parametrizations
α : D ⊂ R2 → R3

(u, v) 7→ α(u, v) = (x(u, v), y(u, v), z(u, v))and
β : D′ ⊂ R2 → R3

(s, t) 7→ β(s, t) = (X(s, t), Y (s, t), Z(s, t))are equivalent if there is a di�erentiable bijetion h with di�erentiable inverse
h−1 (a di�eomorphism, a hange of variables)

◦
D′ h→

◦
D

β ց ւ α
R3suh that β = α ◦ h. A surfae S onsists of all the equivalent parametrizedsurfaes. The ommon trae of all those equivalent parametrizations is alledthe geometrial surfae S (we shall all it S).

�



188 CHAPTER 4. SURFACESProblem 99: Equivalent parametrizations.Show that the two following parametrizations are equivalent:
α : [0, 2π] × [0, 1] → R3

(u, v) 7→ (cosu, sin u, v)

β : [0, π] × [0, 1] → R3

(u′, v′) 7→ (cos 2u′, sin 2u′, v′)Solution:Clearly
h : (0, 2π) × (0, 1) → (0, π) × (0, 1)

(u, v) 7→ (u/2, v)is a di�eomorphism showing the equivalene:
β(h(u, v)) = β(u/2, v) = (cos 2

u

2
, sin 2

u

2
, v) = α(u, v)

�Problem 100: Lower semisphere.The parametrization γ(u) = ( 2u
u2+1

, u2−1
u2+1

), u ∈ [−1, 1] of the lower unit semi-irumferene S1
−, gives the parametrization of the lower unit semisphere

S2
−

α(r, θ) = (
2r

r2 + 1
cos θ,

2r

r2 + 1
sin θ,

r2 − 1

r2 + 1
), (r, θ) ∈ [0, 1] × [0, 2π].We also have the spherial parametrization of the same surfae

β(ϕ, λ) = (sinϕ cosλ, sinϕ sinλ, cosϕ), (ϕ, λ) ∈ [π/2, π] × [0, 2π].Show they are equivalent.



4.2. SURFACES OF REVOLUTION 189Solution:We want to �nd a di�eomorphism h = (h1, h2)

h : (0, 1) × (0, 2π) → (π/2, π) × (0, 2π)
(r , θ) 7→ h(r, θ) = (ϕ, λ)suh that α = β ◦ h. It is geometrially lear that θ = λ so h2(r, θ) = θ andwe have to �nd out h1, whih amounts to express ϕ in terms of (r, θ).We must have

cosϕ =
r2 − 1

r2 + 1

ϕ = arccos(
r2 − 1

r2 + 1
)Then

h(r, θ) = (arccos(
r2 − 1

r2 + 1
), θ)and we should hek that it is a di�eomorphism. Cearly h is a bijetion (thevariables are unoupled and eah omponent of h is a bijetion). To see h is adi�eomorphism it su�es to show that the jaobian determinant det h′ 6= 0,beause then the inverse funtion theorem applies. We have

det(h′(r, θ)) = det

(

2
r2+1

0

0 1

)

=
2

r2 + 1
> 0So both parametrizations are equivalent.

�4.2 Surfaes of revolutionProblem 101: Surfaes of revolution.Let C be a plane, simple, regular urve in the half plane y = 0, x > 0.Parametrize the surfae of revolution S obtained revolving C around the Ozaxis and deide if it is regular and simple. As an appliation parametrize:a) A right irular ylinder.b) A right irular one with radius R and height h.



190 CHAPTER 4. SURFACES) A right irular one with an angle 2α at the vertex.d) A torus (doughnut) is the surfae of revolution obtained revolvingaround the Oz axis the irumferene with enter at (a, 0, 0), a > 0and radius b, 0 < b < a in the xz plane. Parametrize it.e) A irular paraboloid.f) An ellipsoid of revolution.g) The surfae obtained revolving the graph of z = f(y), f : [a, b] →
R, a > 0 around the Oz axis.Solution:

z

y

x

θ

x(t) x(t)

C
meridian

parallel

Let
γ(t) = (x(t), z(t)), t ∈ [a, b], x(t) > 0be a parametrization of C (in the plane y = 0); then

α(t, θ) = (x(t) cos θ, x(t) sin θ, z(t)), (t, θ) ∈ D = [a, b] × [0, 2π]is a parametrization of S, di�erentiable as many times as γ is. The parametriza-tion is injetive in ◦
D and α(

◦
D) is S exept for the meridian orresponding to

θ = 0. Notie that θ still ontrols the 'longitude' and that t ontrols the 'lat-itude'; the urves θ = onst are the meridians of S and the urves t = onstare the parallels of S.



4.2. SURFACES OF REVOLUTION 191The tangent vetors to the oordinate urves are
∂tα = (x′(t) cos θ, x′(t) sin θ, z′(t))

∂θα = (−x(t) sin θ, x(t) cos θ, 0),and the assoiated normal vetor and its norm are
N = ∂tα× ∂θα = (−xz′ cos θ,−xz′ sin θ, xx′)

|N| = (x2z′2 + x2x′2)1/2 = x
√
x′2 + z′2We see that the parametrization is regular for

|N| = x
√
x′2 + z′2 > 0due to the regularity of the revolving urve.a) Consider the ylinder generated by revolving the straight line {y =

0, x = R,R > 0} around the Oz axis. The straight line in the xz planeis
x(t) = R, z(t) = tand we obtain the ylinder's parametrization

α(t, θ) = (R cos θ, R sin θ, t), (t, θ) ∈ R × [0, 2π]b) A irular right one with basis the irumferene x2 + y2 = R2, z = 0and height h is obtained revolving the segment z = − h
R
x+h, 0 ≤ x ≤ Raround the Oz axis. The segment is

x(t) = t, z(t) = − h

R
t+ h, t ∈ [0, R]and we obtain the parametrization of the one

α(t, θ) = (t cos θ, t sin θ,− h

R
t+ h), (t, θ) ∈ [0, R] × [0, 2π]with vertex at (0, 0, h).) Now tanα = R/h and the parametrization is

γ(t) = (t, (cotα)t+ h)

α(t, θ) = (t cos θ, t sin θ,−(cotα)t+ h), (t, θ) ∈ [0, h tanα] × [0, 2π]



192 CHAPTER 4. SURFACESd) A torus is obtained revolving the irumferene (x−a)2+z2 = b2, y = 0(with 0 < b < a) around the Oz axis. Parametrizing this irumferene
γ(t) = (a+ b cos t, 0, b sin t), t ∈ (0, 2π)we obtain the torus parametrization

α(t, θ) = ((a+b cos t) cos θ, (a+b cos t) sin θ, b sin t), (t, θ) ∈ [0, 2π]×[0, 2π]

z

a
b

t

x

y

e) The irular paraboloid is obtained revolving the parabola z = x2, y = 0around the Oz axis. Then S admits the parametrization
α(t, θ) = (t cos θ, t sin θ, t2), (t, θ) ∈ R+ × [0, 2π]

x

y

z

z=x2

f) Let's parametrize the generating semiellipse: x(t) = a cos t, z(t) =
b sin t, t ∈ [−π/2, π/2]; then the ellipsoid of revolution is
α(t, θ) = (a cos t cos θ, a cos t sin θ, b sin t), (t, θ) ∈ [−π/2, π/2] × [0, 2π]
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xa

b

z

g) Let's parametrize the graph of f : γ(t) = (t, f(t)), t ∈ [a, b]. Then
α(t, θ) = (t cos θ, t sin θ, f(t)), (t, θ) ∈ [a, b] × [0, 2π]

�Problem 102: Hyperboloid.Using the parametrization (cosh u, sinh u), u ∈ R of the hiperbole x2−y2 = 1(see problem 7, urves) to parametrize the hyperboloid
H = {(x, y, z) : x2 + y2 − z2 = 1}Solution:The intersetion of H with the plane y = 0 is the hyperbola C with equation

x2 − z2 = 1 parametrized by x = cosh u, z = sinh u. The intersetion of Hwith the plane z = c is the irumferene x2 + y2 = 1+ c2; this shows that His a surfae of revolution generated by revolving C around the Oz axis. Theparametrization of H is then
α(u, θ) = (cosh u cos θ, cosh u sin θ, sinh u), (u, θ) ∈ R × [0, 2π]

α is everywhere regular beause the generating urve C satis�es:
γ(u) = (cosh u, sinh u)

γ′(u) = (sinh u, cosh u)

| γ′(u) |2 = sinh2 u+ cosh2 u = 2 cosh2 u− 1 > 0

�
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Chapter 5Integration of �elds over surfaes
5.1 Area of a surfae
T Let α : D → R3 be a di�erentiable, regular and simple parametrizationof a surfae S and let N = ∂uα× ∂vα be the normal vetor assoiated to α;de�ne Area(S) =

∫ ∫

D

|N|dudv

x

y

z n

dSS

One an see that this de�nition is independent of the parametrization(see problem p.??). Then de�ning the salar element of area dS =| N | dudv(see interesting omments in [Jän℄ p.173,185), we may writeArea(S) =

∫ ∫

S

1dS195



196 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACES
�Problem 103:Using spherial oordinates ompute:a) The area of a sphere of radius R.b) The area of the regionR on the unit sphere S2 limited by two meridians

θ = θ1 and θ = θ2 where θ2 −θ1 = π/6, and the parallels orrespondingto z = 0, z = 1/2.Solution:a) In the parametrization of the sphere by geographial oordinates theelement of area is
dS = R2 sinϕdϕdθ.Then A =

∫ π

0

∫ 2π

0

R2 sinϕdϕdθ =

= 2πR2

∫ π

0

sinϕdϕ = 4πR2b) Take as regionR the one limited by the parameters values ϕ ∈ [π/3, π/2], θ ∈
[0, π/6]

y

x

z

R

z=1/2
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∫ π/2

π/3

∫ π/6

0

sinϕdϕdθ =

=
π

6
(− cosϕ)|π/2

π/3 =
π

12

�Problem 104:Joining eah point of the helioid γ(t) = (cos t, sin t, t), t ∈ R with the point
(0, 0, t) in the Oz axis we obtain a surfae alled the helioidal ramp; omputethe area of a omplete turn.Solution:

x

y

z

A parametrization of one turn is
α(s, t) = (s cos t, s sin t, t), (s, t) ∈ D = [0, 1] × [0, 2π]The assoiated normal vetor and its norm are:

αs = (cos t, sin t, 0)

αt = (−s sin t, s cos t, 1)

N = αs× αt = (sin t,− cos t, s)

| N | =
√

1 + s2



198 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACESWe ompute the area:A =

∫ ∫

D

| N | dsdt =

=

∫ 2π

0

∫ 1

0

√
1 + s2dsdt =

{

s = sinh u
ds = cosh udu

}

=

= 2π

∫ arsinh 1

0

cosh2 udu = 2π

∫ arsinh 1

0

e2u + e−2u + 2

4
du =

=
π

2
(
e2u

2
− e−2u

2
+ 2u) |u=arsinh 1

u=0 =
π

2
(sinh 2u+ 2u) |u=arsinh 1

u=0and reminding that sinh 2u = 2 sinh u cosh u = 2 sinhu
√

1 + sinh2 u andthat arsinh 1 = log(1 +
√

2) we obtainA =
π

2
(2 · 1 ·

√
1 + 1 + 2arsinh 1) =

= π(
√

2 + log(1 +
√

2))

�Problem 105: Two ylinders.Let C1 and C2 be two right irular ylinders of radius R and axis Ox and
Oy respetively. Compute the area of the region S ut by the solid ylinder
C1 in the surfae of C2.Solution:Let C1 be the solid ylinder; a �gure of the upper half of S is:
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.

x

y

z

P Q

P’ Q’

O

The equations of the ylinders are
C1 : y2 + z2 ≤ R2

C2 : x2 + z2 = R2and the projetions of the points of S on z = 0 satisfy
y2 − x2 ≤ 0 ⇔ |y| ≤ |x|and thus the projeted points are the triangles POQ and P ′OQ′

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
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Q

P

−R R x
O

Q’

P’



200 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACESParametrize the part of the region ut in C2 having z > 0 :
α(x, y) = (x, y,

√
R2 − x2)

∂xα = (1, 0,
−x√
R2 − x2

)

∂yα = (0, 1, 0)

N = ∂θα× ∂zα = (
x√

R2 − x2
, 0, 1), |N| =

R√
R2 − x2and onsider the points of S that lie on D = POQ (this is a quarter of thetotal surfae); that area will beArea =

∫ ∫

D

R√
R2 − x2

dxdy = R

∫ R

0

dx

∫ x

−x

1√
R2 − x2

dy =

= R

∫ R

0

2x√
R2 − x2

dx = 2R(−
√
R2 − x2)|R0 = 2R2Then the total area is Area(S) = 4 · 2R2 = 8R2.

�

T The graph of the di�erentiable funtion f : U ⊂ R2 → R is a surfae Sadmitting the di�erentiable, regular and simple parametrization
α(x, y) = (x, y, f(x, y)), (x, y) ∈ U.Then

N = (1, 0, fx) × (0, 1, fy) = (−fx,−fy, 1)

|N| =
√

1 + (fx)2 + (fy)2and the area of the graph isArea(S) =

∫ ∫

D

√

1 + (fx)2 + (fy)2dxdyCompare with the formula that gives the length of the graph of a di�eren-tiable funtion f : [a, b] → R: Length(C) =
∫ b

a

√

1 + (f ′)2dx.
�



5.1. AREA OF A SURFACE 201Problem 106:Compute the area of that part S of the paraboloid z = x2 + y2 that lies onthe annulus D = {(x, y) : 1 ≤
√

x2 + y2 ≤ 2}.Solution:
x

y

x

y

z

1 2 r

θ
2π

S is the graph of the funtion f(x, y) = x2 + y2 and using the aboveformula we havandeArea(S) =

∫ ∫

D

√

1 + 4(x2 + y2)dxdy = {polar oords} =

=

∫ 2π

0

dθ

∫ 2

1

√
1 + 4r2rdr = 2π

1

8

∫ 2

1

8r
√

1 + 4r2dr =

=
π

4

2

3
(1 + 4r2)3/2|21 =

π

6
(173/2 − 53/2)

�Problem 107:Compute the area of the bounded region S of the paraboloid 2z = x2 + y2that lies outside the one z ≥ √

x2 + y2.Solution:A �gure:
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y

D
2

C z

x

z=2

The paraboloid uts the one along
z =

1

2
(x2 + y2) =

√

x2 + y2 ⇒
√

x2 + y2 = 2, z = 2,the irumferene C in the �gure. The paraboloid is the graph of the funtion
f(x, y) = 1

2
(x2 + y2) over the dis D of radius 2. Being given that ∂xf =

x, ∂yf = y, using the formula results inArea (S) =

∫ ∫

D

√

1 + x2 + y2dxdy = {polar oords} =

=

∫ 2π

0

∫ 2

0

r
√

1 + r2drdθ = 2π

∫ 2

0

r
√

1 + r2dr =

= 2π
1

3
(1 + r2)3/2 |20= 2π

1

3
(53/2 − 1)

�Problem 108:Compute the area of S, the region of the one z2 = x2 + y2, z ≥ 0 limited bythe planes z = 0, x+ 2z = 3.Solution:Lets do a �gure
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E’ y

E

x

z

Eliminating z we get the projeting ylinder of the intersetion E of theone with the plane x+ 2z = 3:
x2 + y2 = (

3 − x

2
)2

3x2 + 4y2 + 6x− 9 = 0and ompleting squares
3(x2 + 2x) + 4y2 − 9 = 0

3((x+ 1)2 − 1) + 4y2 − 9 = 0

3(x+ 1)2 + 4y2 − 12 = 0If we make the natural hange of variables {X = x+ 1, Y = y} we obtainthe equation of E ′:
3X2 + 4Y 2 − 12 = 0

X2

22
+

Y 2

(
√

3)2
= 1To ompute the area we need the equation of the one in the newoordinates X, Y, Z = z:

Z2 = (X − 1)2 + Y 2, Z > 0



204 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACESViewing it as the graph of f(X, Y ) =
√

(X − 1)2 + Y 2, we an use theformula for the area of a graph. Call R(E ′) the region enlosed by E ′; then:Area(S) =

∫ ∫

R(E′)

√

1 +
(X − 1)2

(X − 1)2 + Y 2
+

Y 2

(X − 1)2 + Y 2
dXdY =

=

∫ ∫

R(E′)

√
2dXdY =

√
2Area (R(E ′)) =

√
2π · 2 ·

√
3 = 2π

√
6

�Problem 109:Compute the area of that part S of the paraboloid x2 + y2 = 2az, (a > 0)limited by the plane z = 4a and the ylinder y2 = az.Solution:
z

y

z=4a

y2=az
.

xThe paraboloid and the plane interset along the irumferene x2 +y2 =
8a2, z = 2a, of radius R =

√
8a.The projeting ylinder of the intersetion of the paraboloid and the ylinderis

z = 1
a
y2

z = 1
2a

(x2 + y2)

}

⇒ x2 − y2 = 0 ≡| x |=| y |
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8 a

y

x

D

The paraboloid is the graph of f(x, y) = 1
2a

(x2+y2) and taking symmetriesinto aount we have:Area(S) = 4

∫ ∫

D

√

1 +
x2 + y2

a2
dxdy =

= {polar oords} =
4

a

∫

√
8a

0

∫ π/4

0

√
a2 + r2rdrdθ =

=
4

a

π

4

1

3
(a2 + r2)3/2 |r=

√
8a

r=0 =
26

3
πa2

�Problem 110: Viviani's vault.Let S be the intersetion of a solid ylinder of radius R and a semisphere ofradius 2R with the enter on the surfae of the ylinder. S is alled Viviani'svault; ompute its area.Solution:We take the oordinate axes as in the following �gure and ompute the areaof the intersetion of the solid ylinder with the upper semisphere:
2R

x

y
R

S

z



206 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACESLet us give two points of view:
• The equation of the sphere is x2 + y2 + z2 = 4R2 and S is on the graphof the funtion

f(x, y) =
√

4R2 − (x2 + y2)Now we use the formula for the area of a graph:
∂xf =

−x
√

4R2 − (x2 + y2)

∂yf =
−y

√

4R2 − (x2 + y2)

1 + (f ′
x)

2 + (f ′
y)

2 = 1 +
x2 + y2

4R2 − (x2 + y2)
=

=
4R2

4R2 − (x2 + y2)

Area(S) =

∫ ∫

D

2R
√

4R2 − (x2 + y2)
dxdy,

D being the dis D((0, R, 0);R) that is the basis of the ylinder in theplane z = 0. The mixture x2+y2 suggests a hange to polar oordinates:
O

R

x

y

d

θNot to say we take the pole at 0; points in the dis x2 + (y − R)2 ≤
R2 orrespond to polar angles θ ∈ [0, π] and for eah θ we have r ∈
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[0, 2R sin θ]. ThenArea(S) =

∫ π

0

dθ

∫ 2R sin θ

0

2R√
4R2 − r2

rdrdθ =

= −2R

∫ π

0

√
4R2 − r2|2R sin θ

0 dθ =

= −2R

∫ π

0

(
√

4R2 − 4R2 sin 2θ −
√

4R2)dθ =

= −4R2

∫ π

0

(| cos θ| − 1)dθ =

= −4R2(2 − π) = 4R2(π − 2)

• In spherial oordinates the upper semisphere has the parametrization
α(ϕ, θ) = (2R sinϕ cos θ, 2R sinϕ sin θ, 2R cosϕ), (ϕ, θ) ∈ (0, π/2)×(0, 2π)Let P ′ be the projetion on z = 0 of a point P ∈ S; we have:
P ∈ S ⊂ S2

2R ⇔ P ′ ∈ D ⇔ (2R sinϕ cos θ)2+(2R sinϕ sin θ−R)2 ≤ R2As sinϕ > 0 we are able to arrive at
P ∈ S ⇔ sinϕ ≤ sin θ ⇔ ϕ < θ < π − ϕThe element of area in spherial oordinates is dS = 4R2 sinϕdϕdθ andthe area isArea(S) =

∫ π/2

0

dϕ

∫ π−ϕ

ϕ

4R2 sinϕdθ = 4R2

∫ π/2

0

(π − 2ϕ) sinϕdϕ =

= 4R2π − 8R2

∫ π/2

0

ϕ sinϕdϕ = 4R2(π − 2)It is notieable that the omplement of the area of Viviani's vault to the areaof the quadrant where it lies is
π(2R)2 − 4R2(π − 2) = 8R2,a rational funtion of R.

�



208 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACESProblem 111: Viviani's ylinder.Let S be the intersetion of the solid upper semisphere and the surfae ofthe ylinder in the preeding problem. Compute the area of S.Solution:
2R R

y

S

x

z

A parametrization of the ylinder by means of the polar angle θ ∈ [0, π] (seethe preeding problem) is:
α(θ, z) = (2R sin θ cos θ, 2R sin θ sin θ, z) = (R sin 2θ, 2R sin 2θ, z)

∂θα = (2R cos 2θ, 2R sin 2θ, 0)

∂zα = (0, 0, 1)

∂θα× ∂zα = (2R sin 2θ,−2R cos 2θ, 0), |∂θα× ∂zα| = 2RTo ompute the area of S we must �nd the limits of z; at the point
(2R sin θ cos θ, 2R sin θ sin θ, 0) in the basis of the ylinder, we an 'limb' upto the sphere, that is up to

√

4R2 − 4R2 sin2 θ cos2 θ − 4R2 sin2 θ sin2 θ = 2R | cos θ |Finally Area(S) =

∫ π

0

dθ

∫ 2R| cos θ|

0

2Rdz = 4R2

∫ π

0

| cos θ|dθ = 8R2

�



5.1. AREA OF A SURFACE 209Problem 112: A formula.Let S be a surfae and α : D → R3 a regular, simple parametrization. De�ne
E = 〈∂α, ∂uα〉, F = 〈∂uα, ∂vα〉, G = 〈∂vα, ∂vα〉and show that Area(S) =

∫ ∫

D

√
EG− F 2dudvSolution:It su�es to show that |N| =

√
EG− F 2. We know (see problem on p.77)that if e, f , g,h ∈ R3 then

(e × f) · (g × h) = det

(

e · g e · h
f · g f · h

)Now
|N|2 = |∂uα× ∂vα|2 = (∂uα× ∂vα) · (∂uα× ∂vα) =

= det

(

∂uα · ∂uα ∂uα · ∂vα
∂uα · ∂vα ∂vα · ∂vα

)

= det

(

E F
F G

)

= EG− F 2

�Problem 113:Compute the area of S, the oni surfae with vertex at the origin and basisthe part of the parabola x2 = 2y, z = 1 that lies in the region 0 < x < 1.Solution:

x

y

z

z=1



210 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACESThe ar of the parabola in the region is γ(t) = ( t2

2
, t, 1), t ∈ [−

√
2,
√

2]and the one is
β(t, s) = (s

t2

2
, st, s), (t, s) ∈ [−

√
2,
√

2] × [0, 1]

∂tβ = (st, s, 0)

∂sβ = (
t2

2
, t, 1)Using the formula of the preeding problem

E = 〈∂tβ, ∂tβ〉 = s2(t2 + 1)

F = 〈∂tβ, ∂sβ〉 = st(
t2

2
+ 1)

G = 〈∂sβ, ∂sβ〉 = (
t2

2
+ 1)2

EG− F 2 = s2(t2 + 1)(
t2

2
+ 1)2 − s2t2(

t2

2
+ 1)2 =

= s2(
t2

2
+ 1)2and the area isArea (S) =

∫ 1

0

∫

√
2

−
√

2

s(
t2

2
+ 1)dtds =

=
1

2

∫

√
2

−
√

2

(
t2

2
+ 1)dt =

1

2
(
t3

6
+ t) |

√
2

−
√

2
=

4
√

2

3

�Problem 114: Sphere and ylinder: a surprising result.a) A sphere S is insribed in a right irular ylinder C; ut both of themwith two parallel planes perpendiular to the ylinder's axis. Thisprodues a region A on the sphere and a region B on the ylinder;show they have the same area.b) Now let π be the orthogonal projetion of S onto C from the axis.Show that π preserves areas.



5.1. AREA OF A SURFACE 211Solution:a) A �gure:
z2

.

z1

We may assume that the sphere and the ylinder have radius 1 andthat z1 > z2; then on the ylinderArea(B) = 2π(z1 − z2)On the sphere, if z1 = cosϕ1, z2 = cosϕ2, the area of the spherialregion isArea(A) =

∫ 2π

0

∫ ϕ2

ϕ1

sinϕdϕdθ = 2π(cosϕ1 − cosϕ2) =

= 2π(z1 − z2)Notie: if we ut a bell 1m wide all around the equator and a similarbell around the pole they have the same area!b) A �gure of the projetion:
ϕ

1 z
1

(P)πP .



