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Abstract. Smoothed Particle Hydrodynamics (SPH) is a powerful technique used to simulate 
complex free-surface flows. However one of the main drawbacks of this method is the 
expensive computational runtime and the large number of particles needed when 3D 
simulations are performed. High Performance Computing (HPC) therefore becomes essential 
to accelerate these codes and perform simulations. In this study, parallelization using 
Graphics Processing Units (GPU) is applied to the SPHysics code (www.sphysics.org) 
dedicated to free-surface flows with SPH. Simulations involving several million particles on a 
single GPU exhibit speedups of up to two orders of magnitude over the same calculations 
using CPU codes, while parallelization using MPI for multi-GPU leads to further acceleration. 
This cheap technology allows studying real-life engineering problems at reasonable 
computational runtimes.  

1 INTRODUCTION 
Smoothed Particle Hydrodynamics (SPH) is a purely Lagrangian method developed during 

seventies (Gingold and Monaghan, 1977) in astrophysics. It has since been developed and 
applied to a range of engineering flows, in particular for-free surface hydrodynamics 
problems, such as the study of violent flows, wave breaking, wave-structure interactions. 

SPHysics is an SPH numerical model developed to study free-surface flows and is the 
product of a collaborative effort amongst researchers at the Johns Hopkins University 
(U.S.A.), the University of Vigo (Spain) and the University of Manchester (U.K.). The open-
source code, written in FORTRAN, is available to download for public use at 
www.sphysics.org. Although the SPH method can provide a fine description of the flow, its 
main drawback is its high computational cost, so that applying over large domains is 
prohibitive. Graphics Processing Units (GPUs) are a new technology imported from the 

922



A. J. C. CRESPO ET AL. 

2

computer games industry that can be used for scientific computing and is ideal for SPH due to 
its parallel architecture. As a result, the dual functioning CPU-GPU code DualSPHysics has 
been developed using C++ and Compute Unified Device Architecture (CUDA) for operation 
on CPUs and GPUs, respectively. More information about the DualSPHysics project can be 
found at www.dual.sphysics.org while different applications and animations can be viewed at 
www.vimeo.com/dualsphysics. 

In the present work, the DualSPHysics solver is presented describing the different parallel 
codes implemented for different cores of CPU and one or more GPUs. The numerical results 
are firstly validated with experimental data to show the accuracy and reliability of our 
scheme, and then the achieved speedups comparing CPU and GPU are addressed to prove the 
efficiency of this new technology in CFD problems. 

2 SPH BACKGROUND 

SPH is a meshless method that describes a fluid by replacing its continuum properties with 
locally smoothed quantities at discrete Lagrangian locations and then integrates in time the 
hydrodynamic equations of motion for each particle in the Lagrangian frame. Relevant 
physical quantities are computed for each particle as an interpolation of the values of the 
nearest neighbouring particles, and then particles move according to those values. The 
conservation laws of continuum fluid dynamics, in the form of differential equations, are 
transformed into their particle forms by integral equations through the use of an interpolation 
function that gives the kernel estimate of the field variables at a point. SPH offers distinct 
advantages including no fixed computational grid being required when calculating spatial 
derivatives. 

The main features of the SPH method, which is based on integral interpolants, are 
described in detail in Gómez-Gesteira et al., 2010 and Liu and Liu, 2010. Here, only the main 
points about implementation will be described. Conceptually, an SPH code is an iterative 
process consisting of three main steps: 

a) neighbour list: particles only interact with surrounding particles located at a 
given distance so the domain is divided in cells of the kernel size to reduce the 
neighbour search to the adjacent cells; 

b) particle interaction: each particle only looks for neighbours at the adjacent 
cells, after verifying that the distance between particles lies within the support of the 
kernel, the conservation laws of continuum fluid dynamics are computed for the pair-
wise interaction of particles; 

c) system update: once the forces between neighbouring particles have been 
evaluated, all physical magnitudes of the particles are updated at the next time step. 
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3 PARALLEL IMPLEMENTATION OF SPH ON CPU AND GPU 

As mentioned, the SPH code is an iterative process where force interactions are computed 
for all particles and all physical quantities are updated at the following time step. All these 
tasks are very expensive in terms of computation time when the execution is carried out in a 
single serial machine, so the parallelization of the tasks for large number of particles becomes 
imperative. In the particular case of the SPHysics code different parallel techniques have been 
implemented on different devices, threads of CPU and GPU cards. 

