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Abstract. Material characterisation is one of the most important aspects of accurate nu-
merical modelling; correct material properties must be obtained for the correct behaviour
to be observed. Traditionally permeability is measured by applying a constant/falling
head test to a material sample, where such tests may involve many samples at varying
pressure gradients. However current X-Ray micro-tomography techniques allow us to
avoid physical lab tests by providing the ability to reproduce a voxelised representation of
the internal structure of a porous medium. The Lattice Boltzmann Method may then be
used to model a pressure induced flow field within the sample so that permeability may
be numerically approximated. Typically this process is carried out after a thresholding
procedure has been applied to the voxelised geometry to split it into definite solid and
void spaces, at the expense of accurate representation of the geometry. In an attempt
to better represent the porous medium the Immersed Moving Boundary technique was
applied in such a way that it partially applies the bounce back boundary condition so
that the strength of this application scales with the porosity of a given lattice node. This
allows us to consider directly raw voxel values, avoiding the need for any thresholding
procedure. To validate this hypothesis two test cases were explored in 2D; flow past a
periodic array of cylinders by use of a unit cell model, and flow through a simple het-
erogeneous porous medium. Results were compared with analytical expressions where
available, and published expressions for permeability evaluation of porous media. Results
were found to be in good agreement with the available expressions.

1 INTRODUCTION

Accurate assessment of material permeability is a challenge encountered by many in-
dustrial organizations, in particular those engaged in Oil and Gas production. When such
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an organization requires knowledge of material permeability, they must gather a set of
samples of sufficient size and submit them to a laboratory where a constant head test
may be applied to assess permeability. Such tests may be destructive and time consum-
ing, adding cost to an operation. It would be easy to assume that gathering samples is
cheap; however if one considers the fact that these organizations may typically require
knowledge of the permeability of rock which exists kilometres below the earth’s surface,
then it may also be seen that gathering material samples is in itself an extremely costly
venture. In order to gain access to rock material at such depth a borehole must be drilled,
and drilling must then be interrupted as and when material samples are to be extracted.
This procedure operates on the assumption that the cuttings produced during drilling are
too small to be subjected to traditional laboratory scale testing. It is therefore desirable
to develop alternative means of permeability evaluation which are able to consider drill
cuttings, the gathering of which has no impact on the drilling schedule of a borehole.

The Lattice Boltzmann Method1 (LBM) has become a popular method in the field
of porous media flow modelling,2, 3 in large part due to the simplicity of constructing a
lattice which may represent heterogeneous porous media. Since the LBM operates on a
regular lattice, in most cases a square lattice, one can avoid the complexities of meshing
routines required by more traditional methods such as the Finite Volume or Finite Element
methods. The LBM was originally derived from the Boltzmann equation, which describes
the statistical likelihood that a particle exists at any given point in space and time with a
given momentum. In the LBM, space and momentum are discretized so that particles may
exist only at specific points with momentum aligned to a given set of vectors. The method
is computationally cheap and efficient and may be parallelized with ease. Interaction
between a fluid and a solid within an LBM model can be easily accounted for by use of
what is known as the bounce back boundary condition, an extremely simple boundary
condition which serves only to reflect any momentum incoming to the boundary. Within
an LBM model any particular computational node, or lattice node, may have the bounce
back condition imposed upon it. The result of the bounce back boundary is an almost

no-slip condition at the interface between a bounce back node and a fluid node. The
bounce back boundary condition therefore provides the ability to simply represent what
may be a complex geometry, though its use does bring a significant drawback in so far as
curved and inclined boundaries can only be represented using a staircase approximation.