212 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACESWe parametrize S and C:
α(ϕ, θ) = (sinϕ cos θ, sinϕ sin θ, cosϕ), (ϕ, θ) ∈ [0, π] × [0, 2π]

β(Θ, z) = (cos Θ, sin Θ, z) (Θ, z) ∈ [0, 2π] × [−1, 1]

T

z

Θ

E

ϕ

θ

D

βα

h

π

R

In the �gure T = π(R), R = α(D), T = β(E) . π is a bijetion
π : S − {N, S,G} → C − {L},

L being the generatrix of the ylinder that orresponds to G (the merid-ian θ = 0). In oordinates the projetion is
h(ϕ, θ) = (θ, cosϕ),a di�erentiable funtion whose jaobian is

J =

(

∂ϕΘ ∂θΘ
∂ϕz ∂θz

)

=

(

0 1
− sinϕ 0

)Using the hange of variables theorem for double integrals we haveArea(T ) =

∫ ∫

E

1dΘdz =

∫ ∫

D

| sinϕ|dϕdθ =

=

∫ ∫

D

sinϕdϕdθ = Area(R)
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�Problem 115: Surfaes of revolution.Let α(t, θ) = (x(t) cos θ, x(t) sin θ, z(t)), (t, θ) ∈ [a, b]×[0, 2π] be a parametriza-tion of S, the surfae of revolution obtained revolving a regular, simple urveparametrized by γ(t) = (x(t), z(t)), t ∈ [a, b], x(t) ≥ 0.a) Find a formula to ompute the area of S.b) Find the area of a right irular ylinder with radius R and height h.) Find the area of a right irular one with radius R and height h.d) Find the area of a torus (make �rst a onjeture).Solution:a) The tangent vetors and the normal vetor assoiated are

∂tα = (x′(t) cos θ, x′(t) sin θ, z′(t))

∂θα = (−x(t) sin θ, x(t) cos θ, 0)

N = ∂tα× ∂θα = (−xz′ cos θ,−xz′ sin θ, xx′)
dS = |N|dtdθ = x

√
x′2 + z′2dtdθAnd the area isArea (S) =

∫ 2π

0

∫ b

a

x
√
x′2 + z′2dtdθ = 2π

∫ b

a

x
√
x′2 + z′2dtNotie that √x′2 + z′2dt is the small ar of the urve traversed duringthe time dt. Then (2πx)

√
x′2 + z′2dt is the area of a small ylinderwith radius x and height √x′2 + z′2dt. The formula expresses the areaas a sum of those areas.Area(S) = 2π

∫ b

a

x
√
x′2 + z′2dt
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x’2 +y’2

y

z

x

x dt .

b) A generator urve is the segment
γ(t) = (R, 0, t), t ∈ [0, h]Using a) Area(S) = 2π

∫ h

0

Rdt = 2πRh) A generator urve is the segment
γ(t) = (t, 0,− h

R
t+ h), t ∈ [0, R]and the formula gives:Area(S) = 2π

∫ R

0

t

√

1 +
h2

R2
dt = 2π

R2

2

√

1 +
h2

R2
= πR

√
R2 + h2d) If we ut and straighten the torus we obtain a ylinder of radius b andheight 2πa whose area is 2πa × 2πb; some �bers have strethed whilesome others have shortened and the result is only a reasonable onje-ture.
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b

z

a
b

t

y

x

2πa

Assume the torus is generated revolving around the Oz axis the ir-umferene (x− a)2 + z2 = a2, y = 0 that has a parametrization
γ(t) = (a+ b cos t, 0, b sin t), t ∈ (0, 2π), 0 < b < aWe have x′ = −b sin t, z′ = b cos t and using the formula we obtainArea(S) = 2π

∫ 2π

0

(a+ b cos t)bdt = 4π2ab

�Problem 116:Let f : [a, b] → R , f(x) > 0 be a di�erentiable funtion and S the surfae
S = {(x, y, z) : y2 + z2 = (f(x))2}.Parametrize S and �nd a formula for the area of S.Solution:At a height x we have in S the irumferene y2 + z2 = (f(x))2 with radius

f(x), and we see that S is obtained revolving the graph of z = f(x) (a urvein the plane xz) around the Ox axis:
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y2 z2+ =f(x)2

y

z

x

z=f(x)

θ

(x,y,z)

Let θ be as in the �gure; we have the parametrization of S
α(x, θ) = (x, f(x) cos θ, f(x) sin θ), x ∈ [a, b], θ ∈ [0, 2π]and

∂α

∂x
= (1, f ′(x) cos θ, f ′(x) sin θ)

∂α

∂θ
= (0,−f(x) sin θ, f(x) cos θ)

∂α

∂x
× ∂α

∂θ
= ((f ′(x)f(x),−f(x) cos θ,−f(x) sin θ)

| ∂α
∂x

× ∂α

∂θ
| = (f ′2f 2 + f 2)1/2 = f

√

1 + f ′2and the formula for the area isArea (S) =

∫ b

a

∫ 2π

0

f
√

1 + f ′2dxdθ

�5.2 Integration of salar �elds
T Let α : D → R3 be a di�erentiable, regular and simple parametrization ofa surfae S, N = ∂uα×∂vα the assoiated normal vetor and f a ontinuous



5.2. INTEGRATION OF SCALAR FIELDS 217funtion on S; de�ne
∫ ∫

S

fdS =

∫ ∫

D

f(α(u, v))|N|dudvThe de�nition is all right beause the integral in the right member takes thesame value for all equivalent parametrizations (see p.??).
�Problem 117:Let f(x, y, z) = x+ y + z and S the region of a ylinder {x2 + y2 = R2, 0 <

z < 1}. Compute ∫ ∫

S
fdS.Solution:

x

y

z

z=1

RParametrize the region in the ylinder
α(θ, z) = (R cos θ, R sin θ, z), (θ, z) ∈ (0, 2π) × (0, 1)The tangent vetors and the assoiated normal are

∂θα = (−R sin θ, R cos θ, 0)

∂zα = (0, 0, 1)

N = (R cos θ, R sin θ, 0)

|N| = R

dS = Rdθdz



218 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACESNow the integral is
∫ ∫

S

(x+ y + z)dS =

∫ ∫

(0,2π)×(0,1)

(R cos θ +R sin θ + z)Rdθdz =

= R2

∫ 2π

0

(cos θ + sin θ)dθ +R
2π

2
= 4R2 +Rπ

�Problem 118:Compute I =
∫ ∫

S
(x2 + y2 − 3z2)dS, S being the unit upper semisphere.Solution:

z

x
yOn the sphere x2 + y2 + z2 = 1 we have x2 + y2 − 3z2 = 1 − 4z2 and thisis the funtion we want to integrate. In spherial oordinates we have:

I =

∫ ∫

S

(1 − 4z2)dS =

∫ 2π

0

dθ

∫ π/2

0

(1 − 4 cos2 ϕ) sinϕdϕ =

=

∫ 2π

0

dθ

∫ π/2

0

(sinϕ− 4 cos2 ϕ sinϕ)dϕ =

= 2π(− cosϕ+ 4
cos3 ϕ

3
)|π/2

0 = 2π(1 − 4

3
) = −2π

3

�



5.2. INTEGRATION OF SCALAR FIELDS 219Problem 119:Let S be the surfae
x2 + y2 + z2 = 4

z ≥ 1

}Parametrize S as the graph of a funtion and ompute ∫ ∫

S
(x2 + y2)z dS.Solution:

x

y
D

z=1

z= d

Notiing that when z = 1 we have x2 + y2 = 3 we parametrize S as thegraph of the funtion
f(x, y) =

√

4 − (x2 + y2) , (x, y) ∈ D = D(0;
√

3)The element of area is
dS =

√

1 +
x2 + y2

4 − (x2 + y2)
dxdy =

2
√

4 − (x2 + y2)
dxdyand the integral is

∫ ∫

S

(x2 + y2)z dS =

∫ ∫

D

(x2 + y2)
√

4 − (x2 + y2)
2

√

4 − (x2 + y2)
dxdy =

=

∫ ∫

D

2(x2 + y2) dxdy = {polar oords} =

=

∫

√
3

0

∫ 2π

0

2r2 r drdθ = 9π

�



220 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACESProblem 120: First Pappus-Guldin theorem.Let S be a surfae of revolution generated revolving around the Oz axis aregular, simple urve C of length L, parametrized by γ(t) = (x(t), z(t)), t ∈
[a, b], x(t) ≥ 0. Show that Area(S) = 2π〈x〉L, 〈x〉 being the average value of
x along C. Using this result ompute the area of:a) A sphere.b) A one of revolution.) A torus.Solution:A formula that gives the area of a surfae of revolution is:Area(S) = 2π

∫ b

a

x
√
x′2 + z′2dt = 2π

∫

C

xdl,and as 〈x〉 =
R

C xdl

L
the result follows.a) Parametrize the generatrix irumferene

γ(t) = (R cos t, R sin t), t ∈ [−π/2, π/2], |γ′(t)| = Rand obtain the average
〈x〉 =

∫

C
xdl

πR
=

1

πR

∫ π/2

−π/2

R cos t Rdt =
2R

πThe Pappus-Guldin theorem gives the area:Area(S) = 2π
2R

π
πR = 4πR2b) Consider the one generated by the segment z = h

R
x, x ∈ [0, R]. Theaverage is

〈x〉 =

∫

C
xdl

L
=

∫ R

0
x
√

1 + h2

R2dx
√
h2 +R2

=
1

2

R2
√

1 + h2

R2

√
h2 +R2

=
1

2
RAnd the area Area(S) = 2π

1

2
R
√
h2 +R2 = πR

√
h2 +R2



5.2. INTEGRATION OF SCALAR FIELDS 221) It is geometrially lear that
〈x〉 = aand the theorem givesArea(S) = 2πa2πb = 4π2abCommentWe straighten C along a segment of length L and revolve it around the Ozaxis thus generating a ylinder T that we arrange to be of radius 〈x〉. Thenthe �rst Pappus-Guldin's theorem asserts that the area of S, the surfaegenerated by C is the same as that of T :

C

x

y

z

y

x

z

<x>

T

There is a seond Pappus-Guldin theorem; let C be a simple losed urvein the half plane y = 0, x > 0 and R the region enlosed. Then revolving
R around Oz we obtain a solid body whose volume is 2π〈x〉Area (R). If weut and straighten the body we obtain a straight ylinder with basis R andheight 2π〈x〉 (see p.205).

�Problem 121: Assoiated normal vetor.Let
α(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ D



222 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACESand
β(s, t) = (X(s, t), Y (s, t), Z(s, t)), (s, t) ∈ D′be two parametrizations of the same surfae equivalent through adi�eomorphism h:

◦
D

h→
◦
D

′

αց ւ β
R3Show:a) The normal vetors N,M respetively assoiated to α and β satisfy

N = ∂uα× ∂vα = (det h′)∂sβ × ∂tβ = (det h′)Mb) Whenever α is regular so is β.Solution:a) We know that α = β ◦h and the hain rule gives the following matriialrelation
α′

(u,v) = β ′
h(u,v) · h′(u,v)that is





∂ux ∂vx
∂uy ∂vy
∂uz ∂vz



 =





∂sX ∂tX
∂sY ∂tY
∂sZ ∂tZ





(

∂uh
1 ∂vh

1

∂uh
2 ∂vh

2

)whih is equivalent to




i ∂ux ∂vx
j ∂uy ∂vy
k ∂uz ∂vz



 =





i ∂sX ∂tX
j ∂sY ∂tY
k ∂sZ ∂tZ









1 0 0
0 ∂uh

1 ∂vh
1

0 ∂uh
2 ∂vh

2



Taking determinants we obtain
N = M(det h′)From this last equality we see that N and M have the same sense i�

det h′ > 0 and ontrary sense if det h′ < 0.



5.3. MATERIAL LAMINAE 223b) A point (u, v) ∈
◦
D is regular i� N 6= 0 and, taking into aount that

det h′ 6= 0, that is equivalent to M 6= 0. Both parametrizations areregular or non regular at the same points.
�Problem 122:Prove that ∫ ∫

D
f(α(u, v))|N|dudv takes the same value for equivalent parametriza-tions.Solution:Let α, β, α = β ◦ h as in the preeding problem; the hange of variablestheorem for integrals gives:

I =

∫ ∫

D′

f(β(s, t))|M|(s,t)dsdt =

∫ ∫

D

f(β(h(u, v)))|M|h(u,v) | det h′ |(u,v) dudvbut on one hand f(β(h(u, v))) = f(α(u, v)) and on the other |M|h(u,v) |
det h′ |(u,v)=| N |(u,v). Then

I =

∫ ∫

D

f(α(u, v))|N|dudvas desired.
�5.3 Material laminae

T Let S be a surfae and K the body obtained translating S a distane δon eah side. Assume that K has a mass and for eah region R ⊂ S let theorresponding mass of K be onentrated in R. We have then a materiallamina.
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P

R

S

S

δ

δ

The surfae mass density at a point P of the lamina is
σ = limArea(R)→0

m(R)Area(R)The densities are there to be integrated; for instane the total mass of thelamina is
M =

∫ ∫

S

σdS

�Problem 123: Center of mass and gravitational �eld.Let S be a material lamina with surfae density σ. Write the formulae givinga) The enter of mass.b) The gravitational �eld reated by the lamina.Solution:a) By analogy with the unidimensional ase (material wire, see p.57) weput
〈x〉σ =

∫ ∫

S
xσdS

M
, 〈y〉 =

∫ ∫

S
yσdS

M
, 〈z〉σ =

∫ ∫

S
zσdS

M
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g(x, y, z) = −

∫ ∫

S

σ
r

r3
dS, r = (x− u, y − v, z − w)

�Problem 124:Find the enter of mass of the region S of the paraboloid z = 2 − (x2 + y2)limited by the plane z = 0.Solution:
2

y

z

x

DParametrize S:
α(x, y) = (x, y, 2 − (x2 + y2)), (x, y) ∈ D(0; 2) = D

N = (2x, 2y, 1)

| N | =
√

1 + 4(x2 + y2)Consider S as a material lamina with surfae density σ = 1:
M =

∫ ∫

S

dS =

∫ ∫

D

√

1 + 4(x2 + y2) = {polar oords} =

=

∫

√
2

0

∫ 2π

0

r
√

1 + 4r2drdθ = 2π

∫

√
2

0

r
√

1 + 4r2dr =

= 2π
1

12
(1 + 4r2)3/2 |

√
2

0 =
26π

6
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∫ ∫

S

xdS =

∫ ∫

D

x
√

1 + 4(x2 + y2)dxdy = {polar oords} =

=

∫

√
2

0

∫ 2π

0

r(r cos θ)
√

1 + 4r2drdθ =

= (

∫ 2π

0

cos θdθ)(

∫ 2π

0

r2
√

1 + 4r2dr) = 0Then 〈x〉 = 0 and analogously 〈y〉 = 0, as was previsible beause of thesymmetry. Now
∫ ∫

S

zdS =

∫ ∫

D

(2 − (x2 + y2))
√

1 + 4(x2 + y2)dxdy = {polar oords} =

=

∫

√
2

0

∫ 2π

0

(2 − r2)r
√

1 + 4r2drdθand it su�es to ompute ∫

√
2

0
r3
√

1 + 4r2dr; by the preeding results andintegrating by parts we have:
∫

r3
√

1 + 4r2dr = r2 1

12
(1 + 4r2)3/2 −

∫

2r
1

12
(1 + 4r2)3/2drThe last integral is

2

12

∫

r(1 + 4r2)3/2dr =
2

12

1

20
(1 + 4r2)5/2

=
1

120
(1 + 4r2)5/2Then

∫

√
2

0

r3
√

1 + 4r2dr =
27

6
− 242

120and summing up partial results we have
∫ ∫

S

zdS = 2

∫

√
2

0

∫ 2π

0

r
√

1 + 4r2drdθ −
∫

√
2

0

∫ 2π

0

r3
√

1 + 4r2drdθ =

=
52π

6
− 54π

6
+

242π

60and �nally (wow!)
〈z〉 =

223π

60
/
26π

6
= 223/260 ≃ 0.85

�



5.3. MATERIAL LAMINAE 227Problem 125: Field of a homogeneous dis.Let D be a material dis of radius R with onstant surfae density σ.a) Compute the gravitational �eld at a point P of the axis.b) Compare with the �eld generated by a mass point at the origin withthe same mass as that of the dis, when P is at an axis point in�nitelyfar away. First do a onjeture.) Verify that when P approahes D, the �eld does not beome in�nite(that does not happen when the body is a partile or a wire).d) Show that the �eld's omponent in the diretion of the axis experimentsan inrement 4πσ when P rosses the dis from the upper spae to thelower spae.Solution:a) A �gure (are with the position of the axes):
dvd0

σ
(0,v,w)

x

z

y

r

g(x,0,0)

P(x,0,0)

Parametrize the dis:
α(ρ, θ) = (0, ρ cos θ, ρ sin θ), ρ ∈ (0, R), θ ∈ [0, 2π]

N = (0, 0, ρ), | N |= ρ



228 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACESFrom symmetry we see that the �eld has the form g = (X, 0, 0) where
X(x, 0, 0) = −

∫ ∫

D

σ
x

r3
dS = −

∫ ∫

D

σ
x

(x2 + v2 + w2)3/2
dS =

= −σx
∫ R

0

∫ 2π

0

ρ

(x2 + ρ2)3/2
dρdθ = −2πσx

∫ R

0

ρ

(x2 + ρ2)3/2
dρ =

= −2πσx(−(x2 + ρ2)−1/2)|ρ=R
ρ=0 = 2πσx(

1√
R2 + x2

− 1

|x|)For another expression let dv =
√
R2 + x2 be the distane from P tothe boundary of the dis, and d0 = |x| the distane from P to theorigin. We have

X = 2πσx(
1

dv

− 1

d0

).b) Consider an M = πR2σ point mass at the origin; the �eld generatedat (x, 0, 0) is
{

−πR2σ
x2 if x > 0

πR2σ
x2 if x < 0

}

= − x

|x|
πR2σ

x2When P is far away we expet the �eld of the dis to be that of thepartile; that is to say we expet that
X = lim

x→∞

2πσx( 1√
R2+x2

− 1
|x|)

− x
|x|

πR2σ
x2

= 1Now
X = − 2

R2
lim
x→∞

x2(
|x|√

R2 + x2
− 1) = − 2

R2
lim
x→∞

x2(
1

√

(R
x
)2 + 1

− 1)and as
lim

x→∞

√

(
R

x
)2 + 1 = 1we have an ∞ · 0 indetermination that must be resolved; to be brief



5.3. MATERIAL LAMINAE 229write √ instead of √

(R
x
)2 + 1 :

X = − 2

R2
lim

x→+∞
x2(

1 −√
√ ) =

= − 2

R2
lim

x→+∞
x2(

1 − (R
x
)2 − 1

√
(1 +

√
)

) =

= − 2

R2
lim

x→+∞

−R2

√
(1 +

√
)

=
2

R2

R2

2
= 1) We have

lim
x→0+

X = 2πσ lim
x→0+

(
x√

R2 + x2
− 1) = −2πσand analogously

lim
x→0−

X = 2πσ lim
x→0−

(
x√

R2 + x2
+ 1) = 2πσboth limits are �nite.d) The inrement is X(0−) −X(0+) = 2πσ − (−2πσ) = 4πσ

�Problem 126: Field of a dis with variable density.Compute at a point P of the axis the �eld of a radius R dis entered at theorigin with surfae mass density σ = f(r) (r is the distane from a point inthe dis to the origin). If σ = a+ br2 , see what happens when P rosses thedis.Solution:Let us use the same setting of the preeding problem. It is lear from theirular symmetry of σ that g = (X, 0, 0). Let's express X :
X = −2πx

∫ R

0

rf(r)

(x2 + r2)3/2
dr



230 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACESIn the ase σ = a + br2 we have
X = −2πx

∫ R

0

r(a+ br2)

(x2 + r2)3/2
drIntegrating by parts

∫

r(a+ br2)

(x2 + r2)3/2
dr = −(x2 + r2)−1/2(a + br2) +

∫

(x2 + r2)−1/22br dr =

= −(x2 + r2)−1/2(a + br2) + 2b(x2 + r2)1/2and
X = −2πx(−(x2 +R2)−1/2(a+ bR2) + 2b(x2 +R2)1/2 +

a

|x| − 2b|x|)Setting dv =
√
R2 + x2 , d0 = |x| results in
X = −2πx(

a

d0

− a+ bR2

dv

+ 2b(dv − d0))and taking into aount that dv → R and d0 → 0 when x→ 0,
lim

x→0+
X = −2πa

lim
x→0−

X = 2πathe hange of sign being due to the sign of x/d0. We see that rossing thesurfae from the upper spae to the lower spae results in an inrement 4πaof the �eld.
�Problem 127: Field of a homogeneous ylinder.Compute at a point P of the axis the �eld produed by a irular ylinderof radius R, height h and onstant surfae mass density σ.



5.3. MATERIAL LAMINAE 231Solution:A �gure:
dv

x

y

z

R

h
P(0,0,z)

dt

From symmetry the �eld has the form g = (0, 0, Z) where
Z = −σ

∫ ∫

S

z − w

r3
dS, r = |(−u,−v, z − w)|Using the ylinder's parametrization

u = R cos θ, v = R sin θ, w = s

(θ, s) ∈ [0, 2π] × [0, h], dS = Rdθdsgives
Z = −σ

∫ 2π

0

∫ h

0

z − s

(R2 + (z − s)2)3/2
Rdθds =

= −2πRσ

∫ h

0

z − s

(R2 + (z − s)2)3/2
ds =

= −2πRσ((R2 + (z − s)2)−1/2)|h0 =

= 2πRσ(
1√

R2 + z2
− 1

√

R2 + (z − h)2
)Let dv be the distane from P to the boundary of the basis and dt thedistane from P to the boundary of the over; then

Z = 2πRσ(
1

dv
− 1

dt
)



232 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACESWe an test the result: when z = h/2 the �eld should vanish by symmetry.And this is so beause dv = dt and then Z = 0.
�Problem 128: Field of a homogeneous sphere and of a homogeneous ball.Let S be a material sphere of radius R > 0 entered at the origin and onstantsurfae mass density σ. Let B be a material ball of radius R > 0 entered atthe origin and onstant volume mass density χ.a) Compute at P = (0, 0, z), z > 0, z 6= ±R the gravitational �eld of S;separate the ases z > R and 0 < z < R.b) Do the same for B.Solution:Position the axes as shown in the �gure

x

y

z

r
.

(u,v,w)

(0,0,z)

.

a) From symmetry we see that the only nonvanishing omponent of the�eld is
Z(0, 0, z) = −σ

∫ ∫

S

z − w

r3
dS, r = (−u,−v, z − w)If we pik-up the spherial parametrization of S,

u = R sinϕ cos θ, v = R sinϕ sin θ, w = R cosϕ
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(θ, ϕ) ∈ [0, π] × [0, 2π], dS = R2 sinϕdθdϕ,we may ompute r thus

r2 = R2 + z2 − 2Rz cosϕ (∗)

Z = −σ
∫ 2π

0

dθ

∫ π

0

(z −R cosϕ)

(R2 + z2 − 2Rz cosϕ)3/2
R2 sinϕdθdϕ =

= −2πσR2

∫ π

0

(z −R cosϕ)

(R2 + z2 − 2Rz cosϕ)3/2
sinϕdϕGeometrially we see that r determines ϕ:

.

P
r

z

ϕ
R

and to do the hange of variables ϕ = h(r) we di�erentiate (∗) thus
2rdr = 2Rz sinϕdϕ⇒ sinϕdϕ =

r

Rz
dr

rϕ=0 =
√

(R− z)2 = |R− z|
rϕ=π =

√

(R+ z)2 = |R+ z|From (∗) we obtain an expression of z − R cosϕ in terms of r; doing
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Z = −2πσR2

∫ |R+z|

|R−z|

r2 + z2 − R2

2zr3

r

Rz
dr =

= −πσR
z2

∫ |R+z|

|R−z|
(
z2 − R2

r2
+ 1)dr =

=

= −πσR
z2

(−z
2 − R2

r
+ r)||R+z|

|R−z| =

= −πRσ
z2

(−z
2 − R2

|R+ z| + |R+ z| + z2 − R2

|R− z| − |R− z|)and as z > 0 we an write
Z = −πσR

z2
(R − z +R+ z + +

z2 − R2

|R− z| − |R− z|)

= −πσR
z2

(2R+
z2 −R2

|R− z| − |R− z|)Two ases appear:
0 < z < R ⇒ Z = 0

0 < R < z ⇒ Z = −4πσR2

z2
= −M

z2But we are free to hoose the diretion of the Oz axis and so thepreeding value of the �eld holds in every diretion. If, as usual, r =
(x, y, z), er = r/r we an write in vetor form

g(r) =

{

0 if P is interior
−M
r2

er if P is exteriorLet us remark: the �eld of a spherial lamina vanishes in the interior,and in the exterior it is the �eld of point mass at the origin. Observethat the �eld on S (unknown up to now) an't possibly be ontinuous.b) From symmetry the only nonvanishing omponent at P = (0, 0, z), z >
0, z 6= ±R is

Z = −χ
∫ ∫ ∫

B

z − w

r3
dV



5.3. MATERIAL LAMINAE 235i) Exterior points, z > R. Parametritze B by the spherial system:
u = ρ sinϕ cos θ, v = ρ sinϕ sin θ, w = ρ cosϕ

(ρ, ϕθ) ∈ [0, R] × [0, π] × [0, 2π], dV = ρ2 sinϕdθdsand using the omputations in a) we have
Z = −χ

∫ R

0

∫ π

0

∫ 2π

0

z − ρ cosϕ

(ρ2 + z2 − 2ρz cosϕ)3/2
ρ2 sinϕdρdϕdθ =

= −4πχ

z2

∫ R

0

ρ2dρ = −4πχ

z2

R3

3

= −M
z2ii) Interior points, z < R . The integral is improper (at u = 0, v =

0, w = z beause then r = 0), but one an see that it is onvergent(see [Kell℄ p.18). To ompute it isolate the point P = (0, 0, z) bymeans of two onentri spheres of radius δ and δ + ǫ:
B(δ)

B(δ+ε)

z

P

δ+εδ
x

The spherial annulus of radius δ+ǫ < r < R has a vanishing �eldat P whih is an interior point. To see that, imagine the annulusas made of onentri spheres eah one produing zero �eld. Allthe �eld at P is due to the 'internal' ball B(δ) with mass M(δ),
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z2 . Letting δ → z and

ǫ→ 0 we arrive at:
Z = −M(z)

1

z2Summing up, the �eld is
g(r) =

{ −M
r2 er if P is exterior

−M(r)
r2 er if P is interiorThat is for exterior points the sphere and the ball (of equal masses) reatethe same �eld, preisely that of a point mass at the origin. For interior pointsthe �eld is null for the spherial lamina and the �eld is generated only bymasses nearer than P of the enter for the ball; the farther masses do notontribute.Assume for a moment that the �eld at the exterior of the ball is not thatof a point mass. If we went far away enough we would see the ball as a pointmass, and it might happen to see two idential objets, two point masses,produing di�erent �elds.

�Problem 129: Potential of a homogeneous sphere.a) Show that the gravitational potenial of a homogeneous spherial lam-ina is that of a mass point of equal mass at the enter (use the additivityof potentials).b) Let g be the �eld and U a potential. Is U ontinuous? Is it true that
g = ∇U? Are the derivatives of U ontinuous?Solution:a) Two lines:i) The �eld of the lamina at exterior points is the same as that of apoint mass at the enter,−M r

r3 . It will then have there a potential
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M 1

r
. At interior points the �eld of the sphere vanishes and we pik-up a onstant potential that we adjust to have it ontinuous onthe sphere:

U(r) =

{

M 1
r

if r ≥ R
M 1

R
if r ≤ Rii) Choose artesian axes with origin at the enter of the sphere:

r
r

x

y

z

x

y

z

(u,v,w)

P
P

(u,v,w)

By symmetry it su�es to ompute the potential at P = (0, 0, z), z >
0. Let σ be the surfae mass density; then

U(0, 0, z) =

∫ ∫

S

σ

r
dS, r = (−u,−v, z − w), r = |r|The usual spherial parametrization gives

U(0, 0, z) =

∫ 2π

0

dθ

∫ π

0

σ
1

√

R2 + z2 − 2zR cosϕ
R2 sinϕdϕ =

= 2πσR2

∫ π

0

1
√

R2 + z2 − 2zR cosϕ
sinϕdϕ =

= 2πσR2 1

zR

∫ π

0

zR
√

R2 + z2 − 2zR cosϕ
sinϕdϕ =

= 2πσR
1

z
(
√

R2 + z2 − 2zR cosϕ) |ϕ=π
ϕ=0=

=
2πσR

z
(| R+ z | − | R − z |)
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U(0, 0, z) =

{

2πσR
z

(R+ z − z +R) = 4πR2σ
z

= M
z

if P is exterior
2πσR

z
(R+ z − R+ z) = 4πRσ = M

R
if P is interiorUsing the symmetry we an write:

U(r) =

{

M
r

if P is exterior
M
R

if P is interiorLet us de�ne the potential to be M
R

at points on the sphere; thenit will be ontinuous everywhere.b) We have seen U to be everywhere ontinuous. It's derivatives for pointsnot on the sphere are
∂U

∂z
(0, 0, z) =

{

−M
z2 ifP is exterior
0 if P is interiorwhih is the �eld of the sphere. They are disontinuous on S:

{

∂U
∂z

|z=R−= 0
∂U
∂z

|z=R+= −M
R2

�Problem 130: Potential of a homogeneous ball.a) Find the potential of a material ball with onstant volume density χ.b) Show that the potential and its derivatives are everywhere ontinuousand that they give the �eld.) Show that ∇2U = ∂2U
∂x2 + ∂2U

∂y2 + ∂2U
∂z2 vanishes at exterior points and hasthe value −4πχ at interior points.