3.1 Multi-core implementation using OpenMP 
OpenMP, a specification for parallel programming is used to implement the multi-core 

SPH code. Its implementation is straightforward and no significant changes in comparison to 
the single-core code are required. Most of the sequential tasks and operations that involve a 
loop over all particles are performed using the different cores of the same CPU. Thus, the 
time dedicated to communication between different execution threads is reduced since the 
same shared memory is used. The code is also optimised with the implementation of dynamic 
load balancing. As is well known, using OpenMP on its own means that this parallelization 
and potential speedup are limited to a small number of cores (i.e. the number of cores existing 
on the compute node) 

3.2 GPU implementation.  
The GPU parallelisation technique uses the CUDA developed by nVidia. An efficient and 

full use of the capabilities of the GPU architecture is not straightforward. In this case, the 
sequential tasks over the particles are performed using different execution threads of the GPU 
architecture. For example, with a GTX480 card a maximum of 23,040 threads can be 
executed simultaneously (15 multiprocessors and 1,536 threads per multiprocessor as 
maximum). The most efficient option is to keep all data in the memory of the GPU where the 
three main processes of SPH are executed in parallel. The neighbour list follows the 
procedure used on CPU and some tasks in parallel are even improved by using the optimised 
radixsort algorithm provided by CUDA. Updating the physical quantities of the particles is 
easily parallelized. The particle interaction process, which is the most expensive 
computationally, is implemented solely on the GPU using one execution thread to compute 
the particle interaction of only one particle. The thread looks for the neighbours of each 
particle among the adjacent cells and computes the resulting force from all the interactions. 
Due to the Lagrangian nature of the method, different problems appear such as lack of 
balancing, code divergence and no perfect coalescent access to the global memory of the 
device.  

3.3 Multi-GPU implementation 
Since the memory requirements are still a limitation for a single GPU, using more than one 

GPU appears to be the best development to continue accelerating SPH simulations. In order to 
allow different devices communicating with each other, the Message Passing Interface (MPI) 
is used jointly with CUDA to implement a multi-GPU version of DualSPHysics. MPI presents 
the advantage of using different compute nodes hosting multiple devices instead of only one 
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as it happens with OpenMP. The multi-GPU implementation consists of assigning different 
portions of the physical system to different GPUs (Valdez-Balderas et al., 2011). After each 
computation step, data needs to be transferred between devices such as the information of 
particles that migrate between GPUs (physical sub-domains) or particles that belong to shared 
spaces where data is used by several GPUs. With the CUDA v4.0, direct GPU-GPU 
communication is only very recently supported, so the memory transfer between different 
GPUs is carried out by GPU-CPU, CPU-CPU and CPU-GPU communications which is 
proving to be 85% efficient without the use of high-speed Infiniband connections to be used 
in the future. 

4 RESULTS 

The DualSPHysics code is validated with the same experiment used for the SPHysics 
validation in Gómez-Gesteira and Dalrymple, (2004) to demonstrate the reliability of the GPU 
implementation. Thus, model results were compared to experimental data provided by Yeh 
and Petroff (Chen et al., 1997)) at the University of Washington where a dam break occurred 
within a rectangular tank, with a volume of water initially contained behind a thin gate at one 
end of the box and a tall structure was inside the tank. Experimental measurements included 
the time history of the net force on the structure and the time history of the fluid velocity at a 
location just in front of the structure. Figure 1 shows different instants of this simulation using 
one million particles.  

  

Figure 1: Dam breaking flow impacting on a structure with SPH. Colour represents velocity values. 