X-Ray Micro-tomography (micro-CT) provides the ability to determine the internal
micro structure of rock samples, and the LBM represents a suitable method for modelling
the flow of fluids through this micro structure. A micro-CT scan of a rock sample would
return a voxelised representation of the rock micro-structure, previous studies in this field
have applied a thresholding procedure3 to the voxelised geometry so that the bounce
back condition may be applied to represent the rock medium. The goal of this study is to
explore a way to avoid this thresholding procedure by novel use of the Immersed Moving
Boundary method for LBM4 in order to directly consider the voxelised geometry produced
by a micro-CT scan, so that material permeability may be numerically approximated.
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The use of the LBM, and aforementioned boundary conditions, with respect to per-
meability analysis was explored with a series of 2D test cases. These test cases include
flow past a periodic array of hexagonally packed cylinders, flow through a homogeneous
porous medium and flow through a simple heterogeneous porous medium.

2 PERMEABILITY ASSESSMENT

This section details methods by which the permeability of a porous medium may be
analysed, both physically and computationally. In both physical and computational test-
ing Darcy’s equation is employed:

q =
−k

µ
∇P (1)

which includes terms for flux, q, viscosity, µ, pressure gradient, ∇P and finally material
permeability, k in which we are interested. Darcy’s equation defines a linear relationship
between the flux, q, and pressure gradient, ∇P .

2.1 Physical Testing

A typical technique employed to assess the permeability of a material sample is the
constant head test. The constant head test exploits the relationship between fluid flux, an
applied pressure gradient and material permeability, as defined by Darcy’s equation (1).
When carrying out a constant head test on a material sample, the sample is initially
saturated with fluid, a pressure gradient is then applied across the sample and the resultant
volumetric flow rate is measured. Since the fluid viscosity is known, a known pressure
gradient is applied, and the volumetric flowrate can be measured, Darcy’s equation may
then be used to calculate the permeability of the material sample.

2.2 Computational Testing

Computational permeability analysis is carried out with an identical methodology to
physical permeability analysis. If the internal micro structure of a porous medium is
known, it may be reproduced in a computational domain; using current CFD technology,
in this case the LBM, one can then impose a pressure driven flow upon a computational
domain. The fluid flux through this domain may be approximated by inspection of the
results of the modelled pressure driven flow and, as long as the model parameters define
a case where the modelled fluid is of known viscosity, the permeability of the modelled
sample may be approximated.

3 NUMERICAL TECHNIQUE

The numerical techniques employed in this study are detailed and explained within this
section, including the standard Lattice Boltzmann formulation, the simple bounce back
no slip condition, and an Immersed Moving Boundary technique.4 A brief description of
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Figure 1: The Lattice Site

the Zhou/He boundary condition5 is also included as it is used in this study to impose a
pressure gradient upon the considered computational domains.

3.1 The Lattice Boltzmann Method

The standard DdQq Lattice Boltzmann scheme with an LBGK collision term6 operates
on a d-dimensional square lattice of lattice nodes connected by q − 1 vectors. Since this
study is concerned with 2D test cases only the D2Q9 lattice node was used, a diagram
of which shown in Fig. 1. The D2Q9 lattice, and indeed any compatible lattice, consists
of evenly spaced lattice nodes separated by a distance, h, in every dimension. Each
lattice node is connected to its neighbours by 8 vectors, ei, and each vector has a particle
distribution function (PDF), fi , associated with it along with a ninth ”rest” PDF. If
the numbering convention applied to the lattice node shown in Fig. 1 is respected, the
corresponding vectors, ei, are given by:

e0 = (0, 0) (2)

ei = C

(
cos

π(i− 1)

2
, sin

π(i− 1)

2

)
(i = 1, ..., 4)

ei = C

(
cos

π(2i− 9)

4
, sin

π(2i− 9)

4

)
(i = 5, ..., 8)

in which the lattice speed, C, is related to the distance between the lattice nodes, h, and
the discrete lattice time step, ∆t,

C = h/∆t (3)