5.3. MATERIAL LAMINAE 239Solution:a) With the same notations as in the preeding problem we have:
U(0, 0, z) = χ

∫ ∫ ∫

V

1

r
dV, r = (−u,−v, z − w)In spherial oordinates (ρ, ϕ, θ) we have

U(0, 0, z) = χ

∫ R

0

∫ π

0

∫ 2π

0

1
√

ρ2 + z2 − 2zρ cosϕ
ρ2 sinϕdρdϕdθ =

= 2πχ

∫ R

0

(

∫ π

0

1
√

ρ2 + z2 − 2zρ cosϕ
ρ2 sinϕdϕ)dρThe innermost integral has been evaluated in the preeding problemand we obtain

U(0, 0, z) =
2πχ

z

∫ R

0

ρ(| ρ+ z | − | ρ− z |)dρIf P = (0, 0, z) is an exterior point z > R and
U(0, 0, z) =

2πχ

z

∫ R

0

2ρ2dρ =
2πχ

z

2R3

3
=
M

zwhile if P is an interior point z < R and
U(0, 0, z) =

2πχ

z
(

∫ z

0

+

∫ R

z

)ρ(| ρ+ z | − | ρ− z |)dρ =

=
2πχ

z
(

∫ z

0

2ρ2dρ+

∫ R

z

2zρdρ) =

=
2πχ

z
(
2

3
z3 + z(R2 − z2)) =

=
M(z)

z
+ 2πχ(R2 − z2)

M(z) being the mass of B(0, z). Let's remind that at interior pointsthe integral is improper at (0, 0, z) but nevertheless a onvergent one.Using the symmetry we have:
U(r) =

{

M
r

at exterior points
M(r)

r
+ 2πχ(R2 − r2) at interior points
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R

to the potential on the sphere, we have an every-where ontinuous funtion. The derivative at exterior points is
∇U = −M r

r3
,preisely the �eld of the ball. At interior points

U(r) =
4

3
πr2χ+ 2πχ(R2 − r2)

∂U

∂x
= (

8

3
πr − 4πr)

x

r
χ = −4

3
πxχ = −M(r)

x

r3and the symmetry gives
∇U(r) = −M(r)

r

r3
,that is, the �eld of a ball at interior points. On the boundary of theball both expressions oinide and U is of lass C1.) At exterior points

∇U(r) = −M r

r3
⇒ ∇2U(r) = div (−M r

r3
) = 0and at interior points

∂U

∂x
= −4

3
πxχ⇒ ∂2U

∂x2
= −4

3
πχand the same value for the other two derivatives. Then

∇2U =
∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
= −4πχ

�Problem 131: Logarithmi dis.Let D be a homogeneous material dis of logarithmi partiles; ompute thepotential U . The integration formula
∫ 2π

0

log(1 − a cos θ)dθ = 2π log
1 +

√
1 − a2

2
, 0 ≤ a < 1may be useful.



5.3. MATERIAL LAMINAE 241Solution:Let R be the radius of the dis and σ the surfae density; the potential is
U(x, y) =

∫ ∫

D

σ log(
1

r
)dSA parametrization of the dis is:

α(r, θ) = (r cos θ, r sin θ), (r, θ) ∈ [0, R] × [0, 2π]It su�es to ompute U(x, 0) when x > 0:
U(x, 0) =

∫ ∫

D

σ log(
1

√

(x− r cos θ)2 + r2 sin2 θ
)rdrdθ =

= −σ
2

∫ ∫

D

log(x2 + r2 − 2xr cos θ)rdrdθ =

= −σ
2

∫ ∫

D

log((x2 + r2)(1 − 2xr

x2 + r2
cos θ))rdrdθ =

= −σπ
∫ R

0

log(x2 + r2)rdr − σ

2

∫ ∫

D

log(1 − 2xr

x2 + r2
cos θ)rdrdθ =

= I1 + I2a) For I1, as a primitive of log x is x(log x− 1), we have:
I1 = −σπ

2
[(x2 + r2)(log(x2 + r2) − 1)]R0b) To �nd I2 put a = 2xr

x2+r2 and use the integration formula to obtain
I2 = −σ

2

∫ R

0

∫ 2π

0

log(1−a cos θ)rdrdθ = −σ
2

∫ R

0

2π log(
1 +

√
1 − a2

2
) rdrNow ompute the argument of log:

1 − a2 = 1 − 4x2r2

(x2 + r2)2
=

(x2 − r2)2

(x2 + r2)2

1 +
√

1 − a2

2
=

1 + |x2−r2|
x2+r2

2
=

1

2

x2 + r2+ | x2 − r2 |
x2 + r2

=

=

{

x2

x2+r2 if 0 < r < x
r2

x2+r2 if x < r



242 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACESi) At exterior points r < R < x and we obtain
I2 = −σπ

∫ R

0

log(
x2

x2 + r2
)rdr =

= −σπ
∫ R

0

log x2rdr + σπ

∫ R

0

log(x2 + r2)rdr =

= −σπ(log x2)
R2

2
− I1So, for exterior points, lettingM be the mass of the dis, U(x, 0) =

−σπR2

2
(log x2) = −M log x.

U(x, 0) = −M log xii) At interior points x < R we have
I2 = −σπ(

∫ x

0

log(
x2

x2 + r2
)rdr+

∫ R

x

log(
r2

x2 + r2
)rdr) = −σπ(J1+J2)Compute separatedly both integrals

J1 =

∫ x

0

log(
x2

x2 + r2
)rdr =

∫ x

0

log(x2)rdr −
∫ x

0

log(x2 + r2)rdr

J2 =

∫ R

x

log(
r2

x2 + r2
)rdr =

∫ R

x

2(logr)rdr − ∫ R

x

log(x2 + r2)rdrNow we ompute the three integrals involved:
∫ x

0

log(x2)rdr =
x2

2
log(x2)

∫ R

x

2(logr)rdr = r2(log r − 1)|r=R
r=x

−
∫ x

0

log(x2 + r2)rdr −
∫ R

x

log(x2 + r2)rdr =

−
∫ R

0

log(x2 + r2)rdr =
1

σπ
I1
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U = I1 − σπ(J1 + J2) =

= I1 − σπ(
x2

2
log(x2) + r2(log r − 1)|r=R

r=x +
1

σπ
I1) =

= −σπ(x2logx+R2(logR − 1) − x2(log x− 1)) =

= −σπ(x2 +R2(logR− 1)) = −M(x) −M(logR− 1) =

= −M(x) logR

M(x) being the mass of the dis of radius x.
U(x) =

{

−M log x if (x, 0) is exterior
−M(x) logR if P is interior ,a ontinuous funtion on the boundary of the dis beause
lim

x→R+
U(x) = −M logR

lim
r→R−

U(r) = −M logR

�Problem 132: Center of mass.Let a material lamina S be that part of the sphere x2 + y2 + z2 = R2 in the�rst otant and let the surfae mass density at eah point be the square ofthe distane to the origin. Compute its enter of mass.Solution:Parametrize S through spherial oordinates to obtain
M =

∫ ∫

S

σdS = R2

∫ π/2

0

∫ π/2

0

R sinϕdϕdθ =

= R3π

2

∫ π/2

0

sinϕdϕ =
πR3

2
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∫ ∫

S

xσdS = R2

∫ π/2

0

∫ π/2

0

R sinϕ cos θ R sinϕdϕdθ =

= R4

∫ π/2

0

sin 2ϕdϕ =

= R4

∫ π/2

0

1 − cos 2ϕ

2
dϕ =

πR4

4

〈x〉 =
πR4

4
πR3

2

=
R

2From the symmetry of the problem 〈y〉 = 〈z〉 = R
2
.5.4 Integration of vetor �elds

T An orientation of a surfae S is a ontinuous, unit normal �eld:

x

z

y

n

S

This looks strange beause after all our idea of orienting a plane has todo with turning lokwise or antilokwise. But assume that the spae hasits proper orientation (maybe given through the srewdriver rule, or throughthe right hand rule or whatever). Then by means of n we an de�ne on Sa 'lokwise' sense of turning and an 'antilokwise' sense, the lokwise one



5.4. INTEGRATION OF VECTOR FIELDS 245being obtained using the o�ial rule so as to advane in the sense of n, theunit normal vetor.A surfae with an orientation is an oriented surfae. A parametrization
α : D → R3 preserves the orientation if N = ∂uα× ∂vα has, at eah point of
S, the same diretion as n.Let α : D → R3 be one suh parametrization and F a ontinuous vetor�eld on S. The integral of F on S is then

∫ ∫

S

F · dS =

∫ ∫

D

F(α(u, v)) · N(u, v)dudvWe know (see p.221) that whenever α : D → R3 and β : D′ → R3 are twoequivalent parametrizations of a surfae S through a di�eomorphism h : D →
D′, then the asoiated normal vetors N = ∂uα × ∂vα and M = ∂uβ × ∂vβsatisfy

N = (det h′)MIf α preserves the orientation and det h′ > 0 then β preserves the orientation,beause then N and M have the same sense. In this ase
∫ ∫

α

F · dS =

∫ ∫

β

F · dSand we see that our de�nition of the integral doesn't depend on the orien-tation preserving parametrization. If det h′ < 0 then N and M have haveopposite diretions and
∫ ∫

α

F · dS = −
∫ ∫

β

F · dSThe ombination dS = ndS = Ndudv is the vetor area element (for fulldisussion of that onept see [Jan℄ p.169)This integral of a �eld on an oriented surfae is also alled the �ux ofthe �eld through the surfae for the following reason. Look at the �eld asif it was the veloity �eld of a �uid; the integral adds up piees as that inproblem p.53 and we see that the �ux is the volume of �uid that rosses Sper unit time. The integral ounts the volume rossed in the diretion of nas a positive value and as a negative number in the opposite ase.
�



246 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACESProblem 133:Let F(x, y, z) = xi+yj+zk and onsider the region of a ylinder parametrizedby
α(θ, z) = (cos θ, sin θ, z), (θ, z) ∈ D = (0, π) × (0, 1),oriented through the normal vetor assoiated to the parametrization. Com-pute ∫ ∫

α
F · dS .Solution:

∂θα = (− sin θ, cos θ, 0)

∂zα = (0, 0, 1)

N = (cos θ, sin θ, 0)The integral is:
∫ ∫

α

F · dS =

∫ π

0

∫ 1

0

(cos θ, sin θ, z) · (cos θ, sin θ, 0)dθdz =

=

∫ π

0

∫ 1

0

dθdz = πProblem 134:Compute the �ux of the vetor �eld F(x, y, z) = (x, y + 1, z) through theupper part of Viviani's vault V (see p.205) oriented by the exterior normalvetor to the sphere.Solution:Let D = {(x, y, 0) : x2 + (y − 1
2
)2 ≤ 1

4
, x > 0, y > 0}; being a radius 1 spherewe have dS = (x, y, z)dS and
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φ =

∫ ∫

V

F · dS =

∫ ∫

V

(x, y + 1, z) · (x, y, z)dS =

=

∫ ∫

V

(x2 + y2 + z2 + y)dS =

=

∫ ∫

V

(1 + y)dS = {artesian parametrization} =

=

∫ ∫

D

(1 + y)
1

√

1 − (x2 + y2)
dxdy = {polar oords} =

=

∫ π/2

0

dθ

∫ sin θ

0

(1 + r sin θ)
r√

1 − r2
drAs an exerise in integral alulus we have

∫

r√
1 − r2

dr = −
√

1 − r2

∫

r2

√
1 − r2

dr = −r
√

1 − r2 +

∫ √
1 − r2drThe last integral is:

∫ √
1 − r2dr =

{

r = sin u
dr = cosudu

}

=

∫ √
1 − sin 2u cosudu =

∫

cos 2udu =

=
u

2
+

sin 2u

4
=

arcsin r

2
+
r
√

1 − r2

2and:
∫

(1+r sin θ)
r√

1 − r2
dr = −

√
1 − r2+sin θ(−r

√
1 − r2+

arcsin r

2
+
r
√

1 − r2

2
)Evaluating this expression between r = 0 and r = sin θ :

− cos θ + 1 + sin θ(−sin θ cos θ

2
+
θ

2
)Finally

φ =

∫ π/2

0

(− cos θ + 1 + sin θ(−sin θ cos θ

2
+
θ

2
))dθ =

= (− sin θ + θ − sin 3θ

6
+

1

2
(sin θ − θ cos θ))|π/2

0 = −1 +
π

2
− 1

6
+

1

2
=
π

2
− 2

3

�



248 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACESProblem 135:Compute the �ux of the vetor �eld F(x, y, z) = (0, y, xyz) through the partof Viviani's ylinder (see p.208) in the �rst otant
E = {(x, y, z) : x > 0, y > 0, z > 0},with the exterior normal orientation.Solution:We parametrize the region of Viviani's ylinder by

α(θ, z) = (R sin 2θ, 2R sin2 θ, z), (θ, z) ∈ [0, π/2] × [0, 2R cos θ]and obtain
dS = (2R sin 2θ,−2R cos 2θ, 0)dθdzThen

φ =

∫ π/2

0

∫ 2R cos θ

0

(0, 2R sin2 θ,−) · (2R sin 2θ,−2R cos 2θ, 0)dzdθ =

=

∫ π/2

0

(−4R2 sin2 θ cos 2θ)2R cos θdθ =

= −8R3

∫ π/2

0

sin2 θ(cos2 θ − sin2 θ) cos θdθ =

= −8R3

∫ π/2

0

(sin2 θ(1 − sin2 θ) cos θ − sin4 θ cos θ)dθAfter a few alulations we obtain
φ = −8R3(

sin3 θ

3
− sin5 θ

5
) |θ=π/2

θ=0 =
8

15
R3

�Problem 136: Heuristi of the �ux.Find without omputations the �ux of F through S when:a) F(x, y, z) = (x, y, z), S the square (0, 0, 0), (b, 0, 0),(b, b, 0), (0, b, 0) andtwo similar squares in the planes x = 0 and y = 0.



5.4. INTEGRATION OF VECTOR FIELDS 249b) F(x, y, z) = (xi + yj) log(x2 + y2), S the lateral surfae of the ylinder
{(x, y, z) : x2 + y2 = R2, 0 ≤ z ≤ H}. What happens at the overs?) F(x, y, z) = (er2

)(x, y, z), S the sphere with enter at 0 and radius R.d) F(x, y, z) = (x2, 3, xyz), S the triangle (0, 0, 0),(1, 0, 0),(0, 0, 1).e) F(x, y, z) = − r
r3 , S the sphere with enter at 0 and radius R orientedby the unit exterior normal vetor n.Solution:At eah point of S we ompute produt of the normal omponent of F andthe element of surfae. The �ux is the sum of those terms.a) A �gure:

S1

S
2

S
3

z

y

xAt points of S the �eld is 'in S' and the normal omponent vanishes.The �ux vanishes whatever orientation we give to the surfae.b) Let us give S the orientation of the exterior unit normal vetor. On
S the �eld is normal to the surfae and its normal omponent is themodule R | logR2 |.
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x

yR

z

h

n

n

Then the �ux is obtained multiplying by the area:
φ = R | logR2 | (2πRH)At the overs we see that the �eld is not de�ned at (0, 0, 0) nor at

(0, 0, H) beause of the logarithm. But we an see that
lim

(x,y)→(0,0)
| F |= 0and give the �eld the value zero at both points. Then the �ux willvanish for the same reason that it vanishes on the lateral surfae.) The normal omponent of the �eld is ReR2 and the �ux will be φ =

(ReR2

)4πR2.d) We �rst orientate the triangle through the onstant vetor �eld n =
(0, 1, 0):
x

y

z

n

The normal omponent of the �eld is:
F · n = (x2, 3, xyz) · (0, 1, 0) = 3
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φ = 3

1

2e) The unit normal exterior vetor �eld is n = r
R
and the normal ompo-nent of F is

− r

R3
· r

R
= − 1

R2The �ux is then
φ = − 1

R2
4πR2 = −4πNotie this is the �ux through the sphere of the gravitational �eld of aunit point mass at the origin. Should we have a point mass m the �uxwould be φ = −4πm.

�Problem 137:Let F be a ontinuous vetor �eld in an open set U ⊂ R3 and let S ⊂ U bean oriented surfae. Show that the �ux through any region in S vanishes i�
F is tangent to S at eah point.Solution:If F is tangent to S, its normal omponent vanishes and so does the �ux.Reiproally if F is not tangent to S at the point p we have

F · n 6= 0,and, due to ontinuity, the produt maintains the sign in a neighborhood Uof p. Choosing U as the region we would have
∫ ∫

U

F · ndS 6= 0ontraditing the hypothesis.
�



252 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACESProblem 138:Consider the paraboloid S1 = {(x, y, z) : z = x2 + y2}, the plane S2 =
{(x, y, z) : 2x − z + 3 = 0}, and the vetor �eld F(x, y, z) = (y, z, x − y).Compute:a) The irulation of F along the intersetion of S1 and S2.b) The �ux of F through S, the �nite region of S1 limited by S2.Solution:a) Eliminating z we obtain the projeting ylinder

x2 + y2 = 2x+ 3

x2 − 2x+ y2 = 3

(x− 1)2 + y2 = 4A parametrization of the irumferene (x − 1)2 + y2 = 4, z = 0 withenter at (1, 0) and radius r = 2 is:
x = 1 + 2 cos θ

y = 2 sin θand 'limbing' to the paraboloid we obtain a parametrization of C =
S1 ∩ S2:

γ(θ) = (1 + 2 cos θ, 2 sin θ, 5 + 4 cos θ), 0 ≤ θ ≤ 2π

γ′(θ) = (−2 sin θ, 2 cos θ,−4 sin θ)The irulation is
∫

C

F · dl =

=

∫ 2π

0

(2 sin θ, 5+4 cos θ, 1+2 cos θ−2 sin θ)·(−2 sin θ, 2 cos θ,−4 sin θ)dθ = 12πwhere the orientation of the urve is that given by the parametrization.



5.5. SOLID ANGLE 253b) A parametrization of the paraboloid is
α(x, y) = (x, y, x2 + y2), (x, y) ∈ D

D being the dis limited by the irumferene in a). The assoiatednormal vetor and its norm are
αx = (1, 0, 2x)

αy = (0, 1, 2y)

N = αx × αy = (−2x,−2y, 1)And the �ux is:
φ =

∫ ∫

D

(y, x2 + y2, x− y) · (−2x,−2y, 1)dxdy =

=

{

x = 1 + ρ cos θ
y = ρ sin θ

}

=

=

∫ 2π

0

∫ 2

0

(−2(ρ sin θ + ρ2 sin θ cos θ) − 2ρ sin θ(1 + ρ cos θ)2

−2ρ2 sin3 θ + 1 + θ cos θ − θ sin θ)dρdθ =

= 2π

∫ 2

0

ρdρ = 4πThis value is obtained hoosing the orientation given by the assoi-ated normal vetor; it points to the interior of the paraboloid. Hadwe hoosen an exterior unit normal �eld to orient S we would haveobtained −4π.
�5.5 Solid angle

T Let [p,q〉 be the half line emanating from p and passing through q, andlet [p,q] be the orresponding segment. Now if S is a surfae in R3 and pan exterior point, the solid angle of S with vertex at p is:
p ∗ S = {[p,q〉 : q ∈ S}and the solid one generated by S with vertex at p is:
[p ∗ S] = {[p,q] : q ∈ S}
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p

q
q’

q’’

S

Let us remind that to obtain the measure in radians of plane angles wedraw a radius 1 irumferene with enter at the vertex of the angle and thenmeasure the length λ of the ar limited by the angle:
λ .

1
p

If the plane is oriented (antilokwise usually) and we give an order tothe sides of the angle we an give a sign to the measure.Similarly to measure a solid angle p∗S we draw a radius 1 sphere enteredat p and measure the area of the region σ ut on the sphere by the solid angle:
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ρ=f (ϕ,θ)

x

z

y

σ

nS

O

In the ase of of a plane angle, to obtain a signed measure we had to assigna positive sense of turning on the irumferene (where things happened) aswell as give an order to the sides of the angle. Now to obtain a signed solidangle we orient the sphere (where things will happen) by the unit normalexterior �eld; the orientation of the solid angle is an orientation of S.We searh a formula (et.: small form) to ompute the measure and thesign of oriented solid angles. We divide the problem in small problems (Ar-quimedes, Desartes) breaking down the surfae in surfae elements dS whihwe may think as small piees of plane tangent to S. To introdue the tan-geny we use the vetor surfae element dS = ndS, n being the unit normal�eld giving the orientation of S:
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dΩ

er

dS

p

α

q

dS[dS]

In the �gure we projet dS, the tilted form in ontinuous line, onto a planethrough q orthogonal to er the unit position vetor (the position vetor being−→r = −→pq). We obtain the form in dashed line whose area is
(cosα)dS = er · ndS = er · dSand the area of the projetion of this area onto the unit sphere is the elementof solid angle

dΩ =
1

r2
er · dSWe obtain the measure of the solid angle vith vertex at p adding theontributions dΩ:

Ω =

∫ ∫

S

r

r3
· dSThe integral is evaluated on S; if p = (a, b, c), q = (u, v, w) then

r = (u− a, v − b, w − c), r =
√

(u− a)2 + (v − a)2 + (w − c)2and we have the formula
Ω =

∫ ∫

S

(u− a, v − b, w − c)

((u− a)2 + (v − b)2 + (w − c)2)3/2
· dSNow dΩ is positive if er and n point to the same side of S and negativeif they point to di�erent sides. The sign of Ω will depend on the orientation



5.5. SOLID ANGLE 257of S. For instane take for S a semisphere entered at 0 oriented by theexterior normal; the solid angle with vertex at the origin measures 2π, but ifwe orient S by the interior normal the measure will be −2π.In the following �gure the ontribution at point b is positive, and thatat point a it is negative. Try to see geometrially that the solid angle of asphere from an exterior point vanishes.

an

e
a

n
b

e
b

p

a

b

Notie that r
r3 is the gravitational �eld of a −1 mass (!) at the origin (seep.56) and then the solid angle is the �ux of this �eld through S. If the minussign assoiated to a mass is disturbing we an think in the eletri �eld r

r3generated by a point harge +1 at the origin (see p.61)
�Problem 139:Find the measure of the following solid angles expressing them as p ∗ S andgiving an orientation to S.a) C = {(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0}.b) D = {(x, y, z) : x2 + y2 ≤ az2, z ≥ 0, a > 0}.



258 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACESSolution:a) It is lear that the �rst otant of the unit sphere entered at the originis the S we must hoose. Orient this piee of the sphere through theunit exterior normal vetor:
x

O y

z
n

1

1

1We see what the region on the unit sphere measures:
Ω =

4π

8
=
π

2

b) The solid angle given is generated by the region A in the upper unitsphere that lies outside the one. We orient this region through theunit exterior normal vetor; moreover we have tanα =
√
a.

z

α

n

y
xLet β be the spherial parametrization of S2; the exterior normal is
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n = (u, v, w) and put r = (u, v, w), r =| r |. The solid angle is

Ω =

∫ ∫

A

r

r3
· dS =

=

∫ ∫

A

(u, v, w) · (u, v, w)dS =

=

∫ ∫

A

(u2 + v2 + w2)dS =

∫ ∫

A

1dS =

=

∫ 2π

0

dθ

∫ π/2

π/2−arctan
√

a

sinϕdϕ = 2π(− cosϕ)
π/2

π/2−arctan
√

a
=

= 2π(sin(arctan
√
a)) = 2π

√
a√

1 + a

�Problem 140: Solid angle and attration.Let g be the gravitational �eld reated by a plane, bounded, material lamina
L with onstant super�ial density σ, that we assume oriented by a normal�eld n. Show that the normal omponent of the �eld is σΩ, Ω being themeasure of the solid angle p ∗ L.Solution:

gn

p

g(p)
n

L

r

(u,v,w)



260 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACESWhen omputing the gravitational �eld at p we follow the rule 'from thesoure (the lamina) to the point' (see p.55) and if p = (x, y, z) we have
g(p) = −σ

∫ ∫

L

r

r3
dS, r = (x− u, y − v, z − w), r = |r|The normal omponent is

gn(p) = g(p) · n = −σ
∫ ∫

L

r

r3
· ndS = −σ

∫ ∫

L

r

r3
· dSWhile to �nd the solid angle of L with vertex at p we use r = (u − x, v −

y, w − z) that satisfyes r = −r and ompute
Ω =

∫ ∫

L

r

| r |3 · dS = −
∫ ∫

L

r

r3
· dSFinally

gn(p) = σΩ

�Problem 141: Solid angle and attration.Let V be the region of a solid angle with vertex at the origin limited by asurfae S whose equation in spherial oordinates is ρ = f(ϕ, θ), (ϕ, θ) ∈ Dand assume in V a mass density χ. Show that the z omponent of thegravitational �eld of the body at the origin is
Z =

∫ ∫

S

(

∫ f(ϕ,θ)

0

χdρ) cosϕdΩSolution:Observe the �gure:



5.5. SOLID ANGLE 261
ρ=f (ϕ,θ)

x

z

y

σ

nS

O

To ompute the �eld, using the rule 'from soure to point' , we write
r = (−u,−v,−w), r = (u2 + v2 + w2)1/2; the omponent Z(0, 0, 0) is simply

Z(0) = −
∫ ∫ ∫

V

−w
r3

χdV = {spherial oords} =

=

∫ ∫

D

(

∫ f(ϕ,θ)

0

ρ cosϕ

ρ3
χρ2 sinϕdρ)dϕdθ =

=

∫ ∫

D

(

∫ f(ϕ,θ)

0

χdρ) cosϕ sinϕdϕdθWhile to ompute the solid angle we use er = (u,v,w)
r

and dΩ = er

r2 · dS; wehave the parametrization of S
α(ϕ, θ) = f(ϕ, θ)(sinϕ cos θ, sinϕ sin θ, cosϕ) = f(ϕ, θ)er, (ϕ, θ) ∈ Dand we let the normal vetor assoiated to it orient S . Then :

∂ϕα = fϕer + f ∂ϕer

∂θα = fθer + f ∂θer

N = (fϕer + f ∂ϕer) × (fθer + f ∂θer) =

= ffϕ(er × ∂θer) + ffθ(∂ϕer × er) + f 2(∂ϕer × ∂θer)

dΩ =
er

r2
· dS =

er

r2
· f 2(∂ϕer × ∂θer)dϕdθ



262 CHAPTER 5. INTEGRATION OF FIELDS OVER SURFACESThe partial derivatives of er are:
∂ϕer = (cosϕ cos θ, cosϕ sin θ,− sinϕ)

∂θer = (− sinϕ sin θ, sinϕ cos θ, 0)

∂ϕer × ∂θer = (sin 2ϕ cos θ, sin 2ϕ sin θ, sinϕ cosϕ)

dΩ =
f 2

r2
er · (∂ϕer × ∂θer) dϕdθ =

= er · (∂ϕer × ∂θer) dϕdθ =

= (sin 3ϕ cos 2θ + sin 3ϕ sin 2θ + sinϕ cos 2ϕ)dϕdθ =

= (sin 3ϕ+ sinϕ cos 2ϕ) dϕdθ =

= sinϕdϕdθand the attration is
Z(0) =

∫ ∫

D

(

∫ f(ϕ,θ)

0

χdρ) cosϕ sinϕdϕdθ =

=

∫ ∫

S

(

∫ f(ϕ,θ)

0

χdρ) cosϕdΩ

�



Chapter 6Integral theorems
6.1 Green's Theorem
T Let U ⊂ R2 be the bounded region limited by a pieewise C1 simple losedurve C, positively oriented (i.e.: the region U lies to the left of the traversedurve) and F = (P,Q) ∈ C1(C ∪ U). Then:

∫

C

F · dl =

∫ ∫

U

(
∂Q

∂x
− ∂P

∂y
)dxdy(The theorem remains true under the weaker hypotheses that F be di�eren-tiable and ∂Q

∂x
− ∂P

∂y
ontinuous. See J.Bruna, J.Cufí, anàlisi omplexa,Manuals 49. Universitat Autònoma Barelona. 2008.)In the following �gure we an see from left to right urves that are: simple

C1, non simple C1, simple pieewise C1, non simple pieewise C1.
Notie that if the urve is not simple it may be impossible to leave thebounded region on the left: 263
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and we see as well that several bounded regions may exist in this ase.

