
II International Conference on Particle-based Methods – Fundamentals and Applications
PARTICLES 2011

E. Oñate and D.R.J. Owen (Eds)

SMOOTHED PARTICLE HYDRODYNAMICS ON GPU COMPUTING

A.J.C. CRESPO*, J.M. DOMINGUEZ*, D. VALDEZ-BALDERAS†, B.D. ROGERS†

AND M. GOMEZ-GESTEIRA*

* Environmental Physics Laboratory (EPHYSLAB)
Universidade de Vigo

Campus As Lagoas s/n, 32004, Ourense, Spain
e-mail: alexbexe@uvigo.es, web page: http://ephyslab.uvigo.es

† School of Mechanical, Aerospace, & Civil Engineering (MACE)
University of Manchester

Sackville Street, Manchester, M60 1QD, United Kingdom
web page: http://www.mace.manchester.ac.uk/

Key words: CFD, GPU, CUDA, SPH, fluid simulations.

Abstract. Smoothed Particle Hydrodynamics (SPH) is a powerful technique used to simulate
complex free-surface flows. However one of the main drawbacks of this method is the
expensive computational runtime and the large number of particles needed when 3D
simulations are performed. High Performance Computing (HPC) therefore becomes essential
to accelerate these codes and perform simulations. In this study, parallelization using
Graphics Processing Units (GPU) is applied to the SPHysics code (www.sphysics.org)
dedicated to free-surface flows with SPH. Simulations involving several million particles on a
single GPU exhibit speedups of up to two orders of magnitude over the same calculations
using CPU codes, while parallelization using MPI for multi-GPU leads to further acceleration.
This cheap technology allows studying real-life engineering problems at reasonable
computational runtimes.

1 INTRODUCTION
Smoothed Particle Hydrodynamics (SPH) is a purely Lagrangian method developed during

seventies (Gingold and Monaghan, 1977) in astrophysics. It has since been developed and
applied to a range of engineering flows, in particular for-free surface hydrodynamics
problems, such as the study of violent flows, wave breaking, wave-structure interactions.

SPHysics is an SPH numerical model developed to study free-surface flows and is the
product of a collaborative effort amongst researchers at the Johns Hopkins University
(U.S.A.), the University of Vigo (Spain) and the University of Manchester (U.K.). The open-
source code, written in FORTRAN, is available to download for public use at
www.sphysics.org. Although the SPH method can provide a fine description of the flow, its
main drawback is its high computational cost, so that applying over large domains is
prohibitive. Graphics Processing Units (GPUs) are a new technology imported from the

922

A. J. C. CRESPO ET AL.

2

computer games industry that can be used for scientific computing and is ideal for SPH due to
its parallel architecture. As a result, the dual functioning CPU-GPU code DualSPHysics has
been developed using C++ and Compute Unified Device Architecture (CUDA) for operation
on CPUs and GPUs, respectively. More information about the DualSPHysics project can be
found at www.dual.sphysics.org while different applications and animations can be viewed at
www.vimeo.com/dualsphysics.

In the present work, the DualSPHysics solver is presented describing the different parallel
codes implemented for different cores of CPU and one or more GPUs. The numerical results
are firstly validated with experimental data to show the accuracy and reliability of our
scheme, and then the achieved speedups comparing CPU and GPU are addressed to prove the
efficiency of this new technology in CFD problems.

2 SPH BACKGROUND

SPH is a meshless method that describes a fluid by replacing its continuum properties with
locally smoothed quantities at discrete Lagrangian locations and then integrates in time the
hydrodynamic equations of motion for each particle in the Lagrangian frame. Relevant
physical quantities are computed for each particle as an interpolation of the values of the
nearest neighbouring particles, and then particles move according to those values. The
conservation laws of continuum fluid dynamics, in the form of differential equations, are
transformed into their particle forms by integral equations through the use of an interpolation
function that gives the kernel estimate of the field variables at a point. SPH offers distinct
advantages including no fixed computational grid being required when calculating spatial
derivatives.

The main features of the SPH method, which is based on integral interpolants, are
described in detail in Gómez-Gesteira et al., 2010 and Liu and Liu, 2010. Here, only the main
points about implementation will be described. Conceptually, an SPH code is an iterative
process consisting of three main steps:

a) neighbour list: particles only interact with surrounding particles located at a
given distance so the domain is divided in cells of the kernel size to reduce the
neighbour search to the adjacent cells;

b) particle interaction: each particle only looks for neighbours at the adjacent
cells, after verifying that the distance between particles lies within the support of the
kernel, the conservation laws of continuum fluid dynamics are computed for the pair-
wise interaction of particles;

c) system update: once the forces between neighbouring particles have been
evaluated, all physical magnitudes of the particles are updated at the next time step.

923

A. J. C. CRESPO ET AL.

3

3 PARALLEL IMPLEMENTATION OF SPH ON CPU AND GPU

As mentioned, the SPH code is an iterative process where force interactions are computed
for all particles and all physical quantities are updated at the following time step. All these
tasks are very expensive in terms of computation time when the execution is carried out in a
single serial machine, so the parallelization of the tasks for large number of particles becomes
imperative. In the particular case of the SPHysics code different parallel techniques have been
implemented on different devices, threads of CPU and GPU cards.