4
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The evolution of these PDF’s is defined by the LBGK Lattice Boltzmann equation:

fi(x+ ei∆t, t +∆t)− fi(x, t) =
1

τ
(f eq

i (ρ,u)− fi(x, t)) (4)

where the additional terms, ρ, x and τ are respectively the fluid density, position and
relaxation time of a given lattice node. The relaxation time is a non-dimensional control
parameter of a Lattice Boltzmann model, and defines the strength of the LBGK collision
process which represents a relaxation to some equilibrium state. In terms of the LBM,
the equilibrium state is defined by the equilibrium particle distribution function,

f eq

i = ωiρ

(
1 +

3

C2
ei · v +

9

2C4
(ei · v)2 −

3

2C2
v · v

)
(5)

in which the weighting factors, ωi, are:

ω0 =
4

9
, ω1,2,3,4 =

1

9
, ω5,5,6,8 =

1

36
(6)

The macroscopic values of density, ρ, and momentum, ρu, can be calculated for each
lattice node by,

ρ =
∑
i

fi (7)

ρu =
∑
i

eifi (8)

respectivly. The pressure, P , is related to the density, ρ, as:

P = C2
sρ (9)

where the lattice speed of sound, Cs, is:

Cs = C/
√
3 (10)

Also, the fluid viscosity is related to the parameters in LBM as:

ν =
1

3
(τ − 1

2
)
h2

∆t
(11)

Equation (4) dictates an evolution procedure for the PDF’s that can be split into two
stages; streaming, represented by the left hand side of the equation; and collision, repre-
sented by the right hand side of the equation. The collision step in this formulation is an
LBGK collision process which, as stated, represents a relaxation towards an equilibrium
state. The streaming step serves only to propagate PDF’s from the lattice node in ques-
tion, to its nearest neighbours. As can be seen, any numerical computation occurs only in

5

869



B. Jones, Y. T. Feng

the collision stage; furthermore for any given lattice node operating under the standard
LBM scheme all computations are purely local. In terms of computational implementa-
tion the streaming step is in its simplest form a memory transfer operation, where PDF’s
are passed from one location in memory to another. Based on this it should be clear that
the LBM for single phase fluid flows lends itself very well to parallel processing.

3.2 No Slip - Bounce Back

The No-Slip boundary condition is fundamental to fluid mechanics, and it implies that
fluid in contact with a solid surface will travel at a velocity equal to the velocity of the
surface. Due to the nature of the LBM, imposing a fixed velocity, or density, at a point
in space is non-trivial. Equation (8) relates the effective momentum at a lattice node
to its PDF’s, so to fix the velocity at any given lattice node the relationship defined by
this equation must be preserved. Unfortunately since equation (8) is the only equation
available relating the PDF values to momentum, calculation of the required PDF values
to fix the velocity at a lattice node results in this single equation with 9 unknowns. This
problem however can be avoided through the use of what is known as the bounce back
boundary condition.7

In an LBM model a solid surface may be represented by a bounce back node, or series
a of bounce back nodes. When a lattice node is deemed bounce back then any momentum
incoming to the lattice node is reflected back towards the lattice node it came from in
the subsequent time step, with no collision process occurring on the bounce back lattice
node. This operation ultimately modifies the evolution equation for the lattice node in
question to read as equation (12).

fi(x + ei∆t, t +∆t) = f−i(x, t) (12)

where f−i is the PDF who’s associated vector points in the opposite direction to the PDF
fi.

Due to the simplicity of the bounce back boundary condition, its use is convenient but
not ideal. He et al. showed that use of the bounce back boundary condition in an LBM
model will degrade the accuracy of the model to first order in space.7