�Problem 142:Let a = (0, 0), b = (2, 3) and C the boundary of the retangle R(a, b) tra-versed in antilokwise sense. Compute ∫

C
F · dl using Green's theorem inthe following ases:a) F(x, y) = (0, x)b) F(x, y) = (x+ y, y2)) F(x, y) = (xy2, 2x− y)d) F(x, y) = (sin(π

2
xy), 2x)Solution:

(2,3)

x

y

a) ∫

C
F · dl =

∫ ∫

R
1dxdy = Area(R) = 6.b) ∫

C
F · dl =

∫ ∫

R
−1dxdy = −Area(R) = −6.
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∫

C

F · dl =

∫ ∫

R

(2 − 2xy)dxdy = 2

∫ ∫

R

1dxdy − 2

∫ ∫

R

xydxdy =

= 12 − 2(

∫ 2

0

xdx

∫ 3

0

ydy) = 12 − 18 = −6.d)
∫

C

F · dl =

∫ ∫

R

(2 − π

2
x cos(

π

2
xy))dxdy =

= 12 −
∫ 2

0

dx

∫ 3

0

π

2
x cos(

π

2
xy))dy = 12 −

∫ 2

0

x sin(
π

2
xy)|y=3

y=0dx =

= 12 −
∫ 2

0

sin(
3π

2
xy)dx = 12 − 4

3π

�Problem 143: Area omputations through line integrals.a) Let U be the bounded region of C, a pieewise C1 simple losed urve,positively oriented. Show thatArea(U) = −
∫

C

ydx =

∫

C

xdy =
1

2

∫

C

(−ydx+ xdy)b) Findi) The area of an ar of a yloid.ii) The area of one leaf of the four-leaf lover given in polar oordi-nates by r = 3 sin 2θ.Solution:a) We obtain the three results applying Green's theorem to the region Uand to the �elds
F(x, y) = (−y, 0),F(x, y) = (0, x),F(x, y) =

1

2
(−y, x),
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−

∫

C

ydx =

∫

C

(−y, 0) · dl =

∫ ∫

D

[∂x(0) − ∂y(−y)]dxdy

=

∫ ∫

D

1dxdy = Area(U).Observation: There is an analogous method for volume omputationthat uses surfae integrals (see p.331).b) In eah ase we use the appropiate formula:i) Remind the parametrization of C1, one ar of the yloid:
x = R(u− sin u)
y = R(1 − cosu)

}

, 0 ≤ u ≤ 2πLet U be the bounded region of the losed urve C that onsistsof C1 and the segment C2 = [2πR, 0] on the Ox axis traversed inthe negative sense:
C2

C1

O

y

x

U

The urve C is pieewise C1, simple and losed but is negativelyoriented. That is why we haveArea(U) = −
∫

C1∪C2

xdy = −
∫

C1

xdy −
∫

C2

xdy =

= −
∫ 2π

0

R(u− sin u)R sin udu+ 0 =

= R2(−
∫ 2π

0

u sinudu+

∫ 2π

0

sin 2udu) =

= R2(u cosu|2π
0 +

∫ 2π

0

cosudu) +R2

∫ 2π

0

1 − cos 2u

2
du =

= R2(2π + π) = 3πR2



6.1. GREEN'S THEOREM 267The area is thrie the area of the generating wheel. We an visu-alize this result: the area of both regions next to the entral disin the �gure is the same as the area of the dis.
O

y

xii) The artesian parametrization of one leaf is
γ(θ) = (3 sin 2θ cos θ, 3 sin 2θ sin θ), 0 ≤ θ ≤ π/2.

U

x

y

γ

Using the seond formula in a) we haveArea(U) =

∫

C

xdy =

∫ π/2

0

3 sin 2θ cos θ
d

dθ
(3 sin 2θ sin θ)dθ =

=

∫ π/2

0

3 sin 2θ cos θ(6 cos 2θ sin θ + 3 sin 2θ cos θ) =

=

∫ π/2

0

(18 sin 2θ cos 2θ sin θ cos θ + 9 sin2 2θ cos2 θ)dθ =

=

∫ π/2

0

(
9

2
sin 4θ sin 2θ + 9 sin2 2θ

1 + cos 2θ

2
)dθ



268 CHAPTER 6. INTEGRAL THEOREMSLet us ompute separatedly eah integral; we use the trigonometriformula sin a sin b = cos(a−b)−cos(a+b)
2

:

∫ π/2

0

9 sin 4θ sin 2θdθ =
9

2

∫ π/2

0

1

2
(cos 2θ − cos 6θ)dθ =

=
9

4
(
sin 2θ

2
− sin 6θ

6
)|π/2

0 = 0

∫ π/2

0

9 sin2 2θ
1 + cos 2θ

2
dθ =

= 9

∫ π/2

0

(
sin2 2θ

2
+

sin2 2θ cos 2θ

2
)dθ =

= 9

∫ π/2

0

(
1 − cos 4θ

4
+

sin2 2θ cos 2θ

2
)dθ =

= 9(
θ

2
− sin 4θ

+
sin3 2θ

6
)|π/2

0 =
9

8
πFinally the area is Area(U) =

9

8
π

�Problem 144:The parametrized urve γ(t) = (e−t cos t, e−t sin t), t ∈ [0, 2π] (a spiral) joinedto a segment in the Ox axis forms a losed urve. Find the area of U , thebounded region of C.
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x

y

QP
U

O

We use the formula Area (U) =
∫

C
xdy beause doing so we won't haveto integrate along the segment sine there we have dy = 0.Area (U) =

∫ 2π

0

e−t cos t(−e−t sin t+ e−t cos t)dt

=

∫ 2π

0

e−2t(cos2 t− sin t cos t)dtIntegrating by parts
∫ 2π

0

e−2t cos2 t dt = −1

2
e−2t cos2 t |2π

0 −
∫ 2π

0

−1

2
e−2t(2 cos t(− sin t))dt =

= −1

2
e−4π +

1

2
−

∫ 2π

0

e−2t sin t cos t dt =

=
1

2
(1 − e−4π) −

∫ 2π

0

e−2t sin t cos t dtand then Area (U) =
1

2
(1 − e−4π) − 2

∫ 2π

0

e−2t sin t cos t dt =

=
1

2
(1 − e−4π) −

∫ 2π

0

e−2t sin 2t dt



270 CHAPTER 6. INTEGRAL THEOREMSThis last integral is
I =

∫ 2π

0

e−2t sin 2t dt =

= −1

2
e−2t sin 2t |2π

0 +

∫ 2π

0

e−2t cos 2t dt =

=

∫ 2π

0

e−2t cos 2t dt = Jand
J =

∫ 2π

0

e−2t cos 2t dt =

= −1

2
e−2t cos 2t |2π

0 −
∫ 2π

0

e−2t sin 2t dt =

= −1

2
e−4π +

1

2
− I =

=
1

2
(1 − e−4π) − IThen

2I =
1

2
(1 − e−4π)

I =
1

4
(1 − e−4π)and Area (U) =
1

4
(1 − e−4π)

�Problem 145: Area enlosed by a polygonal line: a omputing sieneproblem.Compute the area of the region U enlosed by the simple losed polygonalline C with verties at
P0 = (3, 2), P1 = (1, 4), P2 = (−4, 3), P3 = (3,−4), P4 = (2,−2).
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P
0

P
1

P
2

P
3

P4

x

y

We use the line integral method; from the symmetri formula we have:Area(U) =
1

2

∫

C

(−ydx+ xdy)Let Pi = (ai, bi), i = 1, . . . , 4 and let us work �rst on the segment [P0, P1]:
X(t) = (1 − t)

(

a0

b0

)

+ t

(

a1

b1

)

, t ∈ [0, 1]

X ′(t) =

(

a1 − a0

b1 − b0

)

∫

[P0,P1]

xdy =

∫ 1

0

((1 − t)a0 + ta1)(b1 − b0)dt =

= (b1 − b0)(−
(1 − t)2

2
a0 +

t2

2
a1)|10 =

=
a0 + a1

2
(b1 − b0)and by symmetry

∫

[P0,P1]

ydx =
b0 + b1

2
(a1 − a0)so

1

2

∫

[P0,P1]

−ydx+ xdy =
1

2
(a0b1 − a1b0)



272 CHAPTER 6. INTEGRAL THEOREMSand the area isArea(U) =
1

2

3
∑

i=0

(aibi+1 − ai+1bi) +
1

2
(a4b0 − a0b4)To do the omputation it is useful to put the data in a table

i ai bi
0 3 2
1 1 4
2 −4 3
3 3 −4
4 2 −2
0 3 2and then alulate the suessive minors 2 × 2 :

1

2
(10 + 19 + 7 + 2 + 10) = 24One sees the usefulness of this result when applied to a list of verties withseveral hundreds of items; a trivial program will allow us to obtain the area.

�Problem 146:Consider the ellipse
x2

a2
+
y2

b2
= 1,the �eld F(x, y) = (−y, x) and the points P = (a, 0), Q = (0, b).a) Compute ∫

C
F · dl, C being the urve onsisting of the segment [Q,P ]and the ar PQ of the ellipse traversed in the positive sense.b) Compute diretly the area of the region U limited by C and hek theresult of a) using Green's theorem.
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U

b

a

Q
y

x
P

O

a) The integral along the segment is
γ(t) = (ta, (1 − t)b), t ∈ [0, 1]

γ′(t) = (a,−b)

∫

[Q,P ]

F · dl =

∫ 1

0

(−(1 − t)b, ta) · (a,−b)dt =

=

∫ 1

0

−abdt = −aband the integral along the ar of ellipse is
γ(t) = (a cos t, b sin t), t ∈ [0, π/2]

γ′(t) = (−a sin t, b cos t)

∫

dPQ

F · dl =

∫ π/2

0

(−b sin t, a cos t) · (−a sin t, b cos t)dt =

=

∫ π/2

0

ab dt =
π

2
aband

∫

C

F · dl = (
π

2
− 1)ab



274 CHAPTER 6. INTEGRAL THEOREMSb) The area seeked is obtained subtrating from the area of a quarter ofthe ellipse the area of the triangle OPQ , that is πab
4

− ab
2

= (π
4
− 1

2
)ab.On another hand the symmetri formula for area alulation tells usthat it should be half the line integral, and so it happens. The resultin a) is heked.

�Problem 147:Green's theorem is valid in some more general situations than the one de-sribed above. For instane:a) Let C and C ′ be two pieewise C1 simple losed urves. Assume C ′ontained in the bounded region of C. Show that if F ∈ C1(D ∪ ∂D),
D being the region in between C ′ and C, then we an apply Green'stheorem to D; explain the orientations.b) Let C be the ellipse γ(t) = (2 cos t, 3 sin t), t ∈ [0, 2π]; ompute:

∫

C

(
−y

x2 + y2
dx+

x

x2 + y2
)dy) Let C be a losed urve; the index of C respet to 0 = (0, 0) is:

n(C; 0) =
1

2π

∫

C

(
−y

x2 + y2
dx+

x

x2 + y2
)dyShow that if C is a simple losed urve positively oriented and D itsbounded region then:

n(C; 0) =

{

1 if 0 ∈ D
0 if 0 /∈ D ∪ ∂DSolution:a) Orient both urves as in the �gure, that is so that D is on the left ofboth urves:
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C

P Q

C’

D

Consider the uts P and Q. Now the urve C1+P +C ′
1+Q is pieewise

C1, simple, losed and positively oriented; its bounded region D1 lieson the left:
C’

1

C
1

D
1

P Q

.

.

Applying Green's theorem we obtain:
∫

C1+P+C′
1
+Q

F · dl =

∫ ∫

D1

(
∂F2

∂x
− ∂F1

∂y
)dxdyAnalogously the urve C2+Q−+C ′

2+P− is pieewise C1, simple, losedand positively oriented; its bounded region D2 lies on the left:
C2

C’2

P− Q−

D
2

Apply again Green's theorem to obtain
∫

C2+Q−+C′
2
+P−

F · dl =

∫ ∫

D2

(
∂F2

∂x
− ∂F1

∂y
)dxdy



276 CHAPTER 6. INTEGRAL THEOREMSAdding term by term the two preeding equalities and taking into a-ount that the line integral vanishes when integrated on two opposedurves (that is: along the uts), we obtain the following version ofGreen's theorem:
∫

C+C′

F · dl =

∫ ∫

D

(
∂F2

∂x
− ∂F1

∂y
)dxdyRemark that the orientation assigned to C ′ leaves the region D to theleft.b) The �eld F(x, y) = ( −y

x2+y2 ,
x

x2+y2 ) satis�es the mixed derivatives ondi-tion in R2 − {0}. Let B be the unit irumferene positively oriented:
D

C

B

Applying Green's theorem to the region D:
∫

C+B−

F · dl =

∫ ∫

D

(
∂F2

∂x
− ∂F1

∂y
)dxdy = 0 ⇒

∫

C

F · dl =

∫

B

F · dlbut the integral on the unit irumferene B is easy
∫

B

F · dl =

∫ 2π

0

(
− sin t

cos2 t+ sin2 t
(− sin t) +

cos t

cos2 t+ sin2 t
cos t)dt =

=

∫ 2π

0

(sin2 t+ cos2 t)dt = 2πNotie we have been able to hange the integration path beause in theregion D the mixed derivatives ondition is satis�ed.



6.1. GREEN'S THEOREM 277) If 0 ∈ D let S be a irumferene with enter at 0 and ontained in D:
D

C

O

S

ZZ.

By the same reason we had in b) we an hange the integration path:
1

2π

∫

C

(
−y

x2 + y2
dx+

x

x2 + y2
dy) =

1

2π

∫

S

(
−y

x2 + y2
dx+

x

x2 + y2
dy) = 1If 0 is an exterior point

D

C

..

O

we an apply Green's theorem to the regionD, beause the �eld F(x, y) =
( −y

x2+y2 ,
x

x2+y2 ) is C1 in D. We have
∫

C

(
−y

x2 + y2
dx+

x

x2 + y2
dy) =

∫ ∫

D

(
∂F2

∂x
−∂F1

∂y
)dxdy =

∫ ∫

D

0dxdy = 0Obviously we an de�ne the index of C respet to a point P = (a, b)thus
n(C;P ) =

1

2π

∫

C

−(y − b)dx+ (x− a)dy

(x− a)2 + (y − b)2

�Problem 148:a) Compute the length of the astroid x2/3 + y2/3 = a2/3, a > 0.b) Compute the area enlosed.



278 CHAPTER 6. INTEGRAL THEOREMS) Let F(x, y) = ( −y
x2+y2 ,

x
x2+y2 ); show that the integrals of F along theastroid and along the irumferene

x2 + y2 = a2traversed in the same sense oinide. What is the ommon value?Solution:A �gure:
x

a
a

y

a) A parametrization of the astroid is
γ(t) = (a cos3 t, a sin3 t), 0 ≤ t ≤ 2π

γ′(t) = (−3a cos2 t sin t, 3a sin2 t cos t)

| γ′(t) | = 3a
√

cos4 t sin2 t+ sin4 t cos2 t =

= 3a | cos t sin t |and its length is:
L = 3a

∫ 2π

0

| cos t sin t | dt = 4 · 3a
∫ π/2

0

cos t sin tdt =

= 12a
sin2 t

2
|π/2
0 = 6a



6.1. GREEN'S THEOREM 279b) We use the symmetri formula (see p.265):Area =
1

2

∫

γ

(−ydx+ xdy) =

=

∫ 2π

0

(−a sin3 t)(−3a cos2 t sin t) + a cos3 t 3a sin2 t cos tdt =

= 4 · 3a2

∫ π/2

0

(sin4 t cos2 t+ cos4 t sin2 t)dt =

= 12a2

∫ π/2

0

sin2 t cos2 tdt =

= 12a2

∫ π/2

0

1 − cos 2t

2
· 1 + cos 2t

2
dt =

= 3a2

∫ π/2

0

(1 − cos2 2t)dt =

= 3a2(π/2 −
∫ π/2

0

1 + cos 4t

2
dt) = 3a2(π/2 − π/4) =

=
3π

4
a2But we an as well use one of the other formulae:Area(U) =

∫

γ

xdy

=

∫ 2π

0

a cos 3t(3a sin 2t cos t)dt = 3a2

∫ 2π

0

cos4 t sin2 tdt =

= 3a2

∫ 2π

0

(1 + cos 2t)2

4

1 − cos 2t

2
dt =

=
3a2

8

∫ 2π

0

(1 − cos2 2t)(1 + cos 2t)dt =

=
3a2

8

∫ 2π

0

(1 − 1 + cos 4t

2
+ cos 2t− (1 − sin 22t) cos 2t)dt =

=
3π

8
a2) As the mixed derivatives ondition is satis�ed both line integrals oin-ide by the same reason we had in b) of the preeding problem. Then



280 CHAPTER 6. INTEGRAL THEOREMSwe an integrate along a irumferene, let's say the unit one:
∫

γ

F · dl =

∫

C

(
−y

x2 + y2
,

x

x2 + y2
) · dl =

=

∫ 2π

0

(− sin θ, cos θ) · (− sin θ, cos θ)dθ =

=

∫ 2π

0

1dθ = 2π

�Problem 149:Let D ⊂ R2 be the bounded region of a pieewise C1, simple, regular losedurve C positively oriented. If F = (P,Q) ∈ C1(D ∪ ∂D) (where C = ∂D,the boundary of D) and F = (P,Q, 0), prove the following equalities:a)
∫

∂D

F · dl =

∫ ∫

D

(∂xQ− ∂yP )dxdyb)
∫

∂D

F · dl =

∫ ∫

D

(rot F)zdxdy)
∫

∂D

F · ndl =

∫ ∫

D

div F dxdyd)
∫

C

r · ndl = 2Area (D)Solution:a) This is Green's theorem.b) (rotF)z = ∂xQ− ∂yP and it is again Green's theorem.



6.2. STOKES THEOREM 281) Call n the normal vetor to C pointing to the exterior of D. If
γ : [a, b] → R2, γ(s) = (x(s), y(s))is an ar-length parametrization of C, that normal vetor must be

n = (y′,−x′) or n = (−y′, x′). We have to hoose the one that makes
(n, γ′) a positive basis. As we have

det

(

y′ x′

−x′ y′

)

= (y′)2 + (x′)2 > 0we see that n = (y′,−x′). Then
∫

∂D

F · ndl =

∫ b

a

(P,Q) · (y′,−x′)ds =

∫ b

a

(−Qx′ + Py′)ds =

=

∫

∂D

(−Q,P ) · dl =

∫ ∫

D

(∂xP − ∂y(−Q))dxdy =

=

∫ ∫

D

div F dxdyd)
∫

C

r · ndl =

∫ ∫

D

div r dxdy =

∫ ∫

D

2dxdy = 2Area (D)The result in b) is Stokes's theorem in the plane and the result in ) is thedivergene theorem in the plane.
�6.2 Stokes theoremSurfaes with boundary

T Let S be a surfae that has as boundary a urve C; we write ∂S for theboundary. Let F be a C1 vetor �eld in an open set U ⊂ R3 that ontains Sand ∂S. Then
∫ ∫

S

rot F · dS =

∫

∂S

F · dl



282 CHAPTER 6. INTEGRAL THEOREMSIn words: the �ux of F's rotational through S equals the irulation of Falong the boundary.There is an important point about orientations sine both integrals de-pend on them; the orientation of the boundary has to math that of thesurfae. Let us give some intuitive rules about that.Assume S oriented by a ontinuous unit normal �eld n that gives a pos-itive sense of rotation in S through an orientation of the whole spae (seep.244). Imagine small dust like partiles distributed on S and ∂S; on S theyare dragged by the positive turning sense. In ∂S the wind produed in Smoves the partiles thus �xing an orientation for ∂S; it is alled the induedorientation. A �gure:
Sδ

x

y

z S

n

We an as well apply the theorem to surfaes glued through their bound-aries. But one has to be areful with orientations in the sense just explained.For instane:



6.2. STOKES THEOREM 283

x

y

z

�Problem 150: Cheking.Chek Stokes theorem applied to the �eld F(x, y, z) = (x, x + y, x + y + z)and the losed urve C = {(x, y, z) : x2 + y2 = R2, x+ y = z, R > 0}.Solution:
C is the intersetion of a ylinder and a plane; we see geometrially that itan be the boundary of many surfaes. Aording to the theorem any one ofthem will do; we hoose as S the region of the plane x+ y = z limited by C:

z

x

y

C

S

N

A parametrization of S and its assoiated normal vetor are
α(r, θ) = (r cos θ, r sin θ, r(cos θ + sin θ)), (r, θ) ∈ (0, R) × (0, 2π)
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∂rα = (cos θ, sin θ, cos θ + sin θ)

∂θα = (−r sin θ, r cos θ, r(− sin θ + cos θ))

N = (−r,−r, r)Orient S with that normal �eld. To hek the theorem we need a parametriza-tion of ∂S = C suh as
γ(θ) = α(R, θ) = (R cos θ, R sin θ, R(cos θ + sin θ)), θ ∈ (0, 2π)

γ′(θ) = (−R sin θ, R cos θ, R(cos θ − sin θ))that has the indued orientation. We an see this geometrially: thesrewdriver rule tells us that the normal generated by the way C 'turnsaround' is in the N diretion. Algebraially this amounts to see that
γ(θ) × γ′(θ) ·N > 0wih is easily heked. Or we an say that γ is the restrition of α and

γ′ = ∂θα; then γ is already well oriented beause:
γ(θ) × γ′(θ) · N = (α(R, θ) × ∂θα) ·N = (R∂rα× ∂θα) · N = RN2 > 0

• Flux of rotF through S:rotF = (1,−1, 1)
∫ ∫

S

F · dS =

∫ R

0

∫ 2π

0

(1,−1, 1) · (−r,−r, r)drdθ =

∫ R

0

∫ 2π

0

rdrdθ = πR2

• Cirulation of F along C:
∫ 2π

0

R(cos θ, cos θ + sin θ, 2(cos θ + sin θ)) · R(− sin θ, cos θ, cos θ − sin θ)dθ =

= R2

∫ 2π

0

(3 cos 2θ − 2 sin 2θ)dθ =

= R2

∫ 2π

0

(3
1 + cos 2θ

2
− 2

1 − cos 2θ

2
)dθ =

= R2(3π − 2π) = πR2

�



6.2. STOKES THEOREM 285Problem 151:Chek Stokes theorem applied to the �eld F(x, y, z) = (x, y, z) and the sur-fae S parametrized by α(r, θ) = (r cos θ, r sin θ, θ), (r, θ) ∈ (0, 1) × (0, π/2)(helioidal ramp).Solution:A �gure:
π/2

1

α

γ
1

γ
2

γ
3

γ
4

x

y

z
n

x

y

z

• We orient S by the assoiated normal vetor:
∂rα = (cos θ, sin θ, 0)

∂θα = (−r sin θ, r cos θ, 1)

N = (sin θ,− cos θ, r)The �ux of the rotational through the surfae isrotF = 0 ⇒
∫ ∫

S

rotF · dS = 0

• Cirulation of F along the boundary:To parametrize the boundary aording to the orientation of S observethat the normal vetor points towards the upper half spae of the plane.