3.1 Multi-core implementation using OpenMP
OpenMP, a specification for parallel programming is used to implement the multi-core

SPH code. Its implementation is straightforward and no significant changes in comparison to
the single-core code are required. Most of the sequential tasks and operations that involve a
loop over all particles are performed using the different cores of the same CPU. Thus, the
time dedicated to communication between different execution threads is reduced since the
same shared memory is used. The code is also optimised with the implementation of dynamic
load balancing. As is well known, using OpenMP on its own means that this parallelization
and potential speedup are limited to a small number of cores (i.e. the number of cores existing
on the compute node)

3.2 GPU implementation.
The GPU parallelisation technique uses the CUDA developed by nVidia. An efficient and

full use of the capabilities of the GPU architecture is not straightforward. In this case, the
sequential tasks over the particles are performed using different execution threads of the GPU
architecture. For example, with a GTX480 card a maximum of 23,040 threads can be
executed simultaneously (15 multiprocessors and 1,536 threads per multiprocessor as
maximum). The most efficient option is to keep all data in the memory of the GPU where the
three main processes of SPH are executed in parallel. The neighbour list follows the
procedure used on CPU and some tasks in parallel are even improved by using the optimised
radixsort algorithm provided by CUDA. Updating the physical quantities of the particles is
easily parallelized. The particle interaction process, which is the most expensive
computationally, is implemented solely on the GPU using one execution thread to compute
the particle interaction of only one particle. The thread looks for the neighbours of each
particle among the adjacent cells and computes the resulting force from all the interactions.
Due to the Lagrangian nature of the method, different problems appear such as lack of
balancing, code divergence and no perfect coalescent access to the global memory of the
device.

3.3 Multi-GPU implementation
Since the memory requirements are still a limitation for a single GPU, using more than one

GPU appears to be the best development to continue accelerating SPH simulations. In order to
allow different devices communicating with each other, the Message Passing Interface (MPI)
is used jointly with CUDA to implement a multi-GPU version of DualSPHysics. MPI presents
the advantage of using different compute nodes hosting multiple devices instead of only one

924

A. J. C. CRESPO ET AL.

4

as it happens with OpenMP. The multi-GPU implementation consists of assigning different
portions of the physical system to different GPUs (Valdez-Balderas et al., 2011). After each
computation step, data needs to be transferred between devices such as the information of
particles that migrate between GPUs (physical sub-domains) or particles that belong to shared
spaces where data is used by several GPUs. With the CUDA v4.0, direct GPU-GPU
communication is only very recently supported, so the memory transfer between different
GPUs is carried out by GPU-CPU, CPU-CPU and CPU-GPU communications which is
proving to be 85% efficient without the use of high-speed Infiniband connections to be used
in the future.

4 RESULTS

The DualSPHysics code is validated with the same experiment used for the SPHysics
validation in Gómez-Gesteira and Dalrymple, (2004) to demonstrate the reliability of the GPU
implementation. Thus, model results were compared to experimental data provided by Yeh
and Petroff (Chen et al., 1997)) at the University of Washington where a dam break occurred
within a rectangular tank, with a volume of water initially contained behind a thin gate at one
end of the box and a tall structure was inside the tank. Experimental measurements included
the time history of the net force on the structure and the time history of the fluid velocity at a
location just in front of the structure. Figure 1 shows different instants of this simulation using
one million particles.

Figure 1: Dam breaking flow impacting on a structure with SPH. Colour represents velocity values.

Figure 2 shows the close agreement between numerical velocity (red line), numerical force
(green line) and the experimental values (blue points). The SPH model is able to reproduce
the experimental velocity field and the forces generated by the collision between the incoming
wave and the structure although the maximum impact force is underpredicted which is most
likely due to either the SPH formulation or boundary conditions.

925

A. J. C. CRESPO ET AL.

5

Figure 2: Comparison between SPH results and experimental data.

A performance analysis has been carried out for this test case varying the number of
particles (Np) and using schemes introduced in Section 3. The codes are executed on the CPU
Intel® Core ™ i7 940 at 2.93GHz and on the GPU GTX 480 at 1.40GHz. Figure 3 shows the
computational runtimes and the number of steps computed per second for the different
simulations. Note that NGPU means using N GPU cards while NCPU means running on N
cores of the CPU.

0

10

20

30

40

50

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000

ti
m

e
(h

)

Np

1CPU

2CPU

3CPU

4CPU

1GPU

2GPU

3GPU

4GPU

0.1

1

10

100

1000

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000

st
ep

s/
s

Np

1CPU

2CPU

3CPU

4CPU

1GPU

2GPU

3GPU

4GPU

Figure 3: Runtime (left) and number of steps per second (right) for different number of particles using the
different parallel codes CPU/GPU.