3.3 No Slip - Partial Bounce Back

The Partial Bounce Back (PBB) boundary condition refers to a specific use of the
Immersed Moving Boundary (IMB) condition proposed by Noble & Torczynski.4 The
IMB condition is one which attempts to incorporate the interaction between a fluid and a
solid body moving through it. An IMB may represent a boundary that does not conform
to the computational grid, or lattice in this case, and this boundary may be moving with
some velocity relative to the surrounding fluid. It can be seen in Fig. 2 that an object
which does not conform to the computational lattice may only partially occupy any given
lattice node; this may well be the case when considering a non-integer voxel taken from a
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micro-CT scan of a rock medium representing a definite fluid solid boundary intersecting
the voxel. The IMB technique proposed by Noble & Torczynski results in a modification
to equation (4) to read as:

fi(x+ ei∆t, t+∆t)− fi(x, t) = [1−B(x, ǫs)] Ω
BGK

i + B(x, ǫs)Ω
S

i (13)

where,

ΩBGK

i =
1

τ
(f eq

i (ρ,uf )− fi(x, t)) (14)

and,
ΩS

i = f−i(x, t)− fi(x, t) + f eq

i (ρ,us)− f eq

−i(ρ,uf) (15)

or,
ΩS

i = f−i(x, t)− fi(x, t) + f eq

i (ρ,us)− f eq

−i(ρ,us) (16)

in which f eq

−i(ρ,us) and f eq

−i(ρ,uf) are the equilibrium particle distribution functions as
given by equation (5) with u = us and u = uf respectively. us is the velocity of the
boundary, and uf is the velocity of the fluid.

Equation (15) is the expression originally proposed for ΩS
i ; though another expression,

equation (16), was proposed by Holdych8 which has been shown to increase the accuracy
of computed force and torque on a sphere in poiseuille flow when compared with the
original expression.9 In the interests of completeness both expressions were explored in
this study with respect to the accuracy of measured permeability.

In equation (13), B(x, ǫs) is a function which represents a solid fraction field across
the domain allowing for a different solid fraction, ǫs, at individual lattice nodes. In the
the original paper Noble & Torczynski propose two formulations for B(x, ǫs); the first is
direct use of solid fraction so that

B(x, ǫs) = ǫs(x) (17)

The second formulation is a function of ǫs with relaxation time dependent weighting

B(x) =
ǫs(x)(τ − 1/2)

(1 + ǫs(x)) + (τ − 1/2)
(18)

which is reported to work well for τ between 0.6 and 0.9. Though the impact of the
relaxation time dependent weighting is negligible, and was shown not to impact upon
results.10 Therefore the simpler form of B(x, ǫs) given by equation (17) was used in this
study.

The effect of this modification to the Lattice Boltzmann Equation is essentially the
partial application of the bounce back boundary condition to every lattice node. The
strength of this partial application is dependent upon the velocity of the boundary, and
the proportion of a lattice node which is occupied by the boundary, or porosity. This
form of the PBB condition has previously been used by Feng et al. who have shown it

7
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Figure 2: An example of a boundary which does not conform to the computational grid

to be a suitable choice for considering the interaction between the flow of a fluid and
immersed objects in both 2D10 and 3D.11 Using such a boundary condition with the
boundary velocity set to zero leaves us with the partial application of the bounce back
condition scaling only with porosity. In this way, the proposed boundary scheme may
be used to consider intrinsically porous lattice nodes. The relationship between resultant
permeability and imposed porosity using the PBB condition with a zero boundary velocity
was explored and results are presented in section 4.1.

The PBB condition allows for direct consideration of non-integer micro-CT voxels.
Where a non-integer voxel would represent either a definite fluid/solid boundary or an
intrinsically porous region of the medium, the ability of the PBB condition to consider
such regions was explored in two tests models designed to represent each case.