286 CHAPTER 6. INTEGRAL THEOREMSWe see in the �gure the indued orientation in the boundary. Then
γ1(t) = (t, 0, 0), 0 ≤ t ≤ 1

γ2(θ) = (cos θ, sin θ, θ), 0 ≤ θ ≤ π/2

γ3(t) = (0, 1 − t, π/2), 0 ≤ t ≤ 1

γ4(θ) = (0, 0, π/2− θ), 0 ≤ θ ≤ π/2The irulation is the sum of the ontributions along eah piee:
∫

γ1

F · dl =

∫ 1

0

(t, 0, 0) · (1, 0, 0)dt =

∫ 1

0

tdt =
1

2
∫

γ2

F · dl =

∫ π/2

0

(cos θ, sin θ, θ) · (− sin θ, cos θ, 1)dθ =

∫ π/2

0

θdθ =
π2

8
∫

γ3

F · dl =

∫ 1

0

(0, 1 − t, π/2) · (0,−1, 0)dt =

∫ 1

0

(t− 1)dt = −1

2
∫

γ4

F · dl =

∫ π/2

0

(0, 0, π/2 − θ) · (0, 0,−1)dθ =

=

∫ π/2

0

(θ − π

2
)dθ =

π2

8
− π2

4
= −π

2

8We obtain
∫

γ

F · dl = 0and we have heked Stokes theorem.
�Problem 152:Evaluate the following integral using Stokes theorem

∫

C

−y3dx+ x3dy − z3dz

C being the intersetion of the ylinder x2+y2 = 1 and the plane x+y+z = 1,with an orientation suh that its projetion on z = 0 turns antilokwise(usual positive sense) as seen from z > 0.
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n

x+y+z=1

C S

Let S be the region of the plane limited by the ylinder; parametrize Sby
α : D = D(0; 1) → R3

(x, y) 7→ (x, y, 1− x− y)that has as assoiated normal vetor N = (1, 1, 1). We see geometriallythat ∂S has the indued orientation and we an apply Stokes theorem. Let
F(x, y, z) = (−y3, x3,−z3) that has rot F = (0, 0, 3(x2 + y2)). Then

∫

C

F · dl =

∫ ∫

D(0;1)

(0, 0, 3(x2 + y2)) · (1, 1, 1)dxdy =

= 3

∫ 1

0

∫ 2π

0

r2rdrdθ = 3
1

4
2π =

3

2
π

�Problem 153:Let C be the urve intersetion of the surfaes
x+ y = 2b, x2 + y2 + z2 = 2b(x+ y), b > 0



288 CHAPTER 6. INTEGRAL THEOREMSoriented in the antilokwise sense when seen from the origin. Use Stokestheorem to evaluate
I =

∫

C

ydx+ zdy + xdzSolution:
C is the irumferene intersetion of the plane parallel to the Oz axis x+y =
2b and the sphere x2 + y2 + z2 = 2b(x + y) with enter (b, b, 0) and radius√

2b. In the �gure we an see C with the given orientation, and its projetionon the plane y = 0:
y

z

x
S

C

x

z
E

N

Eliminating y from the system giving the intersetion we obtain the pro-jeting ylinder on the the plane y = 0:
x+ y = 2b

x2 + y2 + z2 = 2b(x+ y)

}

⇒ x2 + (2b− x)2 + z2 = 4b2

2x2 − 4bx+ z2 = 0and ompleting squares we obtain the ellipse E
(x− b)2

b2
+

z2

(
√

2b)2
= 1, y = 0



6.2. STOKES THEOREM 289If S is the region in the plane that has C as boundary we have the parametriza-tion
α(x, z) = (x, 2b− x, z), (x, z) ∈ interior (E)

N = (−1,−1, 0)

N gives S the right orientation and we an apply Stokes theorem to the �eld
F(x, y, z) = (y, z, x) whose rotational is rot F = (−1,−1,−1); let R(E) bethe region enlosed by E:

I =

∫ ∫

S

rot F · dS =

=

∫ ∫

R(E)

(−1,−1,−1) · (−1,−1, 0)dxdy =

= 2

∫ ∫

R(E)

dxdy = 2 · Area R(E) = 2 · πb
√

2b = 2
√

2πb2

�Problem 154:Let f, g ∈ C1(R2), h ∈ C1(R3) and F(x, y, z) = (f(x, z) + ay, g(y, z) +
bx, h(x, y, z)). Let C be a simple losed urve ontained in z = 0 and orientedby leaving its bounded region U to the left (the planez = 0 being orientedby (0, 0, 1)). Show:

∫

C

F · dl = (b− a)Area (U)Solution:Apply Stokes theorem to U oriented by (0, 0, 1):rot F = det





i j k

∂x ∂y ∂z

f(x, z) + ay g(y, z) + bx h(x, y, z)



 =

= (∂yh− ∂zg, ∂zf − ∂xh, b− a)

∫

C

F · dl =

∫ ∫

U

rot F · dS =

∫ ∫

U

rot F · (0, 0, 1)dS =

= (b− a)

∫ ∫

U

dS = (b− a)Area (U)
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�Problem 155:Let S be a surfae with boundary the urve C and assume both oriented ina ompatible form. For eah p = (a, b, c) /∈ S ∪ C onsider the gravitational�eld of a unit mass point at p

g(x, y, z) = − 1

r3
(x− a, y − b, z − c), r =| (x− a, y − b, z − c) |,and the �ux through S as a funtion of p

φ(p) =

∫ ∫

S

g · dS.Show that
∇φ =

∫

C

(x − p) × dx

r3Solution:The �rst omponent of the gradient is
(∇φ)1 = ∂φ

∂a
=

∂

∂a
(

∫ ∫

S

− 1

r3
(x− a, y − b, z − c) · dS) =

= −
∫ ∫

S

(
∂

∂a
(
x− a

r3
),
∂

∂a
(
y − b

r3
),
∂

∂a
(
z − a

r3
)) · dSWe ompute the derivatives

∂

∂a
(
x− a

r3
) =

−r3 − 3r2 a−x
r

(x− a)

r6
=

−r2 + 3(x− a)2

r5

∂

∂a
(
y − b

r3
) = −3r2 a−x

r
(y − b)

r6
=

3(x− a)(y − b)

r5

∂

∂a
(
z − c

r3
) =

3(x− a)(z − c)

r5and the �rst omponent of the gradient an be written
(∇φ)1 = −

∫ ∫

S

1

r5
(−r2 + 3(x− a)2, 3(x− a)(y − b), 3(x− a)(z − c)) · dS



6.2. STOKES THEOREM 291On the other side
(x−p)×dx = ((y−b)dz−(z−c)dy, (z−c)dx−(x−a)dz, (x−a)dy−(y−b)dx)

(

∫

C

(x − p) × dx

r3
)1 =

∫

C

1

r3
((y − b)dz − (z − c)dy)Now we use Stokes theorem applied to the �eld F = 1

r3 (0,−(z − c), y − b, )whose rotational is rot F = det





i j k

∂x ∂y ∂z

0 −z−c
r3

y−b
r3



 =

= (
2r2 − 3(y − b)2 − 3(z − c)2

r5
,
3(x− a)(y − b)

r5
,
3(x− a)(z − c)

r5
) =

= (
−r2 + 3(x− a)2

r5
,
3(x− a)(y − b)

r5
,
3(x− a)(z − c)

r5
)and

(

∫

C

(x − p) × dx

r3
)1 =

∫ ∫

S

1

r5
(−r2+3(x−a)2, 3(x−a)(y−b), 3(x−a)(z−c))·dSthat oinides with the �rst omponent of ∇φ. The other omponents areheked in the same way.

�Problem 156:a) Compute diretly the �ux of the �eld F(x, y, z) = (−x, 0, z) throughthe surfae S = {(x, y, z) : x2 + y2 + z2 = 1, z > 1
2
}.b) Find a vetor potential for F of the form A(x, y, z) = (X, 0, Z).) Chek the result in a) by means of Stokes theorem.
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α(ϕ, θ) = (sinϕ cos θ, sinϕ sin θ, cosϕ), 0 ≤ ϕ ≤ π/3, 0 ≤ θ ≤ 2πwith assoiated normal vetor

∂α

∂ϕ
= (cosϕ cos θ, cosϕ sin θ,− sinϕ)

∂α

∂θ
= (− sinϕ sin θ, sinϕ cos θ, cosϕ)

N = (sin2 ϕ cos θ, sin2 ϕ sin θ, sinϕ cosϕ)We orient S by N. The �ux is:
φ =

∫ 2π

0

∫ π/3

0

(− sinϕ cos θ, 0, cosϕ)·(sin2 ϕ cos θ, sin2 ϕ sin θ, sinϕ cosϕ)dϕdθ =

=

∫ 2π

0

∫ π/3

0

(− sin3 ϕ cos2 θ + sinϕ cos2 ϕ)dϕdθ =

= −π
∫ π/3

0

sin3 ϕdϕ+ 2π

∫ π/3

0

sinϕ cos2 ϕdϕ =
3

8
πb) F may have a vetor potential:div F =

∂(−x)
∂x

+
∂z

∂z
= −1 + 1 = 0

A = (X, Y, Z) must satisfy (see p.159)rot A = F :







∂yZ = −x
∂zX − ∂xZ = 0
−∂yX = zfrom �rst and third equations

Z = −xy + ϕ(x, z)

X = −yz + ψ(x, z)
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−y +

∂ψ

∂z
= −y +

∂ϕ

∂xWe hoose ϕ = ψ = 0 and obtain
A = (−yz, 0,−xy)) Using A we have

φ =

∫ ∫

S

F · dS =

∫ ∫

S

rot A · dS =

∫

∂S

A · dlThe vetor N points to the exterior of the sphere and we orient ∂Saordingly. The following parametrization gives the right orientation:
γ(θ) = (

√
3/2 cos θ,

√
3/2 sin θ, 1/2)

γ′(θ) = (−
√

3/2 sin θ,
√

3/2 cos θ, 0)and then
φ =

∫

∂S

A · dl =

=

∫ 2π

0

(−1

2

√
3

2
sin θ, 0,−1

2

√
3

2
cos θ) · (−

√
3/2 sin θ,

√
3/2 cos θ, 0)dθ =

=

∫ 2π

0

3

8
sin2 θdθ =

3

8
π

�Problem 157: Flux and irulation.a) Compute the �ux of the �eld F(x, y, z) = (x2, 0,−2xz) through thesurfae
S = {(x, y, z) : x2 + y2 = 4, x ≥ 1, 0 ≤ z ≤ 1},oriented in suh a form that the normal at point P = (2, 0, 1/2) is

n = (−1, 0, 0).b) Using Stokes theorem hek the result in a).
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3

3(1, ,0)

3−(1, ,0)

γ2

γ3

γ4

γ
1

y

n

(2,0,1/2)

x

y

2

1

z

x

1

a) Parametrize S by means of ylindrial oordinates
α(θ, z) = (2 cos θ, 2 sin θ, z),

(θ, z) ∈ D = [−π/3, π/3] × [0, 1]The assoiated normal vetor is N = 2(cos θ, sin θ, 0); now the point
P = (2, 0, 1/2) has the parameters (0, 1/2) and the normal vetorthere is N(0, 1/2) = 2(1, 0, 0) whih is opposed to n. We an pro-eed with the parametrization we have and hange the sign at the endor reparametrize by

β(z, θ) = α(θ, z)that has an assoiated normal vetor satifying Nβ = −Nα and willhave the good orientation. We use the �rst proedure:
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∫ ∫

D

F · Nαdθdz =

∫ ∫

D

(4 cos 2θ, 0,−4(cos θ)z) · 2(cos θ, sin θ, 0)dθdz =

= 8

∫ ∫

D

cos 3θdθdz = 8

∫ ∫

D

(1 − sin 2θ) cos θdθdz =

= 8 (sin θ − sin 3θ

3
)|π/3
−π/3 = 8(2

√
3

2
− 2

3
√

3
8

3
) = 6

√
3So with the given orientation we have

∫ ∫

S

F · dS = −6
√

3b) F has a vetor potential sine div F = 2x− 2x = 0. Using the methodof p.156 we have
A(x, y, z) =

∫ 1

0

F(tx) × tx dt =

=

∫ 1

0

(t2x2, 0,−2t2xz) · (tx, ty, tz)dt =

= (2xyz,−3x2z, x2y)

∫ 1

0

t3dt =

=
1

4
(2xyz,−3x2z, x2y)To hek the result obtained in a) we shall integrate A along the fourars in the �gure that have the orientation indued by that of thesurfae. Then:

γ1(θ) = (2 cos θ,−2 sin θ, 0), θ ∈ [−π/3, π/3]

γ′1(θ) = (−2 sin θ,−2 cos θ, 0)

∫

γ1

A · dl =

∫ π/3

−π/3

1

4
(0, 0,−8 cos2 θ sin θ) · (−2 sin θ,−2 cos θ, 0)dθ = 0

γ2(t) = (1,−
√

3, t), t ∈ [0, 1]

γ′2(t) = (0, 0, 1)
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∫

γ2

A · dl =

∫ 1

0

1

4
(. . . , . . . ,−

√
3) · (0, 0, 1)dt = −

√
3

4

γ3(θ) = (2 cos θ, 2 sin θ, 1), θ ∈ [−π/3, π/3]

γ′3(θ) = (−2 sin θ, 2 cos θ, 0)

∫

γ3

A · dl =

=

∫ π/3

−π/3

1

4
(8 sin θ cos θ,−12 cos2 θ,−8 cos2 θ sin θ)·(−2 sin θ, 2 cos θ, 0)dθ =

=
1

4

∫ π/3

−π/3

(−16 sin2 θ cos θ − 24 cos3 θ)dθ =

= −4
sin3 θ

3
|π/3
−π/3 −6(sin θ − sin3 θ

3
) |π/3

−π/3=

= 2
sin3 θ

3
|π/3
−π/3 −6 sin θ |π/3

−π/3=

√
3

2
− 6

√
3 = −11

√
3

2

γ4(t) = (1,
√

3, 1 − t), t ∈ [0, 1]

γ′4(t) = (0, 0,−1)

∫

γ4

A · dl =

∫ 1

0

1

4
(. . . , . . . ,

√
3) · (0, 0,−1)dt = −

√
3

4We obtain
∫

∂S

A · dl = −2

√
3

4
− 11

√
3

2
= −6

√
3

�Problem 158:Let u, v ∈ C2(R3) salar �elds.a) Show that ∇u×∇v has a vetor potential.



6.2. STOKES THEOREM 297b) Is any of the following �elds suh a vetor potential?i) ∇(uv).ii) u∇v.iii) v∇u.) If u(x, y, z) = x3 − y3 + z2 and v(x, y, z) = x+ y + z, ompute
I =

∫ ∫

S

∇u×∇v · dS,

S being the upper hemisphere of the unit sphere oriented through theexterior noisrmal.Solution:a) Let us show that ∇u×∇v has a vanishing divergenediv (∇u×∇v) = div (uyvz − uzvy, uzvx − uxvz, uxvy − uyvx) =

= (uyxvz + uyvzx − uzxvy − uzvyx) +

+ (uzyvx + uzvxy − uxyvz − uxvzy) +

+ (uxzvy + uxvyz − uyzvx − uyvxz)and the terms vanish in pairs beause of the equality of ross deriva-tives. Being u, v de�ned in all of R3 there is a vetor potential.b) i) rot ∇(uv) = 0and it is not a vetor potential.ii) rot (u∇v) = ∇u×∇v and we see that u∇v is a vetor potential.iii) rot (v∇u) = ∇v×∇u and we see that −v∇u is a vetor potential.



298 CHAPTER 6. INTEGRAL THEOREMS) We know that u∇v = (x3 − y3 + z2)(1, 1, 1) is a vetor potential andStokes theorem gives
∫ ∫

S

∇u×∇v · dS =

∫ ∫

S

rot ((x3 − y3 + z2)(1, 1, 1)) · ndS =

=

∫

∂S

(x3 − y3 + z2)(1, 1, 1)dlParametrizing ∂S by
γ(t) = (cos t, sin t, 0), t ∈ [0, 2π]

γ′(t) = (− sin t, cos t, 0)we obtain
I =

∫ 2π

0

(cos3 t− sin3 t)(− sin t+ cos t)dt =

=

∫ 2π

0

(cos4 t− cos3 t sin t+ sin4 t− sin3 t cos t)dt =

=

∫ 2π

0

(cos4 t+ sin4 t)dt =
3π

4
+

3π

4
=

3π

2

�Problem 159:Let S be a surfae oriented by the unit normal �eld n, and u, v ∈ C2 (in anopen set ontaining S) numerial funtions. Show that if ∇u is orthogonalto ∇v × n on S, then
∫

∂S

u∇v · dl = 0Solution:We use Stokes theorem and the property of the mixed produt (a× b) · c =
(b× c) · a = (c × a) · b:

∫

∂S

u∇v · dl =

∫ ∫

S

rot (u∇v) · dS =

∫ ∫

S

(∇u×∇v) · ndS =

=

∫ ∫

S

(∇v × n) · ∇udS =

∫ ∫

S

0dS = 0
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�Problem 160: Independene of the path.a) Let S ⊂ R3 an oriented surfae suh that any simple losed urve in Sis the boundary of a region R ⊂ S, and let F(x, y, z) be a vetor �eldin R3. Show that

∫

C

F · dl = 0for every simple losed urve C ⊂ S i� rot F · n = 0 at every pointof S (n is the normal �eld giving the orientation). If this ondition isful�lled then the line integral depends only on the endpoints.b) Let S = {(x, y, z) : x2 + y2 = 4, 1 ≤ x, 0 ≤ z ≤ 1} and F(x, y, z) =
(−y, x, 1); is the line integral of F along urves in S independent of thepath? If this is so ompute the integral of F between (1,

√
3, 0) and

(1,−
√

3, 1). If that is not so ompute the irulation of F along theboundary of SSolution:a) i) If (rot F) · n = 0 then rot F is tangent to S and its �ux throughany region R ⊂ S vanishes. Then let C ⊂ S be a simple losedurve and R ⊂ S the region suh that ∂R = C. Giving C theorientation indued by that of S we an apply Stokes theorem:
∫

C

F · dl =

∫ ∫

R
rotF · dS = 0ii) If ∫

C
F · dl = 0 for every simple losed urve C ⊂ S for everyregion suh that ∂R = C Stokes theorem gives

∫ ∫

R
(rot F) · ndS =

∫

C

F · dl = 0If we had (rotF ·n)p > 0 at a point p ∈ S it would remain positivein a neighborhood V of p by ontinuity; for any simple losed urve
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CV ⊂ V we would have

∫

CV

F · dl =

∫ ∫

V
rot F · ndS > 0,a ontradition that shows that it must be ((rot F) ·n)p = 0, ∀p ∈

S.b) Remind the �gure (see p.293):

3−(1, ,0) 3(1, ,0)

3−(1, ,1)

y

x

z

.

1

rot F(x, y, z) = det





i j k

∂x ∂y ∂z

−y x 1



 = (0, 0, 2)and as n = (x, y, 0) is normal to the surfae and (rot F) · n = (0, 0, 2) ·
(x, y, 0) = 0, F satis�es the ondition of point a). This means that wean hoose any path joining (1,

√
3, 0) and (1,−

√
3, 1). Consider �rstthe segment [(1,

√
3, 0), (1,−

√
3, 0)] :

γ(t) = (1,−t, 0), θ ∈ [−
√

3,
√

3]

γ′(θ) = (0,−1, 0)

∫

γ

F · dl =

∫ π/3

−π/3

(t, 1, 1) · (0,−1, 0)dθ =

=

∫ π/3

−π/3

−1dθ = −2π

3



6.3. GAUSS THEOREM 301And now we 'limb' along a ylinder's generatrix from (1,−
√

3, 0) to
(1,−

√
3, 1):

Γ(z) = (1,−
√

3, z), z ∈ [0, 1]

Γ′(z) = (0, 0, 1)

∫

Γ

F · dl =

∫ 1

0

(
√

3, 1, 1) · (0, 0, 1)dz = 1and the integral is
I = −2π

3
+ 1.

�6.3 Gauss theoremLet U ⊂ R3 be a bounded open set with a losed surfae as boundary ∂U(or several surfaes glued along ommon boundaries making a losed �gure),oriented by the exterior normal �eld and F ∈ C1(U ∪ ∂U). Then
∫ ∫ ∫

U

div F dV =

∫ ∫

∂U

F · dSGauss theorem is also alled the divergene theorem.
�6.3.1 Gauss theoremProblem 161: Cheking.Chek Gauss theorem whena) F(x, y, z) = (2x, y2, z2) and U the unit ball.b) F(x, y, z) = (x, y, z) and the ube [0, 1] × [0, 1] × [0, 1].



302 CHAPTER 6. INTEGRAL THEOREMSSolution:a) On on hand div F = 2 + 2y + 2z and
∫ ∫ ∫

U

div F dV =

∫ ∫ ∫

U

(2 + 2y + 2z)dV = 2
4

3
π =

8π

3beause by symmetry ∫ ∫ ∫

U
ydV =

∫ ∫ ∫

U
zdV = 0.On another hand if we parametrize S2 with spherial oordinates andremind that n = (x, y, z) is an exterior normal vetor, we have:

∫ ∫

∂U

F · dS =

∫ ∫

∂U

(2x, y2, z2) · (x, y, z)dS =

=

∫ ∫

∂U

(2x2 + y3 + z3)dS =

=

∫ 2π

0

∫ π

0

(2 sin2 ϕ cos2 θ + sin3 ϕ sin3 θ + cos3 ϕ) sinϕdϕdθSome terms have a vanishing integral:
∫ π

0

cos3 ϕ sinϕdϕ = 0

∫ 2π

0

sin4 ϕ sin3 θdθ = 0,The �rst vanishes beause cosϕ is an odd funtion respet to π/2. Theseond vanishes beause sin θ is an odd funtion respet to π. It remainsto ompute
∫ 2π

0

∫ π

0

2 sin3 ϕ cos2 θdϕdθWe have
∫ 2π

0

2 sin3 ϕ
1 + cos 2θ

2
dθ = 2π sin3 ϕ

∫ π

0

2π sin3 ϕdϕ = 2π

∫ π

0

(1 − cos2 ϕ) sinϕdϕ =

= 2π(2 +
cos3 ϕ

3
|π0 ) =

8π

3We have seen that
∫ ∫

∂U

F · dS =
8π

3and so we have heked the divergene theorem.



6.3. GAUSS THEOREM 303b) A �gure
x

z

1
1

1

y

On one hand divF = 1 + 1 + 1 = 3 and
∫ ∫ ∫

U

div F dV =

∫ ∫ ∫

U

3dV = 3On another hand we must �nd the �ux rossing the six faes of theube oriented by the exterior normal vetor:
• n = (1, 0, 0) is the normal to the fae (1, y, z) and we have

F · n = (1, y, z) · (1, 0, 0) = 1 ⇒ φ1 = Area(fae) = 1

• n = (−1, 0, 0) is the normal to the fae (0, y, z) and we have
F · n = (0, y, z) · (−1, 0, 0) = 0 ⇒ φ−1 = 0

• n = (0, 1, 0) is the normal to the fae (x, 1, z) and we have
F · n = (x, 1, z) · (0, 1, 0) = 1 ⇒ φ2 = 1

• n = (0,−1, 0) is the normal to the fae (x, 0, z) and we have
F · n = (x, 0, z) · (0,−1, 0) = 0 ⇒ φ−2 = 0and a similar result for the last pair of faes. Summing up:

∫ ∫

∂U

F · dS = 3

�



304 CHAPTER 6. INTEGRAL THEOREMSProblem 162: Computation of a �ux.Using the theorem of the divergene ompute the �ux of F through the unitsphere S2 oriented by the exterior normal when:a) F(x, y, z) = (x2, y2, z2)b) F(x, y, z) = (xz2, 0, z3)Solution:a) div F = 2(x+ y + z) and the divergene theorem gives:
∫ ∫

S2

F · dS =

∫ ∫ ∫

B2

2(x+ y + z)dxdydz = 0,the symmetry being taken into aount.b) div F = z2 + 3z2 = 4z2 and we have
∫ ∫

S2

F · dS =

∫ ∫ ∫

B2

4z2dxdydz = {spherial oords} =

= 4

∫ 1

0

dr

∫ π

0

dϕ

∫ 2π

0

r2 cos 2ϕr2 sinϕdθ

= 4 · 2π(
r5

5
)|r=1

r=0

∫ π

0

cos 2ϕ sinϕdϕ =

= 4
5

2π(−cos 3ϕ

3
)|ϕ=π

ϕ=0 =
16

15
π

�Problem 163: Computation of a �ux.Compute the �ux of the vetor �eld F(x, y, z) = (yz, zx, xy) aross the lateralsurfae L of a pyramid with vertex at (0, 0, 2) and basis the triangle B withverties at (0, 0, 0), (2, 0, 0), (0, 1, 0).
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x

y

B

z

Let Φ be the �ux through all the faes of the pyramid if they are giventhe exterior normal orientation; the theorem of the divergene applies andwe have
Φ = ΦL + ΦB =

∫ ∫ ∫

V

div F dV = 0and
ΦB =

∫ ∫

B

F · dS =

∫ ∫

B

(0, 0, xy) · (0, 0,−1)dS =

∫ ∫

B

−xydS =

=

∫ 2

0

dx

∫ −x/2+1

0

xydy = −
∫ 2

0

x
y2

2
|y=−x/2+1
y=0 dx =

= −
∫ 2

0

(
x3

8
− x2

2
+
x2

2
)dx = −(

x4

32
− x3

6
+
x2

4
) |x=2

x=0=

= −1

6so
ΦL =

∫ ∫

L

F · dS =
1

6

�



306 CHAPTER 6. INTEGRAL THEOREMSProblem 164:Consider that part V of the solid ylinder
U = {(x, y, z) : x2 + y2 ≤ 4, z ≥ 0}limited by the plane y + z = 10. Find:a) The volume of V .b) The area of the upper over.) The lateral area.d) The �ux of the �eld F(x, y, z) = (0, 0, z) aross the upper over.e) The line integral ∫

C
F · dl where C = ∂(U ∩ P ), P being the plane

y + z = a, 2 ≤ a ≤ 10.Solution:We are free to hoose the orientations. First at all a �gure:
T

1

T2

h(θ)

2

x

y

z

n

n

n

L

a) V is the region under the graph of the funtion f(x, y) = 10 − y and
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∫ ∫

D(0;2)

(10 − y)dxdy = {polar oords}
=

∫ 2

0

dr

∫ 2π

0

(10 − r sin θ)rdrdθ =

=

∫ 2

0

(10rθ + r2 cos θ) |2π
0 dr =

=

∫ 2

0

20πrdr = 40πLet us do a hek of this result using Gauss theorem. To that end let
S be the surfae wih is the boundary of V , oriented by the exteriornormal. Think about it as deomposed into two overs T1, T2 and alateral surfae L. ThenVol (V ) =

∫ ∫ ∫

V

1dxdydz =

∫ ∫ ∫

V

div (x, 0, 0)dxdydz =

=

∫ ∫

S

(x, 0, 0) · dSFrom y + z = 10 we obtain the exterior normal to T1: n = 1√
2
(0, 1, 1).And the exterior normal to T2 is n = (0, 0,−1). ThenVol (V ) =

∫ ∫

T1

(x, 0, 0) · 1√
2
(0, 1, 1)dS +

+

∫ ∫

T2

(x, 0, 0) · (0, 0,−1)dS +

∫ ∫

L

(x, 0, 0) · dS =

= 0 + 0 +

∫ ∫

L

(x, 0, 0) · dSParametrize L by:
α(θ, z) = (2 cos θ, 2 sin θ, z), θ ∈ [0, 2π], z ∈ [0, 10 − 2 sin θ]
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θ2π

10

∂θα = (−2 sin θ, 2 cos θ, 0)

∂zα = (0, 0, 1)

N = (2 cos θ, 2 sin θ, 0)and the integral is
∫ ∫

L

(x, 0, 0) · dS =

∫ 2π

0

dθ

∫ 10−2 sin θ

0

4 cos2 θdr =

= 4

∫ 2π

0

(10 − 2 sin θ) cos2 θdθ =

= 40

∫ 2π

0

cos2 θdθ − 80

∫ 2π

0

sin θ cos2 θdθ =

= 40

∫ 2π

0

1 + cos 2θ

2
dθ + 80

cos3 θ

3
|2π
0 =

= 40πb) We an see geometrially that we are omputing the area of an ellipsewith semiaxes 2 and 2
√

2 (beause the plane y+z = 10 has turned π/4respet to the plane z = 0) and has an areaArea = 4
√

2πWe an hek that result parametrizing the surfae of the ellipse; to doso we simply 'limb' from the dis D(0; 2) to the plane y + z = 10:
β(r, θ) = (r cos θ, r sin θ, 10 − r sin θ), (r, θ) ∈ [0, 2] × [0, 2π]

∂rβ = (cos θ, sin θ,− sin θ)

∂rβ = (−r sin θ, r cos θ,−r cos θ)

N = (0, r(sin2 θ + cos2 θ), r) = (0, r, r)

| N | =
√

2r



6.3. GAUSS THEOREM 309and its area is:Area =

∫ ∫

T1

dS =

∫ ∫

D

r
√

2drdθ = 2π
√

2
4

2
= 4

√
2π) The area of L is the sum of those bars h(θ) in the �rst �gure:Area (L) =

∫ 2π

0

(10 − 2 sin θ)dθ = 20πAlternatively we may use the parametrization of L we had in a); as
| N |= 2 we haveArea (L) =

∫ 2π

0

dθ

∫ 10−2 sin θ

0

2dz =

=

∫ 2π

0

2(10 − 2 sin θ)dθ = 20πd) Using the parametrization β of T1:
φT1

=

∫ ∫

T1

(0, 0, z) · dS =

=

∫ 2π

0

∫ 2

0

(0, 0, 10 − 2 sin θ) · (0, r, r)dθdr =

=

∫ 2π

0

∫ 2

0

(10 − 2 sin θ)rdθdr = 2

∫ 2π

0

(10 − 2 sin θ)dθ = 40πAlternatively we may use Gauss theorem applied to the �eld (0, 0, z).This �eld is tangent to L and gives no �ux aross. On T2 the �eldvanishes and so does φT2
. Then

∫ ∫ ∫

V

div (0, 0, z)dV = φT1
+ φT2

+ φL = φT1and
φT1

=

∫ ∫ ∫

V

div (0, 0, z)dV =

∫ ∫ ∫

V

1dV = Vol (V ) = 40π



310 CHAPTER 6. INTEGRAL THEOREMSe) Let us use Stokes theorem; let Ta be the upper over of the body (theintersetion of y+z = a with the solid ylinder) and taking into aountthat rot F = 0 we obtain:
∫

C

F · dl =

∫ ∫

Ta

rot F · dS = 0As a hek we parametrize C
γ(θ) = (2 cos θ, 2 sin θ, a− 2 sin θ), θ ∈ [0, 2π]

γ′(θ) = (−2 sin θ, 2 cos θ,−2 cos θ)and
∫

C

F · dl =

∫ 2π

0

(0, 0, a− 2 sin θ) · (−2 sin θ, 2 cos θ,−2 cos θ)dθ =

= −2a

∫ 2π

0

cos θ + 4

∫ 2π

0

sin θ cos θdθ =

= 0 + 4
sin2 θ

2
|2π
0 = 0

�Problem 165:Let C be the solid one with vertex at (0, 0, 1) and basis the dis D =
{(x, y, 0) : x2 + y2 ≤ 1}; all S the lateral surfae of C oriented by theexterior normal. Let F(x, y, z) = (x2, 0, y2) and ompute ∫ ∫

S
F · dS:a) Parametrizing S.b) Using the divergene theorem.
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x

y

z

(0,0,1)

1
D

S
C

a) Parametrize S:
α(r, θ) = (r cos θ, r sin θ, 1 − r), r ∈ [0, 1], θ ∈ [0, 2π]

∂rα = (cos θ, sin θ,−1)

∂θα = (−r sin θ, r cos θ, 0)

N = (r cos θ, r sin θ, r)and notie that N points to the exterior. We have
∫ ∫

S

F · dS =

∫ 1

0

∫ 2π

0

(r2 cos2 θ, 0, r2 sin2 θ) · (r cos θ, r sin θ, r)drdθ =

=

∫ 1

0

∫ 2π

0

(r3 cos3 θ + r3 sin2 θ)drdθ =

=
1

4

∫ 2π

0

(cos θ(1 − sin2 θ) +
1 + cos 2θ

2
)dθ =

=
1

4
(0 +

2π

2
) =

π

4b) The theorem of the divergene states that
∫ ∫ ∫

C

div FdV =

∫ ∫

S

F · dS +

∫ ∫

D

F · dS



312 CHAPTER 6. INTEGRAL THEOREMSOrienting D by n = (0, 0,−1) we have
∫ ∫

D

F · dS =

∫ ∫

D

(x2, 0, y2) · (0, 0,−1)dxdy =

=

∫ ∫

D

−y2dxdy = {polar oords} =

= −
∫ 1

0

∫ 2π

0

r2 sin2 θ rdrdθ =

= −1

4

∫ 2π

0

sin2 θdθ = −π
4and

∫ ∫ ∫

C

div FdV =

∫ ∫ ∫

C

2xdxdydz = 0The integral vanishes beause there are 'so many' positive x as negativeones (or we an make the hange of variables x = r cos θ, y = r sin θ, z =
z, r ∈ [0, 1], θ ∈ [0, 2π], z ∈ [0, 1 − r] that has a jaobian determinant
r > 0). The divergene theorem keks the result in a).