Figure 2 shows the close agreement between numerical velocity (red line), numerical force 
(green line) and the experimental values (blue points). The SPH model is able to reproduce 
the experimental velocity field and the forces generated by the collision between the incoming 
wave and the structure although the maximum impact force is underpredicted which is most 
likely due to either the SPH formulation or boundary conditions. 
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Figure 2: Comparison between SPH results and experimental data.

A performance analysis has been carried out for this test case varying the number of 
particles (Np) and using schemes introduced in Section 3. The codes are executed on the CPU 
Intel® Core ™ i7 940 at 2.93GHz and on the GPU GTX 480 at 1.40GHz. Figure 3 shows the 
computational runtimes and the number of steps computed per second for the different 
simulations. Note that NGPU means using N GPU cards while NCPU means running on N
cores of the CPU. 
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Figure 3: Runtime (left) and number of steps per second (right) for different number of particles using the 
different parallel codes CPU/GPU. 

The computational runtime increases dramatically with the number of particles when 
simulations are performed on the CPU device while the GPU technology allows accelerating 
the code easily even with only one GPU card. In addition, the performance of the GPU, 
measured here as the number of time steps computed per second is always more than one 
order of magnitude higher than the performance shown by the CPU codes.  

The speedups of using NCPU and NGPU against only one device are shown in Figure 4 to 
analyse the improvement achieved by using the multi-core and multi-GPU codes respectively. 
Smaller speedup factors are obtained in the multi-GPU case than in the multi-core approach 
due to the fact that multi-GPU involves data transferring between different computational 
devices (GPU to CPU and CPU to CPU), whereas in the multi-core OpenMP approach all 
data resides in the same compute node, namely, the CPU. Additionally, the multi-GPU 
scheme does not yet use a high-speed Infiniband connection or feature a load balancing 
algorithm but the multi-core OpenMP approach incorporates this inherently. 

926



A. J. C. CRESPO ET AL. 

6

0

1

2

3

4

0 200,000 400,000 600,000 800,000 1,000,000

Sp
ee

du
p

Np

2CPU&1CPU 3CPU&1CPU 4CPU&1CPU

   

0

1

2

3

4

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000

Sp
ee

du
p

Np

2GPUvs1GPU 3GPUvs1GPU 4GPUvs1GPU

Figure 4: Speedups for each parallel code in comparison to the serial code for CPU (left) and for the GPU 
device (right) for different number of particles. 

The simulation of one million particles takes more than 2 days on CPU and takes only 
55mins on a single GPU, thus, a speedup of 60 is achieved (Figure 5). The speedups of using 
NGPU against NCPU are also shown in Figure 5 and they are still promising (38-44). 

Figure 5: Speedups of the parallel GPU codes in comparison with the parallel CPU ones. 

5 APPLICATIONS 
In order to create a real complex geometry to reproduce an industrial problem the first main 

issue is the resolution with which the objects are represented. To obtain realistic results with 
SPH it is appropriate that the initial geometry is as close as possible to a real industrial 
problem. This drawback can be solved when several million particles are used in the 
simulation. Figure 6 shows the example of an SPH simulation for a pump mechanism.  

Figure 6: Pump mechanism with SPH using 2.5 million particles. 
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However the main field of application of our software is the design of coastal protection 
schemes. Simulating million particles in a few hours allows us to investigate a real scenario 
where the damage due to extreme waves can be analysed and mitigation structures can be 
designed. Figure 7 shows different snapshots of a simulation where a large wave interacts 
with an idealised seafront consisting of a beach, a seawalk, pavement, the street, trees and 
buildings. The model reproduces realistically an overtopping. 

Figure 7: Promenade-wave interaction with SPH using 20 million particles. 

6 CONCLUSIONS AND FUTURE LINES 
- It is demonstrated that the achieved performance of SPH simulations with a small 

number of GPUs can be compared to that of large cluster of CPUs, both in terms of 
speed and in the number of particles employed (Maruzewski et al., 2010) 
Furthermore, other important advantage is the cost and ease-of-maintenance of GPUs 
in comparison with those clusters. 

- Once the GPU implementation allows studying simulations of large domains with a 
reasonable computational runtime, real-life engineering problems will be studied for 
industrial purposes using SPH models. 
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