The computational runtime increases dramatically with the number of particles when
simulations are performed on the CPU device while the GPU technology allows accelerating
the code easily even with only one GPU card. In addition, the performance of the GPU,
measured here as the number of time steps computed per second is always more than one
order of magnitude higher than the performance shown by the CPU codes.

The speedups of using NCPU and NGPU against only one device are shown in Figure 4 to
analyse the improvement achieved by using the multi-core and multi-GPU codes respectively.
Smaller speedup factors are obtained in the multi-GPU case than in the multi-core approach
due to the fact that multi-GPU involves data transferring between different computational
devices (GPU to CPU and CPU to CPU), whereas in the multi-core OpenMP approach all
data resides in the same compute node, namely, the CPU. Additionally, the multi-GPU
scheme does not yet use a high-speed Infiniband connection or feature a load balancing
algorithm but the multi-core OpenMP approach incorporates this inherently.

926

A. J. C. CRESPO ET AL.

6

0

1

2

3

4

0 200,000 400,000 600,000 800,000 1,000,000

Sp
ee

du
p

Np

2CPU&1CPU 3CPU&1CPU 4CPU&1CPU

0

1

2

3

4

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000

Sp
ee

du
p

Np

2GPUvs1GPU 3GPUvs1GPU 4GPUvs1GPU

Figure 4: Speedups for each parallel code in comparison to the serial code for CPU (left) and for the GPU
device (right) for different number of particles.

The simulation of one million particles takes more than 2 days on CPU and takes only
55mins on a single GPU, thus, a speedup of 60 is achieved (Figure 5). The speedups of using
NGPU against NCPU are also shown in Figure 5 and they are still promising (38-44).

Figure 5: Speedups of the parallel GPU codes in comparison with the parallel CPU ones.

5 APPLICATIONS
In order to create a real complex geometry to reproduce an industrial problem the first main

issue is the resolution with which the objects are represented. To obtain realistic results with
SPH it is appropriate that the initial geometry is as close as possible to a real industrial
problem. This drawback can be solved when several million particles are used in the
simulation. Figure 6 shows the example of an SPH simulation for a pump mechanism.

Figure 6: Pump mechanism with SPH using 2.5 million particles.

0

20

40

60

0 200,000 400,000 600,000 800,000 1,000,000

Sp
ee

du
p

Np

1GPUvs1CPU 2GPUvs2CPU 3GPUvs3CPU 4GPUvs4CPU

927

A. J. C. CRESPO ET AL.

7

However the main field of application of our software is the design of coastal protection
schemes. Simulating million particles in a few hours allows us to investigate a real scenario
where the damage due to extreme waves can be analysed and mitigation structures can be
designed. Figure 7 shows different snapshots of a simulation where a large wave interacts
with an idealised seafront consisting of a beach, a seawalk, pavement, the street, trees and
buildings. The model reproduces realistically an overtopping.

Figure 7: Promenade-wave interaction with SPH using 20 million particles.

6 CONCLUSIONS AND FUTURE LINES
- It is demonstrated that the achieved performance of SPH simulations with a small

number of GPUs can be compared to that of large cluster of CPUs, both in terms of
speed and in the number of particles employed (Maruzewski et al., 2010)
Furthermore, other important advantage is the cost and ease-of-maintenance of GPUs
in comparison with those clusters.

- Once the GPU implementation allows studying simulations of large domains with a
reasonable computational runtime, real-life engineering problems will be studied for
industrial purposes using SPH models.

928

A. J. C. CRESPO ET AL.

8

REFERENCES
[1] Gingold, R.A. and Monaghan, J.J. Smoothed particle hydrodynamics: theory and

application to non- spherical stars. Mon Not R Astr Soc (1977) 181: 375-389.
[2] Gómez-Gesteira, M., Rogers, B.D., Dalrymple, R.A. and Crespo, A.J.C. State-of-the-art

of classical SPH for free-surface flows. Journal of Hydraulic Research, (2010) 48: 6–27.
[3] Liu, M. B. and Liu, G. R. Smoothed Particle Hydrodynamics (SPH): an Overview and

Recent Developments. Arch Comput Methods Eng (2010) 17: 25-76.
[4] Valdez-Balderas, D., Dominguez, J.M., Crespo, A.J.C. and Rogers, B.D. Massively

parallel SPH simulations on multi-GPU cluster for free-surface flows. The fourth
International Many-core and Reconfigurable Supercomputing Conference, Bristol 2011.

[5] Gómez-Gesteira, M. and Dalrymple, R. Using a 3D SPH method for wave impact on a tall
structure. Journal of Waterway, Port, Coastal, and Ocean Engineering, (2004) 130(2):
63-69.

[6] Chen, S., Johnson, D. B., Raad, P. E. and Fadda, D.. The surface marker and microcell
method. Int. J. Numer. Methods Fluids, (1997) 25: 749–778.

[7] Maruzewski, P., Touzé, D. Le, Oger, G. and Avellan, F. SPH high-performance
computing simulations of rigid solids impacting the free-surface of water. Journal of
Hydraulic Research, (2010) 48: 126–134.

929