�Problem 166:Compute the �ux of F(x, y, z) = r
r3 aross S, the surfae of a ube C withsides 2a entered at 0, oriented by the exterior normal.Solution:

2a

n

n

n

z

y

xThe �eld is not de�ned at 0 and we annot use the divergene theorem.Nevertheless delete from C the losed ball B(0; a/2) = {x :| x |≤ a/2} and



6.3. GAUSS THEOREM 313all U the open set left. Then ∂U = S ∪ S2
a/2; we orient the sphere by theinterior normal. Apply the divergene theorem to U to obtain:

0 =

∫ ∫ ∫

U

div r

r3
dV =

∫ ∫

S

r

r3
· dS +

∫ ∫

Sa/2

r

r3
· dSWe know that with the exterior normal orientation

∫ ∫

Sa/2

r

r3
· dS = 4π,and with the interior normal orientation we have ∫ ∫

Sa/2

r
r3 ·dS = −4π. Then

∫ ∫

S

r

r3
· dS = 4πAlternatively we may use the solid angle onept (see p.253) and obtain thesame result just by notiing that the projetion of the ube on the unit sphere

S2 is the whole sphere.
�Problem 167:a) Using the divergene theorem ompute

∫ ∫

S

(x2 cosα + y2 cosβ + z2 cos γ)dS

S being the surfae x2 + y2 + z2 = 2az, a > 0 and α, β, γ the angles ofthe exterior normal to S with the oordinate axis.b) Same question if S is the surfae of the ube [0, a] × [0, a] × [0, a].Solution:Let us transform the integral to one that is a �ux
∫ ∫

S

(x2 cosα + y2 cosβ + z2 cos γ)dS =

∫ ∫

S

(x2, y2, z2) · n dS =

=

∫ ∫

S

(x2, y2, z2) · dSwhih is the �ux of the �eld F(x, y, z) = (x2, y2, z2), and now we an use thedivergene theorem.



314 CHAPTER 6. INTEGRAL THEOREMSa) The equation x2 +y2 + z2 = 2az is equivalent to x2 +y2 +(z−a)2 = a2and thus it is a sphere with enter at (0, 0, a) and radius r = a. Choosenew oordinate axes with origin at (0, 0, a), that is make the hange ofoordinates
X = x, Y = y, Z = z − a

z

y

(0,0,a)
Y

Z

X

xThe sphere's equation is now
X2 + Y 2 + Z2 = a2The �eld in the new oordinates is:

F(X, Y, Z) = (X2, Y 2, (Z + a)2)

I =

∫ ∫

S

(X2, Y 2, (Z + a)2) · ndSAnd the theorem of the divergene gives:
∫ ∫

S

(X2, Y 2, (Z + a)2) · ndS =

∫ ∫ ∫

V

div(X2, Y 2, (Z + a)2)dV =

=

∫ ∫ ∫

V

(2X + 2Y + 2(Z + a))dV =

= 2a

∫ ∫ ∫

V

1dV =

= 2a
4

3
πa3 =

8πa4

3We have used the fat that, ∫ ∫ ∫

V
XdV =

∫ ∫ ∫

V
Y dV =

∫ ∫ ∫

V
ZdV =

0 by symmetry.
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∫ ∫

S

(x2 cosα + y2 cosβ + z2 cos γ)dS =

∫ ∫ ∫

V

2(x+ y + z)dVand we ompute eah oordinate separatedly
∫ ∫ ∫

V

xdxdydz = (

∫ a

0

xdx)(

∫ ∫

[0,a]2
dydz) =

a2

2
a2 =

a4

2and the same result is obtained for the other oordinates; �nally
∫ ∫

S

(x2 cosα + y2 cosβ + z2 cos γ)dS = 2 · 3 · a
4

2
= 3a4

�Problem 168:Consider the ylinder D = {(x, y, z) : x2 +y2 = 1}, the hiperboli paraboloid
H = {(x, y, z) : z = xy}, the intersetion urve C = D ∩ H and the �eld
F(x, y, z) = (0, x, y2−x2

2
).a) Compute diretly ∫

C
F · dlb) Chek the result of a) using Stokes theorem.) Compute ∫

C
rotF · dl.d) Let L be the region of D limited by the urve C and by z = 1; ompute

∫ ∫

L
F · dS using the divergene theorem.Solution:A �gure:
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y

z

z=1T

C

x

D

z=1/2

...

N

a) To parametrize C it su�es to 'limb' from the basis irumferene tothe paraboloid (see p.28):
γ(θ) = (cos θ, sin θ, cos θ sin θ)

= (cos θ, sin θ,
sin 2θ

2
)

γ′(θ) = (− sin θ, cos θ, cos 2θ)In the �gure we an see the orientation of C; we ompute the lineintegral with this orientation:
∫

C

F · dl =

∫ 2π

0

(0, cos θ,
sin2 θ − cos2 θ

2
) · (− sin θ, cos θ, cos 2θ)dθ =

=

∫ 2π

0

(cos2 θ +
1

2
(sin2 θ − cos2 θ)(cos2 θ − sin2 θ))dθ =

=

∫ 2π

0

(cos2 θ − 1

2
(cos4 θ + sin4 θ) + sin2 θ cos2 θ)dθand using many times the formulae cos2 θ = 1+cos 2θ

2
and sin2 θ =

1−cos 2θ
2

, we obtain
∫

C

F · dl =
π

2



6.3. GAUSS THEOREM 317b) To use Stokes theorem we �ll the urve with the surfae S given by:
β(x, y) = (x, y, xy), (x, y) ∈ D1 = {(x, y) : x2 + y2 ≤ 1}

βx = (1, 0, y)

βy = (0, 1, x)

N = (−y,−x, 1)The third omponent of N is positive and the vetor points up, as wean see in the �gure. This orientation of S indues in C the orientationused in a). As rot F = (y, x, 1), we have:
∫ ∫

S

rotF · dS =

∫ ∫

D1

(y, x, 1) · (−y,−x, 1)dxdy

=

∫ ∫

D1

(1 − x2 − y2)dxdy =

= {polar oords} =

∫ 2π

0

∫ 1

0

(1 − r2)rdrdθ =

= 2π(
1

2
− 1

4
) =

π

2and Stokes theorem gives
∫

C

F · dl =

∫ ∫

S

rot F · dS =
π

2) To ompute ∫

C
rotF · dl we apply Stokes theorem again:

∫

C

rot F · dl =

∫ ∫

S

rot (rot F) · dS =

∫ ∫

S

0 · dS = 0d) Let T be the upper over of the region in the ylinder and U the volumeenlosed by the solid ylinder between S and T ; the divergene theoremgives:
0 =

∫ ∫ ∫

U

div (0, x,
y2 − x2

2
)dV =

=

∫ ∫

L

F · dS +

∫ ∫

S

F · dS +

∫ ∫

T

F · dS
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∫ ∫

L

F · dS = −
∫ ∫

S

F · dS−
∫ ∫

T

F · dSNotie that L, S, T have to be oriented by the exterior normal. Theparametrization β we had in b) has the assoiated normal vetor point-ing to the interior of U ; so we must hange the sign:
∫ ∫

S

F · dS = −
∫ ∫

D1

(0, x,
y2 − x2

2
) · (−y,−x, 1)dxdy =

= −
∫ ∫

D1

(−3

2
x2 +

1

2
y2)dxdy = {polar oords} =

= −
∫ 1

0

∫ 2π

0

r2(−3

2
cos2 θ +

1

2
sin2 θ)rdrdθ =

= − 1

4
(−3

2
π +

1

2
π) =

π

4Then the �ux with the orientation given by the exterior normal will be
−π/4.A parametrization of T with the assoiated normal pointing to theexterior of u is:

β(x, y) = (x, y, 1), (x, y) ∈ D1 = {(x, y) : x2 + y2 ≤ 1}
N = (0, 0, 1)

∫ ∫

T

F · dS =

∫ ∫

D1

(0, x,
y2 − x2

2
) · (0, 0, 1)dxdy = {polar oords} =

=

∫ 1

0

∫ 2π

0

1

2
r2(sin2 θ − cos2 θ)rdrdθ = 0Finally
∫ ∫

L

F · dS =
π

4

�Problem 169:A solid of revolution respet to the Oz axis is limited on the �oor by thedis D, x2 + y2 ≤ 1, z = 0, on the side by the piee of a ylinder C with



6.3. GAUSS THEOREM 319equations x2 + y2 = 1, 0 ≤ z ≤ 1 + a and on the roof by the paraboloid P :
z = 1+a(x2+y2), a > −1. Let us orient all these surfaes in an antilokwisesense when seen from the exterior. Consider the �eld F(x, y, z) = (x, y, 0).a) Compute the integral of F on the paraboli over.b) Compute the integral of F on the ylindrial side.) Use Gauss theorem to ompute the volume in terms of the resultsobtained in a), b).Solution:A �gure:

n

n

n

z

y

x

D

P

C

a) Parametrize the over P :
α(x, y) = (x, y, 1 + a(x2 + y2)), (x, y) ∈ D

∂xα = (1, 0, 2ax)

∂yα = (0, 1, 2ay)

N = (−2ax,−2ay, 1)



320 CHAPTER 6. INTEGRAL THEOREMSand the integral of F is:
∫ ∫

P

(x, y, 0) · dS =

∫ ∫

D

(x, y, 0) · (−2ax,−2ay, 1)dxdy =

= −2a

∫ ∫

D

(x2 + y2)dxdy = {polar oords} =

= −2a

∫ 1

0

∫ 2π

0

r2rdrdθ = −4πa
1

4
= −πab) The side C we parametrize by

β(θ, z) = (cos θ, sin θ, z), θ ∈ [0, 2π], z ∈ [0, 1 + a]

∂θβ = (− sin θ, cos θ, 0)

∂yβ = (0, 0, 1)

N = (cos θ, sin θ, 0)and the integral of F is:
∫ ∫

C

(x, y, 0) · dS =

∫ ∫

C

(cos θ, sin θ, 0) · (cos θ, sin θ, 0) =

=

∫ 2π

0

∫ 1+a

0

dθdz = 2π(1 + a)) Notie that the assoiated normal vetors to the parametrizations α, βpoint to the exterior and we an use the divergene theorem to obtain:
∫ ∫ ∫

V

div FdV =

∫ ∫

p

F · dS +

∫ ∫

C

F · dS +

∫ ∫

D

F · dS =

= −πa + 2π(1 + a) + 0 = π(2 + a)and as
∫ ∫ ∫

V

div FdV =

∫ ∫ ∫

V

2dV = 2Vol (V )we get the result Vol (V ) =
π

2
(2 + a)

�



6.3. GAUSS THEOREM 321Problem 170:Let f be a positive di�erentiable funtion suh that f(0) = f(−1) = 2. Let
S be the surfae of revolution obtained revolving the urve y = f(z), x = 0around the Oz axis. Consider the vetor �eld F(x, y, z) = (x, y,−2z).a) Let S1 be that part of S limited by the planes z = −1, z = 0; omputediretly the �ux of F aross S1.b) Chek the result in a) using the divergene theorem.Solution:A �gure:

y

x

z

z=−1

z=0

S
1

0

−1

T

T

y=2

y=f(z)

a) A parametrization of S1 is
α(θ, z) = (f(z) cos θ, f(z) sin θ, z), (θ, z) ∈ [0, 2π] × [−1, 0]with assoiated normal vetor

N = αθ × αz = (f cos θ, f sin θ,−ff ′)Thus
∫

S1

F · dS =

∫ 0

−1

∫ 2π

0

(f(z) cos θ, f(z) sin θ,−2z) · (f cos θ, f sin θ,−ff ′)dθdz =

=

∫ 0

−1

∫ 2π

0

(f 2 + 2ff ′z)dθdz = 2π

∫ 0

−1

(f 2 + 2ff ′z)dz =

= 2π(f 2z)|z=0
z=−1 = 8πNotie that as f > 0 the normal vetor points to the exterior.



322 CHAPTER 6. INTEGRAL THEOREMSb) Consider the region U ⊂ R3 limited by S1 and by the overs
T−1 = {(x, y, z) : x2 + y2 ≤ f(−1)2 = 4, z = −1}
T0 = {(x, y, z) : x2 + y2 ≤ f(0)2 = 4, z = 0}As div F = 0 the divergene theorem gives:
∫ ∫

T−1

F · dS +

∫ ∫

T0

F · dS +

∫ ∫

S1

F · dS = 0where the surfaes must be oriented by the exterior normal; this is sofor the parametrization of a). On T0 the �ux vanishes, beause
F · n = (x, y, 0) · (0, 0, 1) = 0Parametrizing T−1 by

α(θ, ρ) = (ρ cos θ, ρ sin θ,−1), (θ, z) ∈ [0, 2π] × [0, 2],we have an assoiated normal vetor pointing to the exterior:
αθ × αρ = (0, 0,−ρ)The �ux is

∫ ∫

T−1

F · dS =

∫ 2π

0

∫ 2

0

(ρ cos θ, ρ sin θ, 2) · (0, 0,−ρ)dθdρ =

=

∫ 2π

0

∫ 2

0

−2ρdθdρ = −8πand from the theorem we obtain
∫ ∫

S1

F · dS = −
∫ ∫

T−1

F · dS = −(−8π) = 8πWe have heked the result of a).
�



6.3. GAUSS THEOREM 323Problem 171:Consider the paraboloid P = {(x, y, z) : z = x2 + y2}, the plane π =
{(x, y, z) : x+ y + z = 1} and the vetor �elds

F(x, y, z) = (y − z, z − x, x− y),G(x, y, z) = (y,−x, 0).a) Show that F is tangent to π and that G is tangent to P .b) Compute the �ux of F aross S the region of P limited by π.) Compute the �ux of G aross T the region of π limited by P .Solution:
z

y

x

P

S

T

a) A perpendiular vetor to π is N = (1, 1, 1). F satis�es
F ·N = (y − z, z − x, x− y) · (1, 1, 1) = 0and is tangent to π; then F has a vanishing �ux through any region in

π.On another hand, if f(x, y, z) = x2 + y2 − z, a vetor �el normal to Pis N = ∇f = (2x, 2y,−1) and G satis�es
G · N = (y,−x, 0) · (2x, 2y,−1) = 2xy − 2xy = 0that is, G is tangent to P and has a vanishing �ux aross any regionin P .



324 CHAPTER 6. INTEGRAL THEOREMSb) Let U be the region of R3 limited by the paraboloid and the plane; as
∇ · F = 0, using the divergene theorem we obtain:

0 =

∫ ∫ ∫

U

∇ · FdV =

∫ ∫

S

F · dS +

∫ ∫

T

F · dSand as F has a vanishing �ux aross T
∫ ∫

S

F · dS = 0) Analogously ∇ · G = 0 and
0 =

∫ ∫ ∫

U

∇ ·GdV =

∫ ∫

S

G · dS +

∫ ∫

T

G · dSand as G has a vanishing �ux aross S
∫ ∫

T

G · dS = −
∫ ∫

S

G · dS = 0

�Problem 172:Consider the �elds
G(x, y, z) = (1 − r2)(y,−x, ez2

)

H(x, y, z) =
r

r3

F(x, y, z) = H + rot Ga) Compute div F.b) Compute the �ux of F aross S, the upper unit semisphere.) Compute the �ux of G aross S, the upper unit semisphere.



6.3. GAUSS THEOREM 325Solution:a) div F = div H + div (rot G) = 0 beause H is a gravitational �eld ofa point mass that we know to have vanishing divergene.b) We annot lose the semisphere by a lower over to apply the diver-gene theorem beause H is unde�ned at 0; so let us proeed diretly.Orienting the semisphere by the exterior normal we have:
∫ ∫

S

H · dS =

∫ ∫

S

r

r3
· rdS =

∫ ∫

S

1

r
dS = {r = 1} =

∫ ∫

S

dS = 2πOr we an use the onept of solid angle to arrive at the same value(see p.253).For the �ux of rot G we lose S with the dis T = {(x, y, z) : x2 + y2 ≤
1, z = 0} oriented by the exterior normal n = (0, 0,−1). The theoremof the divergene applies and we obtain

∫ ∫

S

rot G · dS +

∫ ∫

T

rot G · dS =

∫ ∫ ∫

U

div (rot G)dV = 0and using Stokes theorem
∫ ∫

S

rot G · dS = −
∫ ∫

T

rot G · dS = −
∫

∂T

G · dl = 0due to the fat that G vanishes on ∂T , beause r = 1. Finally
∫ ∫

S

F · dS = 2π) On the unit sphere r = 1 and we see that G vanishes there; so
∫ ∫

S

G · dS = 0

�



326 CHAPTER 6. INTEGRAL THEOREMSProblem 173:Let S be the surfae of the ellipsoid
x2

a2
+
y2

b2
+
z2

c2
= 1,oriented by the exterior unit normal n and let d(x, y, z) be the distane fromthe origin to the tangent plane to S at the point (x, y, z). Show:a) If F(x, y, z) = ( x

a2 ,
y
b2
, z

c2
) then F · n = 1

d
.b) ∫ ∫

S
1
d
dS = 4

3
π( bc

a
+ ca

b
+ ab

c
).) ∫ ∫

S
d dS = 4πabc.d) Compute the �ux aross S of the �eld G = (xz

a2 ,
yz
b2
, z2

c2
) .Solution:
y

z

x

P(x,y,z)

a b

d

a) S is the level 1 set of the funtion f(x, y, z) = x2

a2 + y2

b2
+ z2

c2
; an exteriornormal vetor is

∇f = 2(
x

a2
,
y

b2
,
z

c2
) = 2Fand

n =
F

|F|
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F · n = F · F

|F| = |F| =

√

x2

a4
+
y2

b4
+
z2

c4The tangent plane to S at the point p0 = (x0, y0, z0) ∈ S is ∇f(p0) ·
(p− p0) = 0:

x0

a2
(x− x0) +

y0

b2
(y − y0) +

z0
c2

(z − z0) = 0

x0

a2
x+

y0

b2
y +

z0
c2
z =

x2
0

a2
+
y2

0

b2
+
z2
0

c2
= 1The distane from the origin is:

d =
1

√

x2
0

a4 +
y2
0

b4
+

z2
0

c4and
1

d
=

√

x2
0

a4
+
y2

0

b4
+
z2
0

c4
= |F| = F · nb) Using the preeding result and the divergene theorem

∫ ∫

S

1

d
dS =

∫ ∫

S

F · ndS =

∫ ∫

S

F · dS =

∫ ∫ ∫

V

∇ · FdV =

=

∫ ∫ ∫

V

(
1

a2
+

1

b2
+

1

c2
)dV = (

1

a2
+

1

b2
+

1

c2
)

∫ ∫ ∫

V

1dV =

=
4

3
πabc(

1

a2
+

1

b2
+

1

c2
) =

4

3
π(
bc

a
+
ca

b
+
ab

c
)) As it has been so omfortable, we try to opy the line in b); we wouldlike a �eld H suh that H · n = d on S that is

H · n =
1

√

x2

a4 + y2

b4
+ z2

c4But we know n to be
n =

( x
a2 ,

y
b2
, z

c2
)

√

x2

a4 + y2

b4
+ z2

c4

,



328 CHAPTER 6. INTEGRAL THEOREMSand we see that we should hoose H(x, y, z) = (x, y, z); then
∫ ∫

S

d dS =

∫ ∫

S

H · n dS =

∫ ∫

S

H · dS =

∫ ∫ ∫

V

∇ ·HdV =

= 3

∫ ∫ ∫

V

1dV = 3Vol(V ) = 3
4

3
πabc = 4πabcd) We simply apply the divergene theorem:

∫ ∫

S

G · dS =

∫ ∫ ∫

V

∇ · GdV =

∫ ∫ ∫

V

(
z

a2
+
z

b2
+

2z

c2
)dV =

= (
1

a2
+

1

b2
+

2

c2
)

∫ ∫ ∫

V

zdV = 0,taking into aount the symmetry.
�Problem 174:Let S be a losed surfae enlosing a region U , n the unit exterior normal,and v a �xed vetor. Show:a) ∫ ∫

S
cos(v,n)dS = 0.b) ∫ ∫ ∫

U
div n dV = Area (S).Solution:a) We onvert the integral into a �ux integral

I =

∫ ∫

S

cos(v,n)dS =

∫ ∫

S

1

| v |v · ndS =
1

| v |

∫ ∫

S

v · dSNow the divergene theorem shows that
I =

1

| v |

∫ ∫ ∫

U

div v dV = 0b) The divergene theorem gives
∫ ∫ ∫

U

div n dV =

∫ ∫

S

n·dS =

∫ ∫

S

n·ndS =

∫ ∫

S

1dS = Area (S)

�



6.3. GAUSS THEOREM 329Problem 175:Let F ∈ C2(R3) be a vetor �eld suh that ∇2F = 0 and let U be a region towhih we an apply the divergene theorem. Show that
∫ ∫ ∫

U

| rot F |2 dV =

∫ ∫

∂U

(F× rot F) · dS+

∫ ∫ ∫

U

F · grad (div F)dVSolution:Equivalently we want to prove that
∫ ∫

∂U

(F× rot F) · dS =

∫ ∫ ∫

U

(| rot F |2 −F · grad (div F))dVApply the formula (see p.72)
∇ · (F× G) = (∇× F) · G − F · (∇×G)to G = rot F and obtaindiv (F × rot F) = rot F · rot F− F · rot (rot F) =

= | rot F |2 −F · rot (rot F)and by the divergene theorem it su�es to show that rot (rot F) = grad (div F).We have:rot (rot F) = det





i j k

∂x ∂y ∂z

(∂yF3 − ∂zF2) (∂zF1 − ∂xF3) (∂xF2 − ∂yF1)



 =

= (
∂2F2

∂x∂y
− ∂2F1

∂y2
− ∂2F1

∂z2
+
∂2F3

∂x∂z
, . . . , . . . )And taking into aount the ondition ∇2F = 0 we may writerot (rot F) = (

∂2F1

∂x2
+
∂2F2

∂x∂y
+
∂2F3

∂x∂z
, . . . , . . . )On the other handgrad (div F) = grad (

∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
) =

= (
∂2F1

∂x2
+
∂2F2

∂y∂x
+
∂2F3

∂z∂x
, . . . , . . . )



330 CHAPTER 6. INTEGRAL THEOREMSWe have proved the equality for the �rst omponent; the equality of the otheromponents is seen in a similar manner.
�Problem 176: Let U ⊂ R3 a simply onneted open set with boundary

S = ∂U , a losed surfae oriented by the unit exterior normal vetor n. Let
F,G ∈ C1(U ∪ S) vetor �elds suh that in Urot F = rot Gdiv F = div Gand on S

F · n = G · nShow that F = G in U . Hint: show that X = F − G has a potential ϕ andapply the divergene theorem to ϕX.Solution: In U rot X = rot F − rot G = 0div X = div F − div G = 0and taking into aount that U is simply onneted, the �eld X has a poten-tial: X = ∇ϕ. Apply the divergene theorem to ϕX:
∫ ∫

∂U

ϕX · dS =

∫ ∫ ∫

U

div(ϕX)dVThe left hand integral vanishes beause X ·n = 0 on ∂U . For the right handintegral we havediv(ϕX) = ∇ϕ · X + ϕ divX = ∇ϕ · X = X · X = |X|2Thus
∫ ∫ ∫

U

|X|2dV = 0and as |X|2 ≥ 0 and X is ontinuous we have |X|2 = 0 that is X = 0.
�



6.3. GAUSS THEOREM 331Problem 177: A nowhere zero salar �eld u satis�es
|∇u|2 = 4u, ∇ · (u∇u) = 10uLet S2 be the unit sphere oriented by the exterior normal. Compute

∫ ∫

S2

∂u

∂n
dSSolution: Let B be the unit ball; we have

∫ ∫

S2

∂u

∂n
dS =

∫ ∫

S2

∇u · ndS =

∫ ∫ ∫

B

div(∇u)dV =

∫ ∫ ∫

B

∇2udVbut div(u∇u) = ∇u · ∇u+ u∇2u

10u = 4u+ u∇2u

∇2u = 6Then
∫ ∫

S2

∂u

∂n
dS =

∫ ∫ ∫

B

6dV = 6
4

3
π = 8π

�6.3.2 Volume alulationProblem 178 : Volume alulations using surfae integrals. Volume ofones.We know how to ompute areas through line integrals (see p.265); in a similarway we an ompute volumes by means of surfae integrals.a) Let U ∈ R3 be a region to whih we an apply the divergene theorem.Show:Vol(U) =

∫ ∫

∂U

(x, 0, 0) · dS =

∫ ∫

∂U

(0, y, 0) · dS =

∫ ∫

∂U

(0, 0, z) · dS =

=
1

3

∫ ∫

∂U

(x, y, z) · dS

∂U being oriented by the exterior normal.