3.4 Applied Pressure Drop

In order to use Darcy’s equation to numerically approximate material permeability, a
pressure gradient must be applied across the considered computational domain. To do
this in the LBM model, the popular Zhou/He boundary condition has been used.5 As has
been stated, imposition of a specific value of density, pressure or momentum on any one
lattice node is non-trivial. This is due to the fact that for the LBM there exists only one
equation linking the desired macroscopic value to the microscopic PDF’s, and since there
are nine PDF’s for a D2Q9 lattice we are left with one equation and 9 unknowns. In an
attempt to circumvent this situation Zhou & He suggested two assumptions:

8
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• A PDF who’s origin is from within the computational domain is of the correct value

• A PDF who’s origin is outside the boundary may be computed if the relationship
proposed in equation (19) is respected for the PDF normal to the boundary (in this
case f1 is normal to the boundary)

f1 − f eq

1 = f3 − f eq

3 (19)

If the stated assumptions are respected then one can apply some algebra to the LBM
equations to gain expressions for the remaining non-normal PDF’s which are streamed
from outside the boundary. For straight boundaries Zhou & He demonstrate second or-
der accuracy with their boundary technique on a D2Q9 lattice. The Zhou/He boundary
condition can be used to specify pressure at both the inlet and the outlet of the compu-
tational domain. With differing inlet and outlet pressure imposed, a pressure gradient
across the domain will establish itself as steady state is achieved.

4 RESULTS

To test the validity of using the PBB condition to model flows which include geometry
that is either porous or partially occupying lattice nodes, such as may be gained from a
micro-CT scan, two test cases were explored. These test cases were flow through a pe-
riodic array of hexagonally packed cylinders, demonstrating the methods ability to deal
with lattice nodes partially occupied by a solid body; and flow through a simple heteroge-
neous porous media, demonstrating the methods ability to deal with porous bodies. The
relationship between the porosity of a lattice node and its permeability was also explored.
A description of the tests and commentary on results is included in this section.

4.1 Relationship Between Porosity and Permeability using the PBB condi-

tion

The PBB condition was used in this study to impose an intrinsic porosity upon in-
dividual lattice nodes within a computational domain. This novel use of the technique
proposed by Noble & Torczynski requires first that the relationship between the porosity
and permeability of a lattice node be defined. Since no equation was available to relate
these factors an experiment was carried out. The experimental set up uses the PBB con-
dition to consider a domain of uniform porosity, Zhou/He pressure boundaries were used
to impose a pressure drop between the inlet and outlet of the domain, and the resultant
flow rate was measured. From this a specific value of permeability can be calculated using
Darcy’s equation (1) to match a specific value of porosity. Different value’s of porosity
were tested from 0.05 to 0.95 in increments of 0.05. A plot of porosity versus permeabil-
ity is included in Fig. 3 which shows an exponential relationship between porosity and
permeability. In the interest of simplicity all tests were carried out with τ = 1 and a fixed
arbitrary pressure drop of 0.0005, the domain consisted of 100 lattice nodes in x and y.

9
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Figure 3: Relationship of Nodal Porosity and Nodal Permeability

4.2 Unit Cell Cylinder

The Unit Cell cylinder test is designed to test the accuracy of the PBB condition
with respect to permeability of a domain where the PBB condition is used to consider
nodes which are intersected by a definite fluid/solid boundary. The unit cell model is
representative of a periodic array of hexagonally packed cylinders and a diagram of the
unit cell geometry is included in Fig. 4.

To represent the cylinder geometry using the traditional bounce back technique would
leave the cylinder under defined in a ’staircase’ approximation, where the curve of the
cylinder edge is staggered as it passes through individual lattice nodes. Those lattice nodes
whose centre is within the cylinder radius are deemed bounceback, whereas those lattice
nodes whose centre is outside of the cylinder radius are simply fluid lattice nodes. This
leaves the cylinder under defined as under this approximation to the cylinder surface there
would be lattice nodes which are partially intersected by the cylinder surface where the
centre of the lattice node in question lies outside the cylinder radius. Such lattice nodes
may be accounted for by using the PBB boundary condition taking into consideration the
fraction of these lattice nodes which is occupied by the cylinder.

The permeability of a periodic array of hexagonally packed cylinders was indepen-
dently studied by both Gebart12 and Lee & Yang13 who have proposed expressions for
permeability normalised against the cylinder diameter. Equation (20) is the expression
proposed by Gebart, while equation (21) is the expression proposed by Lee & Yang.