332 CHAPTER 6. INTEGRAL THEOREMSb) Appliation: volume of a general one. Let C be a simple losed urveontained in a plane π at a distane d from the origin. Let R be thebounded region of C and let V be the solid one with baseR and vertexat the origin. Show thatVol (V ) =
1

3
Area(R)dAssume we an apply the divergene theorem to V .) To use the preeding formula we must know how to ompute Area(R).Show that the area enlosed by a simple losed urve C ontained inthe plane π : ax+ by + cz = p , where a2 + b2 + c2 = 1 is

A =
1

2

∫

C

((bz − cy)dx+ (cx− az)dy + (ay − bx)dz)

C being oriented leaving R to the left as seen from the side to whihthe normal vetor (a, b, c) points.d) That is the formula, but where does it ome from? To see it remind (seep.280) that if C is a C1 regular, simple, losed plane urve, positivelyoriented with bounded regionR and n is the exterior unit normal vetorto C then: Area(R) =
1

2

∫

C

r · n dlUse this formula to prove the one in ).Solution:a) Applying the divergene theorem to eah of the �elds
F(x, y, z) = (x, 0, 0),F(x, y, z) = (0, y, 0),F(x, y, z) = (0, 0, z),we obtain the �rst three results; the fourth is the average of the others.Comment: We have seen that the volume of U an be omputed usingthe formula

1

3

∫ ∫

∂U

(x, y, z) · dS =
1

3

∫ ∫

∂U

r · ndS



6.3. GAUSS THEOREM 333whih is the �ux of r aross the boundary of U . Compare with theformula in d) that gives the area of a plane urve C
1

2

∫

C

r · ndland notie that n being the normal vetor to the urve, we are againomputing the �ux of the �eld r aross C, the boundary of R.b) A �gure:
=N (a,b,c)

O
x

y

z

R

m

L

Using the last formula in a) and taking into aount that ∂V = R∪ Lwhere L is the lateral surfae of the one we have:Vol(V ) =
1

3

∫ ∫

∂V

(x, y, z) · dS =

=
1

3

∫ ∫

R
(x, y, z) · dS +

1

3

∫ ∫

L

(x, y, z) · dSBut ∫ ∫

L
(x, y, z) · dS = 0 beause the �eld (x, y, z) is perpendiular to

m, the exterior normal vetor to L.On another hand let (a, b, c) be the unit vetor orthogonal to the plane
π pointing to the exterior of V (this is so i� (a, b, c) · (x, y, z) > 0 atpoints (x, y, z) in the plane); then the equation of the plane is

ax+ by + cz = p



334 CHAPTER 6. INTEGRAL THEOREMSwith p ≥ 0 and
d =

|a · 0 + b · 0 + c · 0 − p|√
a2 + b2 + c2

= | − p| = pWe obtain:Vol(V ) =
1

3

∫ ∫

R
(x, y, z) · dS =

1

3

∫ ∫

R
(x, y, z) · (a, b, c)dS =

=
1

3

∫ ∫

R
(ax+ by + cz)dS =

1

3
d

∫ ∫

R
dS =

1

3
Area(R)dNotie that this result generalizes the usual one for ones with iru-lar basis: 1

3
(Area basis)×(height). Now we know, for instane, thatthe volume of an ellipti one with basis semiaxes a, b and height d is

1
3
πabd. Note as well that a pyramid is a one.) Orient the plane by the unit normal vetor n = (a, b, c) and the urve
C aording to this hoie; this allows the use of Stokes theorem

1

2

∫

C

((bz − cy)dx+ (cx− az)dy + (ay − bx)dz) =

=
1

2

∫

C

(bz − cy, cx− az, ay − bx) · dl =

=
1

2

∫ ∫

R

rot(bz − cy, cx− az, ay − bx) · dS =

=
1

2

∫ ∫

R

2(a, b, c) · ndS =

=

∫ ∫

R
n · ndS =

∫ ∫

R
1dS = Area(R)d) A �gure:



6.3. GAUSS THEOREM 335
= (a,b,c)N

ρ

O

d

O’

r

n

x
y

z

R

nt

We should adapt the above mentioned formula 1
2

∫

C
r ·ndl to do ompu-tations in R3. Orient the plane π : ax+ by+ cz = p, a2 + b2 + c2 = 1 bythe vetor N = (a, b, c). Then we may orient the urve C leaving thebounded region R to the left (as seen from that side of the plane on-taining the urve pointed by N). Let d be the distane from the originto the plane and hoose in π a new origin O′ = dN. Let ρ = r − dNthe radial �eld from O′; the formula givesArea(R) =

1

2

∫

C

ρ · ndlIf t is the unit tangent vetor to C we have:
n = t × N ⇒ ρ · n = ρ · (t ×N) = t · (N× ρ)and

N × ρ =

∣

∣

∣

∣

∣

∣

i j k

a b c
x− da y − db z − dc

∣

∣

∣

∣

∣

∣

= (bz − cy, cx− az, ay − bx)Substituting into the formula for the area gives:Area(R) =
1

2

∫

C

(N× ρ) · tdl =
1

2

∫

C

(N × ρ)dl =
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=

1

2

∫

C

(bz − cy, cx− az, ay − bx)dl =

=
1

2

∫

C

(bz − cy)dx+ (cx− az)dy + (ay − bx)dz

�Problem 179: Seond Pappus-Guldin theorem.Let C be a simple losed urve in the semiplane y = 0, x ≥ 0; let R thebounded region of C. Name U the solid body generated by revolving Raround the Oz axis. Show thatVol(U) = Area(R) · 2π〈x〉

〈x〉 being the average of x on R. Appliation: �nd the volume ofa) A irular straight one.b) A ball.) A torus.Solution:A �gure:
y

x

C

z

2π<x>R

R

<x>



6.3. GAUSS THEOREM 337We want to use the formula Vol(U) = 1
3

∫ ∫

∂U
(x, y, z) · dS and to that endwe parametrize ∂U as a surfae of revolution. Start from a parametrizationof C:

γ(t) = (x(t), z(t)), t ∈ [a, b]to obtain
α(θ, t) = (x(t) cos θ, x(t) sin θ, z(t)), (θ, t) ∈ [0, 2π] × [a, b]

∂θα = (−x sin θ, x cos θ, 0)

∂tα = (x′ cos θ, x′ sin θ, z′)

∂θα× ∂tα = (xz′ cos θ, xz′ sin θ,−xx′)ThenVol(U) =
1

3

∫ ∫

∂U

(x, y, z) · dS =

=
1

3

∫ 2π

0

∫ b

a

(x cos θ, x sin θ, z) · (xz′ cos θ, xz′ sin θ,−xx′)dθdt =

=
2π

3

∫ b

a

(x2z′ − xx′z)dtNow we have to relate this to the area of R; Green's theorem does that:Vol(U) =
2π

3

∫ b

a

(−xz, x2) · (x′, z′)dt =

=
2π

3

∫

C

(−xz, x2) · dl =

=
2π

3

∫ ∫

R
(2x− (−x))dxdz =

=
2π

3
3 〈x〉Area(R) = 2π〈x〉Area(R)Appliations:a) Consider a right one of height h and irular basis of radius R, gener-ated by revolving the triangle in the �gure around the Oz axis:
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x

z

h

R
yParametrize the segment by z = − h

R
(x−R), y = 0; to use the Pappus-Guldin theorem we ompute the average of x on R:

∫ ∫

R
xdxdz =

∫ R

0

(

∫ − h
R

(x−R)

0

xdz)dx =

∫ R

0

(x(− h

R
(x−R)))dx =

= − h

R
(
x3

3
− Rx2

2
)|R0 =

hR2

6and the average of x is:
〈x〉 =

hR2

6
hR
2

=
R

3The theorem gives: Vol(U) =
hR

2
2π
R

3
=

1

3
πR2hOf ourse it's quiker if we think the �gure as a right irular one andapply the orresponding formula.b) A ball of radius R is obtained revolving around the Oz axis the halfdis

D = {(x, y, z) : 0 ≤ x ≤
√
R2 − z2, y = 0,−R ≤ z ≤ R}



6.3. GAUSS THEOREM 339. We have:
∫ ∫

D

x dxdz =

∫ R

−R

(

∫

√
R2−z2

0

xdx)dz =

=
1

2

∫ R

−R

(R2 − z2)dz =

∫ R

0

(R2 − z2)dz =

= (R2z − z3

3
)|R0 =

2R3

3
,and the average value of x is:

〈x〉 =
2R3

3
πR2

2

=
4R

3πPappus-Guldin theorem givesVol(U) =
πR2

2
2π

4R

3π
=

4

3
πR3) Consider the solid torus obtained by revolving around the Oz axis thedis D = {(x, y, z) : (x− a)2 + z2 ≤ b2, y = 0}. It is geometrially learthat 〈x〉 = a. Then Vol(U) = πb22πa = 2π2ab2symmetry whih is the same as the volume of a ylinder of height 2πaand basis a dis of area πb2.

�Problem 180:Find the volume of the region U limited by the surfaes
z = x2 + y2, z = 1, z = 2, y = 0, y = x.



340 CHAPTER 6. INTEGRAL THEOREMSSolution: In the �gure

x

y

z

x=y

z=2

z=1

we an see that Vol(U) = 1
8
Vol(U ′), U ′ being the region of the paraboloidlimited by z = 1, z = 2. Applying the divergene theorem to the �eld

F = (x, y, 0) and to the region U ′ we haveVol(U ′) =

∫ ∫ ∫

U ′

1dV =
1

2

∫ ∫ ∫

U ′

div(x, y, 0) dV =

=
1

2

∫ ∫

∂U ′

(x, y, 0) · dSAt the upper over ∂U ′ the exterior unit normal is n = (0, 0, 1) and
F ·n = 0; the same is true in the lower over. It su�es to alulate the �uxaross S, the lateral surfae of the paraboloid that we parametrize by

α(θ, ρ) = (ρ cos θ, ρ sin θ, ρ2), (θ, ρ) ∈ [0, 2π] × [1,
√

2]

N(θ, ρ) = (2ρ2 cos θ, 2ρ2 sin θ,−ρ)with N pointing to the exterior. The �ux is
∫ ∫

S

F · dS =

∫ 2π

0

∫

√
2

1

(ρ cos θ, ρ sin θ, 0) · (2ρ2 cos θ, 2ρ2 sin θ,−ρ)dθdρ =

=

∫ 2π

0

∫

√
2

1

2ρ3dθdρ = 4π
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2
4π = 2π and that of U isVol(U) =

2π

8
=
π

4

�Problem 181:a) Compute in terms of d :i) A, the area the skullap
Cd = {(x, y, z) : x2 + y2 + z2 = 1, 0 < d < z < 1}ii) V , the volume of the region
Ud = {(x, y, z) : x2 + y2 + z2 ≤ 1, 0 < d < z < 1}b) Using the theorem of the divergene ompute the �ux of the �eld

F(x, y, z) = (x, 2y, z) aross the upper unit semisphere
S2

+ = {(x, y, z) : x2 + y2 + z2 = 1, 0 < z}.) Compute the �ux of F aross the surfae
S = {(x, y, z) : x2 + y2 + z2 = 1, 0 < z <

1

2
}.Solution:

x

y
D

z=1

z= d



342 CHAPTER 6. INTEGRAL THEOREMSa) If ϕmeans olatitude and ϕd is the olatitude orresponding to a height
d we havei)

A =

∫ ∫

Cd

1dS =

∫ 2π

0

dθ

∫ ϕd

0

sinϕdϕ =

= −2π(cosϕ)|ϕd
0 = 2π(1 − d)Chek: when d = 0 we have a omplete semisphere with area 2π.ii) Closing the skullap Cd with the dis Dd = {(x, y, d) : x2 + y2 ≤

1 − d2} we an use the formula
V =

1

3
(

∫ ∫

Cd

r · dS +

∫ ∫

Dd

r · dS)

• On one hand
∫ ∫

Cd

r·dS =

∫ ∫

Cd

(x, y, z)·(x, y, z)dS =

∫ ∫

Cd

1dS = 2π(1−d),as we have seen in a) i).
• On another hand

∫ ∫

Dd

r · dS =

∫ ∫

Dd

(x, y, d) · (0, 0,−1)dS =

=

∫ ∫

{x2+y2≤1−d2}
−d dxdy = −dπ(1 − d2)Finally

V =
2π

3
(1 − d) − d

π

3
(1 − d2) =

π

3
d3 − πd+

2π

3
=
π

3
(d3 − 3d+ 2)b) To use the divergene theorem we lose the surfae S2

+ by means of theunit dis D so establishing a losed surfae M that we orient by theexterior normal; let V be the enlosed region. If φ is the �ux aross Mthen:
φ =

∫ ∫

M

F · dS =

∫ ∫

S2
+

F · dS +

∫ ∫

D

F · dS



6.3. GAUSS THEOREM 343The divergene theorem gives
∫ ∫

M

F · dS =

∫ ∫ ∫

V

∇ · FdV = 4

∫ ∫ ∫

V

1dV = 4
1

2

4

3
π =

8

3
πOn another hand as the unit exterior normal vetor in D is (0, 0,−1)we obtain:

∫ ∫

D

F · dS =

∫ ∫

D

(x, 2y, 0) · (0, 0,−1)dxdy =

∫ ∫

D

0dxdy = 0Then
∫ ∫

S2
+

F · dS =
8

3
π) Now the �ux aross S is (�ux aross S2

+)-(�ux aross C1/2). Using againthe divergene theorem
∫ ∫

C1/2

F · dS +

∫ ∫

D1/2

F · dS =

∫ ∫ ∫

U1/2

∇ · FdV =

= 4

∫ ∫ ∫

U1/2

dV = 4
π

3
(d3 − 3d+ 2)|d=1/2 =

5π

6and taking into aount that
∫ ∫

D1/2

F · dS =

∫ ∫

{x2+y2≤3/4}
(x, 2y,

1

2
) · (0, 0,−1)dxdy =

= −
∫ ∫

{x2+y2≤3/4}

1

2
dxdy = −1

2

3

4
πwe have

∫ ∫

S

F · dS =
5π

6
− (−3

8
π) =

29

24
π

�Problem 182:Let U ⊂ R3 a region to wih we an apply the divergene theorem; show that
∫ ∫ ∫

U

r2dV =
1

5

∫ ∫

∂U

r2r · dS



344 CHAPTER 6. INTEGRAL THEOREMSSolution:Apply the divergene theorem; to do this we �rst havediv (r2r) = div (r2(x, y, z)) =

= 2r
x

r
x+ r2 + 2r

y

r
x+ r2 + 2r

z

r
x+ r2 =

= 2r2 + 3r2 = 5r2and then
∫ ∫

∂U

r2r · dS =

∫ ∫ ∫

U

5r2dV

�6.3.3 Green's formulaeProblem 183: Towards Green's identities.a) Express the divergene theorem when F is a gradient: F = ∇u, u asalar �eld.b) What do we obtain when u is harmoni (:=∇2u = 0) ?) What when u is a seond degree polynomial ?Solution:a) If F = ∇u divF = div(∇u) =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= ∇2uand the divergene theorem is:

∫ ∫ ∫

U

∇2u dV =

∫ ∫

∂U

∇u · dSTaking into aount that ∫ ∫

∂U
∇u ·dS =

∫ ∫

∂U
∇u ·n dS =

∫ ∫

∂U
∂u
∂n
dSwe obtain the following expression:

∫ ∫ ∫

U

∇2u dV =

∫ ∫

∂U

∂u

∂n
dS



6.3. GAUSS THEOREM 345b) If u is harmoni, ∇2u ≡ 0 in U and then
∫ ∫

∂U

∂u

∂n
dS = 0) If u = ax2 + by2 + cz2 + dxy + exz + fyz + · · · (the · · · are the termsof degree zero or one) we have

∇2u = 2a+ 2b+ 2cand
2(a+ b+ c)

∫ ∫ ∫

U

dV = 2(a+ b+ c)Vol(U) =

∫ ∫

∂U

∂u

∂n
dSand we see that the normal derivative is proportional to the volume.

�Problem 184. Green's identities.a) Express the divergene theorem when F is a weighted gradient, F =
f∇g where f, g ∈ C1(U ∪ ∂U) to obtain Green's �rst identity :

∫ ∫ ∫

U

(f∇2g + ∇f · ∇g)dV =

∫ ∫

∂U

f
∂g

∂n
dS Green 1b) Changing f and g in the �rst Green identity and subtrating, obtainGreen's seond identity :

∫ ∫ ∫

U

(f∇2g − g∇2f)dV =

∫ ∫

∂U

(f
∂g

∂n
− g

∂f

∂n
)dS Green 2Solution:a) In this ase the divergene theorem is

∫ ∫ ∫

U

div (f∇g)dV =

∫ ∫

∂U

f∇g · dS



346 CHAPTER 6. INTEGRAL THEOREMSWe ompute both integrands:div(f∇g) = ∇f · ∇g + fdiv(∇g) = ∇f · ∇g + f∇2g

∇g · dS = ∇g · ndS =
∂g

∂n
dSSubstituting we obtain Green's �rst identity:

∫ ∫ ∫

U

(f∇2g + ∇f · ∇g)dV =

∫ ∫

∂U

f
∂g

∂n
dSb) Green's �rst identity for f and g is

∫ ∫ ∫

U

(f∇2g + ∇f · ∇g)dV =

∫ ∫

∂U

f
∂g

∂n
dSand the same identity for g and f is:

∫ ∫ ∫

U

(g∇2f + ∇f · ∇g)dV =

∫ ∫

∂U

g
∂f

∂n
dSSubtrating the seond from the �rst we arrive at the seond of Green'sidentities:

∫ ∫

U

(f∇2g − g∇2f)dV =

∫ ∫

∂U

(f
∂g

∂n
− g

∂f

∂n
)dS

�Problem 185:Let f be a harmoni funtion in BR = {x ∈ R3 :| x |≤ R}; show that theaverage of f on the boundary of BR satis�es
〈f〉SR

= f(0)symmetry Hint: apply Green 2 to f and 1
r
.



6.3. GAUSS THEOREM 347Solution:We may use Green's formulae in an open set where the divergene theoremapplies, but 1
r
has a singularity at 0. We remove a whole small ball Bρ ⊂ BRwhose boundary we orient by the normal vetor pointing to the interior asshown in the �gure. Consider U = BR \Bρ and write Green 2 applied to it:

∫ ∫ ∫

U

(f∇2g − g∇2f)dV =

∫ ∫

∂U

(f
∂g

∂n
− g

∂f

∂n
)dS

B
R

ρB

UThe funtions f = f, g = 1
r
are harmoni in U and the left term integralwill vanish. The right term integral is:

∫ ∫

SR

(f
∂(1

r
)

∂n
− 1

r

∂f

∂n
)dS =

∫ ∫

SR

(f(− r

r3
· n) − 1

r
∇f · n)dS =

=

∫ ∫

SR

(f(− 1

R2
) − 1

R
∇f · n)dSand by the divergene theorem

∫ ∫

SR

− 1

R
∇f · ndS = − 1

R

∫ ∫

SR

∇f · dS =

= − 1

R

∫ ∫ ∫

BR

div (grad f)dV =

= − 1

R

∫ ∫ ∫

BR

∇2fdV = 0beause of the harmoniity of f in BR.Analogously, reminding the orientation given to Sρ, and using again the



348 CHAPTER 6. INTEGRAL THEOREMSdivergene theorem we obtain:
∫ ∫

Sρ

(f
∂(1

r
)

∂n
− 1

r

∂f

∂n
)dS =

∫ ∫

Sρ

(f(− r

r3
· n) − 1

r
∇f · n)dS =

=

∫ ∫

Sρ

(f
1

ρ2
− 1

ρ
∇f · n)dS =

=

∫ ∫

Sρ

f
1

ρ2
dSSumming up those alulations

0 = − 1

R2

∫ ∫

SR

fdS +
1

ρ2

∫ ∫

Sρ

fdS

1

R2

∫ ∫

SR

fdS = 4π〈f〉SR
=

1

ρ2

∫ ∫

Sρ

fdS = 4π〈f〉Sρ → 4πf(0)We have obtained
〈f〉SR

= f(0)

�Green's identities are used to prove the uniqueness of solutions for theproblems of Dirihlet and Neumann.Problem 186: Dirihlet and Neumann problems.Let U ⊂ R3 be an open set to whih we an apply the divergene theorem.a) The Dirihlet problem is to �nd a funtion u harmoni in U and u ∈
C1(U), suh that u(p) = ϕ(p) in ∂U , ϕ being a given ontinuousfuntion in ∂U. Brie�y

{

∇2u = 0 in U
u = ϕ in ∂UShow that if a solution of this problem exists then it is unique. Hint:apply Green 1 to the di�erene of solutions to show that it must be zero.



6.3. GAUSS THEOREM 349b) The Neumann problem is to �nd a funtion u harmoni in U and
u ∈ C1(U), suh that ∂u

∂n
(p) = ϕ(p) in ∂U , ϕ being a given ontinuousfuntion in ∂U. Brie�y
{

∇2u = 0 a U
∂u
∂n

= ϕ a ∂UShow that solutions di�er in a onstant.Solution:a) Assume U is onneted. Let u1 and u2 be solutions of the Dirihletproblem. Applying the �rst Green identity to f = g = u1 − u2
∫ ∫ ∫

U

((u1 − u2)∇2(u1 − u2) + |∇(u1 − u2)|2)dV =

=

∫ ∫

∂U

(u1 − u2)
∂(u1 − u2)

∂n
dSOn ∂U the integrand is (u1 − u2)(p) = ϕ(p) − ϕ(p) = 0 and the righthand term vanishes. In the left hand term ∇2(u1 − u2) = 0 beauseboth funtions are harmoni in U . Then

∫ ∫ ∫

U

|∇(u1 − u2)|2dV = 0Being |∇(u1 − u2)|2 ≥ 0 a nonnegative ontinuous funtion with van-ishing integral we must have ∇(u1 − u2) = 0. As U is a onneted setin R3 we an join any two points with a polygonal line without leaving
U . Applying to eah side of the polygonal the mean value theorem wemay onlude that u1 − u2 = onst in U . But u1 − u2 = 0 on ∂U and
u1−u2 is ontinuous in Ū ; then the onstant must be zero and u1 = u2in Ū .Notie that we have shown that if two harmoni funtions oinide onthe boundary then they oinide as well in U .b) Let u1 and u2 solutions of the Neumann problem; applying the �rstGreen identity to f = g = u1 − u2 the right hand term ∫ ∫

∂U
(u1 −

u2)
∂(u1−u2)

∂n
dS vanishes, now beause we are assuming that ∂(u1−u2)

∂n
= 0on ∂U . Now we may onlude that u1 − u2 = onst in Ū .Notie we have proved that whenever two harmoni funtions have thesame normal derivative on the boudary, they di�er in a onstant.
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�Problem 187:Let u ∈ C1(U) ∩ C2(U) be a nontrivial solution of

{

∇2u+ λu = 0 in U
u = 0 on ∂UProve that λ ≥ 0.Solution:Taking f = g = u in Green's �rst identity we have:

∫ ∫ ∫

U

(u∇2u+ ∇u · ∇u)dV =

∫ ∫

∂U

u
∂u

∂n
dSIn the left hand side term ∇2u = −λu and in the right hand side u = 0beause the integration is on ∂U . Then:

∫ ∫ ∫

U

(−λu2 + |∇u|2)dV = 0

λ

∫ ∫ ∫

U

u2dV =

∫ ∫ ∫

U

|∇u|2dVand we see that λ ≥ 0.
�Problem 188: Heat equation and energy.Let U ⊂ R3 be an open set to whih we an apply the divergene theoremand u(x, y, z, t) ∈ C2 a solution of heat's equation

k∇2u = ∂tu, k > 0suh that ∂u
∂n

= 0 on ∂U . Show that E(t) = 1
2

∫ ∫ ∫

U
u2dV (the energy in U)is a noninreasing funtion. Hint: ompute ∇ · (u∇u). (u may be thoughtas the temperature at points of the body U)
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dE

dt
=

1

2

∫ ∫ ∫

U

2u
∂u

∂t
dV =

∫ ∫ ∫

U

uk∇2u dVWe are not integrating a divergene; to tranform the integrand ompute
∇ · (u∇u) = ∇ · (u∂xu, u∂yu, u∂zu) =

= (∂xu)
2 + (∂yu)

2 + (∂zu)
2 + u∇2u =

= |∇u|2 + u∇2uand then
dE

dt
= k

∫ ∫ ∫

U

(∇ · (u∇u) − |∇u|2)dV =now using the divergene theorem
∫ ∫ ∫

U

∇ · (u∇u)dV =

∫ ∫

∂U

(u∇u) · ndS =

∫ ∫

∂U

u
∂u

∂n
dS = 0Finally

dE

dt
= k

∫ ∫ ∫

U

−|∇u|2dV ≤ 0and E(t) is noninreasing.
�6.3.4 Gauss integral theoremProblem 189: Gauss integral theorem.Let U ⊂ R3 be an open set to whih we an apply the divergene theoremand ∂U = S, a losed surfae oriented by unit exterior normal n. Show that

∫ ∫

S

r

r3
· dS =

{

4π if 0 interior to S
0 if 0 exterior to S



352 CHAPTER 6. INTEGRAL THEOREMSSolution:The result says that the solid angle of a losed surfae oriented by the exteriornormal is 4π if the vertex is interior to the surfae and 0 if it is exterior. Wean say as well that the eletri �eld generated by a positive unit hargehas a �ux 4π if the harge is an interior one and is 0 if it is exterior. Thegravitational �eld of a unit mass has a �ux −4π if the mass is interior and a�ux 0 if it is exterior.a) If 0 is exterior to S the �eld r
r3 has no singularity in U∪S and, moreover,it has zero divergene; the divergene theorem gives:

∫ ∫

S

r

r3
· dS =

∫ ∫ ∫

U

0dV = 0b) If 0 is interior to S we annot apply the divergene theorem beausethe �eld has a singularity at 0. Choose a ball B = {r :| r |≤ R} ⊂ Uand remove it from U . The region left Ω = U \ B has a boundary
∂Ω = S ∪ SR; orient this boundary as shown in the �gure so as to beable to aply the divergene theorem.

n
S

n σ

R
S

R
S

U

Ω
0

S

0

B

S

On SR

∫ ∫

SR

r

r3
·dS =

∫ ∫

SR

1

R3
(x, y, z)·(− 1

R
(x, y, z))dS = −

∫ ∫

SR

1

R2
dS = −4π
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r3 has zero divergene and the divergene theorem gives:

0 =

∫ ∫ ∫

Ω

div (
r

r3
)dV =

∫ ∫

S

r

r3
· dS +

∫ ∫

SR

r

r3
· dS

∫ ∫

S

r

r3
· dS = −

∫ ∫

SR

r

r3
· dS = 4π

�Problem 190:Gauss integral theorem shows that ifm is a point mass and g its gravitational�eld, the �ux aross any losed surfae S oriented by the exterior normal is
−4πm if m is an interior point of S and 0 if m is exterior.Show that:a) If m1, . . . , mn are point masses and g their gravitational �eld, the �uxof g aross any losed surfae S that doesn't pass through any of themasses and oriented by the exterior normal is −4πM , M being the sumof the interior masses.b) The result in a) is true for a ontinuous distribution and a losed surfae

S that doesn't ut the distribution.Solution:a) Aording to Gauss integral theorem the �ux due to exterior massesvanishes; let g1, . . . , gk be the �elds generated by the interior masses
m1, . . . , mk. Then

∫ ∫

S

g · dS =

∫ ∫

S

g1 · dS + · · · +
∫ ∫

S

gk · dS =

= −4π(m1 + · · ·+mk) = −4πMb) The �eld generated by a ontinuous mass distribution χ(x, y, z) loatedin a region V is:
g(x, y, z) =

∫ ∫ ∫

V

−χ r

r3
dV, r = (x− u, y − v, z − w), (u, v, w) ∈ VLet a losed surfae S be given and all V1 that part of the distributionwhih is outside S and V2 the interior part.



354 CHAPTER 6. INTEGRAL THEOREMSi) Let g1 the �eld reated by the masses in V1. As there are nomasses of V1 inside of S r doesn't vanish and the integrand hasno singularity. Moreover r
r3 has ontinuous derivatives and we andi�erentiate the integral thusdiv g1 =

∫ ∫ ∫

V1

−χ(u, v, w)(
∂

∂x
(
x− u

r3
)+

∂

∂y
(
y − v

r3
)+

∂

∂z
(
z − w

r3
))dVbut the integrand satis�es

∂

∂x
(
x− u

r3
) +

∂

∂y
(
y − v

r3
) +

∂

∂z
(
z − c

r3
) = div r

r3
= 0,and div g1 = 0 in U , the interior region of S. By the divergenetheorem its �ux through S is

∫ ∫

S

g1 · dS =

∫ ∫ ∫

U

div g1dV = 0Summing up: the �ux of the �eld from exterior masses is zero.ii) Let g2 be the �eld reated by interior masses; its �ux aross S is
∫ ∫

S

g2 · dS =

∫ ∫

S

(

∫ ∫ ∫

V2

−χ r

r3
dV ) · dSAs S doesn't ut the distribution r doesn't vanish on S and, beingthe integrand ontinuous, we an invert the order of integration:

∫ ∫

S

g · dS =

∫ ∫ ∫

V2

(

∫ ∫

S

−χ r

r3
· dS)dVBut from Gauss integral theorem, for interior points

∫ ∫

S

− r

r3
· dS = −4πThen

∫ ∫

S

g · dS = −4π

∫ ∫ ∫

V2

χdV = −4πMUnder speial onditions on χ the result is true even if S uts thedistribution (see [Kell℄, p. 73).
�



6.3. GAUSS THEOREM 355Problem 191: The divergene teorem in the plane.Guess a plane version of the divergene theorem and derive it from the usualdivergene theorem.Solution:Let F(x, y) = (X(x, y), Y (x, y)) be a �eld in R2 and C ⊂ R2 a simple losedurve that has U as bounded region. Let n be the exterior normal vetor to
C; we would like to show that

∫ ∫

U

div F dxdy =

∫

∂U

F · n dlTo use Gauss theorem we onvert our two dimensional problem into a threedimensional one. To this end de�ne a �eld in R3 and a ylindrial volume:
FE(x, y, z) = (X(x, y), Y (x, y), 0)

V = U × [0, 1]

x

y

z N

N

U’

U

V

C

S

N
,

Orient ∂V by the exterior normal N as shown in the �gure and apply thedivergene theorem:
∫ ∫ ∫

V

div FEdV =

∫ ∫

∂V

FE · dS



356 CHAPTER 6. INTEGRAL THEOREMSa) The left hand term is
∫ ∫ ∫

V

div FEdV =

∫ ∫ ∫

V

(
∂X

∂x
+
∂Y

∂y
)dV =

=

∫ 1

0

(

∫ ∫

U

div Fdxdy)dz =

∫ ∫

U

div Fdxdyb) As to the right hand term notie �rst that the boundary ∂V is theunion of two overs U ≃ U ×{0}, U ′ ≃ U ×{1} and a lateral surfae S.The �ux is null aross the overs, for FE ·N = (X, Y, 0) · (0, 0,±1) = 0.To ompute the �ux aross S we parametrize it by
α(t, s) = (x(t), y(t), s), (t, s) ∈ [a, b] × [0, 1]

(x(t), y(t)) being a parametrization of C traversing it in the positivesense (leaving U to the left).Then the assoiated normal vetor that points to the exterior of C isthe one that makes (n, t) a positive basis. It is n = (y′,−x′), for
det

(

y′ x′

−x′ y′

)

> 0The assoiated normal vetor of the parametrization is
αt = (x′(t), y′(t), 0)

αs = (0, 0, 1)

αt × αs = (y′,−x′, 0)that points to the exterior. Now we may ompute the �ux:
∫ ∫

∂V

FE · dS =

∫ ∫

S

(X, Y, 0) · (y′,−x′, 0)dS =

=

∫ 1

0

(

∫ b

a

(Xy′ − Y x′)dt)ds =

=

∫ b

a

(Xy′ − Y x′)dt =

∫ b

a

(X, Y ) · (y′,−x′)dt =

=

∫ b

a

(X, Y ) · (y′,−x′)
| (y′,−x′) | | (y′,−x′) | dt =

=

∫

∂U

F · n | (x′, y′) | dt =

∫

∂U

F · ndl

�



6.3. GAUSS THEOREM 357Problem 192: Gauss integral theorem in the plane.Guess and prove a Gauss integral theorem in the plane.Solution:Let C be a simple losed urve, positively oriented let n be its exterior normaland let U be the bounded region determined by C. We guess that
∫

C

r

r2
· ndl =

{

0 if 0 is exterior to C
? if 0 is interior toCa) If 0 is exterior to U then r is never zero and reminding that div r

r2 = 0(see p.116) we an apply the divergene theorem in the plane:
∫

C

r

r2
· ndl =

∫ ∫

U

div r

r2
dxdy = 0b) If 0 is interior we annot apply the divergene theorem in the planesine 0 is a singularity of the �eld, but we an proeed as in the proofof Gauss integral theorem. Remove a small dis D = {r :| r |≤ R} ⊂ Ufrom U to obtain Ω = U \B; then orient ∂Ω = C ∪CR as in the �gureand apply the theorem:

0 =

∫ ∫

Ω

div r

r2
dxdy =

∫

C

r

r2
· ndl +

∫

CR

r

r2
· ndl

CR

C

t
n

U

n

To ompute the last integral parametrize CR by
γ(t) = (R cos t,−R sin t), | γ′(t) |= R



358 CHAPTER 6. INTEGRAL THEOREMSand take into aount that the unit interior normal vetor is n =
(− cos t, sin t); then:

∫

CR

r

r2
· ndl =

∫ 2π

0

(R cos t,−R sin t)

R2
· (− cos t, sin t)Rdt = −2πand by the divergene theorem

∫

C

r

r2
· ndl = 2π

�6.3.5 Continuity equation; energy onservation.
T Consider a �uid with veloity �eld v(x, y, z) and density ρ(x, y, z, t). Thevetor J = ρv is the urrent density vetor and, in a similar way as v · n∆Smeasures the volume of �uid rossing ∆S in a unit of time, J ·ndS measuresthe mass of �uid that rosses dS in a unit of time.

�Problem 193: Continuity equation.Let U be a region in R3 and S its boundary, a losed surfae oriented by theexterior normal. Evaluating in two ways the mass exiting from U �nd theontinuity equation div J +
∂ρ

∂t
= 0Solution:The mass in U is ∫ ∫ ∫

U
ρdV and the mass exiting per unit time is

− d

dt

∫ ∫ ∫

U

ρdVOn another side S the mass exiting per unit time is
∫ ∫

S

J · dS



6.3. GAUSS THEOREM 359Now express the onservation of mass:
∫ ∫

S

J · dS = − d

dt

∫ ∫ ∫

U

ρdVTransforming the left hand term using the divergene theorem and di�eren-tiating the right hand term we have:
∫ ∫ ∫

U

div J dV = −
∫ ∫ ∫

U

∂ρ

∂t
dV

∫ ∫ ∫

U

(div J +
∂ρ

∂t
)dV = 0As this is true in any region of the �uid we obtain:div J +

∂ρ

∂t
= 0

�

T Analogous arguments will give expressions for the onservation of theenergy and the onservation of the harge.If T (x, y, z) gives the temperature distribution in a body, the vetor h thathas the diretion given by −∇T and module the amount of energy rossingin a unit time a unit surfae perpendiular to ∇T is alled the density ofenergy �ux. Newton's law of ooling is h = −k∇T ; if ρ is the energy densitythen ρ = cρ0T where c is the spei� heat and ρ0 a onstant.
�Problem 194: Energy onservation.Find an expression for the energy onservation. Using Newton's law and therelation between ρ and T derive the heat equation.Solution:Let U be a region in R3 and S its boundary, a losed surfae oriented by theexterior normal. The energy in U is ∫ ∫ ∫

U
ρdV and the energy exiting perunit time is

− d

dt

∫ ∫ ∫

U

ρdV



360 CHAPTER 6. INTEGRAL THEOREMSAnother expression for the exiting energy is ∫ ∫

S
h ·dS; an expression for theenergy onservation is

∫ ∫

S

h · dS = − d

dt

∫ ∫ ∫

U

ρdVTransforming the left hand term using the divergene theorem, di�erentiatingthe right hand term and taking into aount that the equality obtained istrue for any region in U we have:div h +
∂ρ

∂t
= 0Assuming k, c, ρ0 onstants and using Newton's law we obtaindiv h = div (−k∇T ) = −kdiv ∇T = −k∇2T

∂ρ

∂t
= cρ0

∂T

∂tNow substituting into the energy onservation equation we obtain
∇2T = a

∂T

∂tthat is, the heat equation.
�



Chapter 7Eletromagnetism
7.1 Maxwell equations
T When there are harges present the spae aquires a 'state of eletromag-neti tension' that Mihael Faraday (1791-1867) desribed by means of theidea of a �eld. James Clerk Maxwell (1831-1875) was the �rst to establishthe omplete equations of the eletromagnetism (see [Feyn℄ vol. II):Maxwell equations

∇ ·E =
ρ

ǫ0
, ∇× E = −∂tB

∇ ·B = 0, c2∇×B = ∂tE +
j

ǫ0Two vetor �elds, the eletri �eld E(x, y, z, t) and the magneti �eld
B(x, y, z, t), desribe that 'state of eletromagneti tension' at point (x, y, z)at the instant t. The soures of that spae tension are the eletri harges, de-sribed by means of a salar funtion, the eletri harge density ρ(x, y, z, t),and the eletri urrents, desribed by means of a vetor funtion, the eletriurrent density j(x, y, z, t).Given the soures Maxwell's equations allow (at least in priniple) theomputation of the eletri �eld E = (Ex, Ey, Ez) and the magneti �eld
B = (Bx, By, Bz). Then, one the �elds are known, we an ompute thefore they exert on a harge q that moves with a veloity v:

F = q(E + v × B)361



362 CHAPTER 7. ELECTROMAGNETISMThen Newton's equation allows the omputation of the movement of theharge.Maxwell equations uni�ed eletriity, magnetism and light; moreover theypredited the existene of eletromagneti waves. They were as well thestarting point for the disovery of speial relativity and were an inspirationfor the general relativity, both theories presented by A. Einstein in 1905and 1915 (see [Feyn℄, vol I). They have also been a model for ontemporaryphysis (see [Ba-Mu℄).
�Problem 195: Integral form of Maxwell's equations.Apply Stokes's theorem or Gauss's theorem as needed and give the equationsan integral form. Appliation: an eletrostati �eld is given by E(x, y, z, t) =

(yz, zx, xy); �nd the harge ontained in the unit sphere (assume the surfaedoesn't ut the distribution).Solution:a) Apply the divergene theorem to a region U ⊂ R3 with boundary S, alosed surfae, and use the �rst of Maxwell equations ∇ · E = ρ
ǫ0
:

∫ ∫

S

E · dS =

∫ ∫ ∫

U

∇ · E dV =

∫ ∫ ∫

U

ρ

ǫ0
dV =

qint
ǫ0In words: the �ux of an eletri �eld equals the harge in the interior/ǫ0(Gauss law).b) Apply Stokes theorem to a surfae S ⊂ R3 with boundary a urve Cand use the equation ∇× E = −∂tB:

∫

C

E · dl =

∫ ∫

S

∇× E · dS = −∂t(

∫ ∫

B · dS)In words: the irulation of the eletri �eld is minus the time derivativeof the �ux of magneti �eld (Faraday's law).



7.1. MAXWELL EQUATIONS 363) Apply the divergene theorem to a region U ⊂ R3 with boundary S, alosed surfae, and use the Maxwell equation ∇ · B = 0:
∫ ∫

S

B · dS =

∫ ∫ ∫

U

∇ · B dV = 0In words: the �ux of a magneti �eld aross a losed surfae vanishes.d) Apply Stokes theorem to a surfae S ⊂ R3 with boundary a urve Cand use the equation c2∇× B = ∂tE + j

ǫ0
:

c2
∫

C

B · dl = c2
∫ ∫

S

∇×BdS = ∂t(

∫ ∫

S

E · dS) +

∫ ∫

S

j

ǫ0
· dSIn words: the irulation of the magneti �eld is the time variation ofthe eletri �ux+urrent aross S.e) Applying Gauss law:

q = ǫ0

∫ ∫

S

E · dS = ǫ0

∫ ∫ ∫

U

∇ · E dV = ǫ0

∫ ∫ ∫

U

0dV = 0

�Problem 196: Gauss law in eletrostatis.Use Gauss law and symmetry arguments toa) Show that the eletri �eld in the exterior of a uniformly harged sphereis the same as the �eld of a point harge (with the harge of the sphere)at the enter of the sphere. Is the result valid if we onsider a uniformlyharged ball?b) Find the eletri �eld at interior points of a uniformly harged sphere.) Find the eletri �eld at interior points of a uniformly harged ball.d) Find the eletri �eld reated by a uniformly harged straight wire.e) Find the eletri �eld reated by a uniformly harged plane.



364 CHAPTER 7. ELECTROMAGNETISMSolution:a) Assume the sphere is S2
R and has a total harge q; from the symmetrywe see that the exterior �eld E(r, t) is entral and stationary (timeindependent). Apply Gauss law to the sphere S2

r with radius r > R.

Sr
S

Q

Let E(r) =| E(r) |; then
q

ǫ0
=

∫ ∫

Sr

E · dS = 4πr2E(r) ⇒ E(r) =
1

4πǫ0

q

r2that is the same as the �eld of a point harge q at the origin. This istrue as well for a harged ball.b) The �eld is entral; let | E(r) |= E(r) and σ the surfae harge density.Apply Gauss theorem to the sphere S2
r with r > R:

r
S

S

0 =

∫ ∫

S

E · dS = E(r)4πr2 ⇒ E(r) = 0If there is no harge in the interior the �eld vanishes there; this showsthat we an avoid the �elds inside of the sphere.



7.1. MAXWELL EQUATIONS 365) We annot use the argument in b) beause then S2
r would ut thedistribution of harge. Instead deompose the ball BR in three regions

BR = Br−ǫ ∪ Cr−ǫ,r+ǫ ∪ Cr+ǫ,R, an innermost ball and two spherialannulus:
r + εS

−εrS

S

Br−ǫ and Cr+ǫ,R are assumed harged and the region Cr−ǫ,r+ǫ empty.Now ompute the �ux aross S2
r due to the harged parts. The �eldgenerated there by the interior sphere is E ′(r) = 1

4πǫ0

q
r2 , q being theharge of the sphere:

q =

∫ ∫ ∫

Br−ǫ

χdV = χ
4

3
π(r − ǫ)3so the �eld is

E ′(r) =
χ

3ǫ0

(r − ǫ)3

r2The �eld generated by the region Cr+ǫ,R vanishes on S2
r . Letting ǫ→ 0we will obtain the �eld on S2

r :
E(r) =

χ

3ǫ0
rd) Let λ be the linear harge density. From the symmetry the �eld de-pends only on the distane to the wire; let E(r) be its modulus. AplyGauss law to a ylindrial surfae as in the �gure:
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∆l

σ

E

λ∆l = ǫ0

∫ ∫

S

E · dS = ǫ0E(r)2πr∆l ⇒ E(r) =
1

2πǫ0

λ

re) Let σ be the surfae harge density. The symmetry implies that the�eld is perpendiular to the plane; let E(r) its module. Apply Gausstheorem to a ubi surfae as in the �gure:
σ

A

A

P

r

σA = ǫ0

∫ ∫

S

E · dS = ǫ02AE(r) ⇒ E(r) =
σ

2ǫ0

�Eletrostatis and magnetostatis
T We say that the equations

∇×E = −∂tB

c2∇×B = ∂tE +
j

ǫ0



7.2. ELECTROSTATICS 367are oupled beause both �elds appear in both equations. But assume thestate of the soures is independent of time; then so will be E and B and theequations unouple:
∇× E = 0

c2∇× B = 0a) Eletrostatis deals with the equations
∇ · E =

ρ

ǫ0
,∇× E =0b) Magnetostatis does with

∇ · B = 0, c2∇× B =
j

ǫ0Both problems are, loosely speaking, dual:a) Find an irrotational �eld with a given divergene.b) Find a �eld with zero divergene and a given rotational.
�7.2 Eletrostatis

T The datum is ρ(x, y, z) and we seek E(x, y, z).The equations are ∇ · E = ρ
ǫ0
and ∇× E = 0.We know that under good topologial onditions if ∇×E = 0 then E =

−∇φ where φ is a potential funtion now alled the eletrostati potential.The potential produed by a harge distribution of density ρ in a region V is
φ(r) =

1

4πǫ0

∫ ∫ ∫

V

ρ(u, v, w)

r
dudvdw, r =| (x− u, y − v, z − w) |It satis�es E = −∇φ and substituting into the �rst Maxwell equation wesee that φ is a solution of Poisson's equation

∇2φ = − ρ

ǫ0that now we know how to solve. From φ we have the �eld E = −∇φ, the foreon a harge F = −q∇φ and we an write the equations of motion qE = mr̈

�



368 CHAPTER 7. ELECTROMAGNETISM7.3 Magnetostatis
T The datum is j(x, y, z) and we seek B(x, y, z).The equations are ∇ · B = 0 and ∇×B = j

ǫ0
.We know that under good topologial onditions if ∇ · B = 0 then B =

∇× A for a ertain �eld A alled the vetor potential of B.Remind that A′ = A +∇ψ (ψ an arbitrary funtion) has the same rota-ional (this is alled a gauge freedom). Notie that we an �nd ψ fromdiv A + ∇2ψ = 0,solving three Poisson's equations. Then div A′ = 0; we do this hoie inmagnetostatis (a di�erent one is made in the resolution of the ompleteequations).
�Problem 197: Solution of the magnetostatis problem.From the magnetostatis equations show that the vetor potential satis�es aPoisson equation.Solution:Substituting B = ∇× A in Maxwell equation ∇×B = j

ǫ0c2
we obtain

∇× (∇×A) =
j

ǫ0c2Now, from problem 34,), reall the formula
∇× (∇× A) = ∇(∇ · A) −∇2AUsing it and reminding that ∇ · A = 0 was our hoie, we have

∇× (∇× A) = ∇(∇ · A) −∇2A = −∇2Aand A satis�es the Poisson vetor equation
∇2A = − j

ǫ0c2



7.4. COMPLETE MAXWELL EQUATIONS 369whose solution is
A(x, y, z) =

1

4πǫ0c2

∫ ∫ ∫

j(u, v, w)

r
dudvdwWe have solved the magnetostatis problem: being given the urrent density

j we an �nd the potential vetor A and then the magneti �eld B = ∇×A.
�7.4 Complete Maxwell equations

T Consider again the omplete set of Maxwell equations:
∇ · E =

ρ

ǫ0
, ∇×E = −∂tB

∇ · B = 0 , c2∇× B = ∂tE +
j

ǫ0Charge onservationThe eletri urrent density j is the amount of harge that rosses per unittime a unit area surfae perpendiular to the movement of the harges. The�ux of j aross a surfae is the eletri urrent.
�Problem 198:From Maxwell's equations dedue the equation of harge onservation ∇· j+

∂tρ = 0.Solution:Let the divergene operate on both sides of the equation c2∇×B = ∂tE+ j

ǫ0
:

0 = ∂t(∇ ·E) +
∇ · j
ǫ0

=
1

ǫ0
(∂tρ+ ∇ · j) ⇒ ∇ · j + ∂tρ = 0

�



370 CHAPTER 7. ELECTROMAGNETISMWave equation
T Consider a string along the Ox axis and let u(x, t) be the transversaldisplaement at point x and at the instant t. Then the funtion

u(x, t) = f(x− at)is a waveform travelling to the right with a speed a > 0 (f is an arbitraryfuntion), while
u(x, t) = g(x+ at)is a waveform travelling to the left with a speed a > 0 (g is an arbitraryfuntion).

x

f(x)

at at

f(x+at) f(x−at)

The wave superposition
u(x, t) = f(x− at) + g(x+ at)is the general form of a wave in the string. Eliminating the arbitrary funtions

f, g by di�erentiation we obtain the di�erential equation these waves satisfy:
∂xu = f ′(x− at) + g′(x+ at) ∂tu = −af ′(x− at) + ag′(x+ at)

∂2u

∂x2
= f”(x− at) + g”(x+ at)

∂2u

∂t2
= a2f”(x− at) + a2g”(x+ at)and we see the one dimensional wave equation is:

a2∂
2u

∂x2
=
∂2u

∂t2



7.4. COMPLETE MAXWELL EQUATIONS 371Analogously in two dimensions (think in a drumhead) we would have
a2(

∂2u

∂x2
+
∂2u

∂y2
) =

∂2u

∂t2
or ∇2u =

1

a2

∂2u

∂t2and in dimension three
a2(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
) =

∂2u

∂t2
or ∇2u =

1

a2

∂2u

∂t2

�Problem 199:a) From Maxwell's equations show there is a funtion φ (the eletri po-tential) and a vetor funtion A (the vetor potential) suh that
E = −∇φ− ∂tA , B = ∇× A.b) Let ψ an arbitrary funtion; show that if we take A1 = A + ∇ψ,

φ1 = φ− ∂tψ we obtain the same �elds E,B.) Show that we an hoose φ,A so as to satisfy the equations
∇2A − 1

c2
∂2A

∂t2
= − j

ǫ0c2

∇2φ− 1

c2
∂2φ

∂t2
= − ρ

ǫ0that relate the soures of the �eld to the potentials.Solution:a) From ∇ ·B = 0 we know that B has a vetor potential, a �eld A suhthat ∇ × A = B. Substituting in the seond of Maxwell's equations
∇× E = −∂tB, we obtain

∇×E = −∂t(∇× A) = −∇× ∂tAor
∇× (E + ∂tA) = 0The �eld E + ∂tA has zero rotational and so has a potential φ:

E + ∂tA = −∇φ⇒ E = −∇φ− ∂tA



372 CHAPTER 7. ELECTROMAGNETISMb) It's a omputation:
∇× A1 = ∇× (A + ∇ψ) = ∇× A = BAnd

−∇φ1 − ∂tA1 = −∇φ+ ∇∂tψ − ∂tA − ∂t∇ψ = −∇φ− ∂tA = E) i) Substituting B = ∇×A in Maxwell's equation c2∇×B = ∂tE+ j

ǫ0we have
c2∇× (∇× A) = ∂tE +

j

ǫ0or, applying the operator identity in problem 34,) and isolatingthe soure,
c2∇(∇ · A) − c2∇2A + ∂t∇φ+

∂2A

∂t2
=

j

ǫ0Assume that A and φ are already known. To simplify the preed-ing equation we introdue new potentials
A1 = A + ∇ψ
φ1 = φ− ∂tψThey satisfy

c2∇(∇ · A1) − c2∇2A1 + ∂t∇φ1 +
∂2A1

∂t2
=

j

ǫ0
(∗)We hoose ψsuh that ∇ · A1 = − 1

c2
∂φ1

∂t
;

∇ ·A1 = ∇ · A + ∇2ψ = − 1

c2
∂φ

∂t
+

1

c2
∂2ψ

∂t2that is, ψ must satisfy the equation
∇2ψ − 1

c2
∂2ψ

∂t2
= −∇ · A− 1

c2
∂φ

∂ta wave equation. With this hoie (*) beomes
∇2A1 −

1

c2
∂2A1

∂t2
= − j

ǫ0c2



7.4. COMPLETE MAXWELL EQUATIONS 373ii) Substituting E = −∇φ1 − ∂tA1 into the �rst Maxwell equationwe obtain ∇ · (−∇φ1 − ∂tA1) = ρ
ǫ0

or
∇2φ1 + ∂t(∇ · A1) = − ρ

ǫ0
(∗)and the hoie ∇ · A1 = − 1

c2
∂φ1

∂t
gives

∇2φ1 −
1

c2
∂2φ1

∂t2
= − ρ

ǫ0iii) In free spae (:=where there are no harges nor urrents) we have:
∇2A − 1

c2
∂2A

∂t2
= 0

∇2φ− 1

c2
∂2φ

∂t2
= 0,and we see that φ and A satisfy the wave equation.

�Problem 200: Show that E and B satisfy in free spae the wave equation.Solution:a) Applying the rotational to the wave equation for A we have:
0 = ∇×(∇2A− 1

c2
∂2A

∂t2
) = ∇2(∇×A)− 1

c

∂2

∂t2
(∇×A) = ∇2B− 1

c2
∂2B

∂t2that is to say B satis�es the wave equation with speed c.b) To obtain a similar result for E we start from the equality:
E = −∇φ− ∂tADi�erentiating respet to t and taking into aount the wave equationfor φ we have:

∂E

∂t
= −∇∂φ

∂t
− ∂2A

∂t2
= −∇∂φ

∂t
− c2∇2A



374 CHAPTER 7. ELECTROMAGNETISMDi�erentiate again with respet to t to obtain
∂2E

∂t2
= −∇∂2φ

∂t2
− c2∂t∇2A = −∇(c2∇2φ) − c2∂t∇2A =

= c2∇2(−∇φ∂tA) = c2∇2Eas we wanted to see.
�



EpilogueTwo results and a problem.The gravitational �eld of a uniform (:= onstant density) mass sphere isonstant (in modulus as well as in diretion) in the interior of an interiorhollow sphere:
Constant field

.

The gravitational �eld of a uniform mass sphere vanishes in the interiorof an interior onentri hollow sphere:
Vanishing field

. .

May be you are thinking about why Jules Verne did not use those fats inhis well known novel A journey to the earth's enter. Well, the point is that375



376 CHAPTER 7. ELECTROMAGNETISMboth preeding results are true if there were no other bodies in the Universe,but as that is not so, the gravitational �elds from other bodies still reate inthe interior of the hollow spheres a ertain gravitational �eld.Newton proved that the seond result holds true in the interior of anellipsoidal body (see [Kell℄ p.22):
Vanishing field

−

The problem is to �nd out if there are other shapes for whih this fatis still true. The answer is that there are no other suh �gures but, despitehaving enough spae in the margin, I an't �nd out the referene (Hint: thesolution is in a book about partial di�erential equations).
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