10
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Figure 4: Geometry of Unit Cell Cylinder
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√
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�
π/2
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5/2

(20)

k

d2
=

φ3(φ− 0.2146)

31(1− φ)1.3
(21)

For the unit cell cylinder test the expressions proposed by Gebart and Lee & Yang are
used as a benchmark against which to compare numerical results. The LBM was tested
with three alternate boundary conditions to represent the cylinder geometry, bounce back,
PBB with Noble & Torczynski’s original expression for Ωs, and PBB with Holdych’s
expression for Ωs. As with the experiment investigating the relationship between lattice
node porosity and permeability, the Zhou/He pressure boundary was used at the inlet
and outlet to impose a pressure drop of 0.0005 across the domain with τ = 1. Numerical
results were gained for two independent cases. The first test case was a series of models
at a fixed resolution of 100 lattice nodes in x and y, with varying cylinder radius. This
test was designed to evaluate the accuracy of the LBM using these boundary conditions
across the range of possible porosities for the model. The second test case included a series
of models with a fixed cylinder radius but varying resolution, that is the ratio between
radius and resolution in lattice units was fixed; designed to evaluate the sensitivity of this
technique to resolution. For the test case considering varying resolution the radius was
fixed such as to give porosity of the model ≈ 0.65. For all test models a pressure drop is
imposed, the resultant flux is measured, and the permeability is calculated using Darcy’s
equation (1).

Fig. 5 shows the results of the unit cell cylinder test for varying cylinder radius. The
plot of diameter normalised permeability versus porosity shows that in the low ranges of

11
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Figure 6: Results for Unit Cell Cylinder Model with Variation of Resolution

porosity, the results match closely to the expression proposed by Lee & Yang, as porosity
increases, the results begin to agree more closely with Gebart’s expression. Overall good
correlation has been achieved between the numerical results and published expressions.
The plots of percentage difference show that in general the results from the models using
the PBB boundary condition agree more closely with the published expressions than the
results gained from models using the traditional bounce back technique. Inspection of
Fig. 5a also shows that although the variation of difference between the numerical results
and the published expressions in figures 5b and 5c is in many cases large (> 10%), the
numerical results agree more closely with the published expressions than the expressions
agree with themselves.

One point of interest from these results is that when using the PBB condition with
Noble & Torczynski’s original expression for Ωs the models exhibit some odd behaviour.
For the most part, models were terminated when the root mean square of the sum of
the change in velocity between time steps is sufficiently small, too ensure good results
the threshold for this value was set to 10−10. However at high porosity, using Noble &
Torczynski’s original expression for Ωs the root mean square of the sum of the change in
velocity between time steps never fell below the threshold value.

Fig. 6 shows the results of the unit cell cylinder test for varying resolution. The plot
demonstrates that up to a domain length of 200 lattice nodes in x and y, results can
vary by a relatively large degree, after this point the dependence of results on domain
resolution starts to become marginal as they begin to converge.

4.3 Simple Heterogeneous Porous Media

The simple heterogeneous porous media test is designed to evaluate how accurately
the PBB condition is able to consider a medium which is completely and non-uniformly
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Figure 7: Geometry of Heterogeneous Porous Media

porous. The test represents a simplified version of the case where a non-integer voxel from
a micro-CT scan is the result of an area with intrinsic porosity, as opposed to a definite
fluid/solid boundary. The computational domain to be considered is one which contains
two regions of differing porosity, and thus permeability. Two such computational domains
were used, one where these regions were aligned in parallel in the direction of flow, and
one where these regions were aligned in series in the direction of flow. A diagram of this
set up is included in Fig. 7.

Analytical expressions exist by which the effective permeability can be calculated if
the permeability of the individual regions is known.14 Analytical expressions for effective
permeability of such simple media can be derived for both the medium in series and in
parallel. If hj is the width or height of a permeability region, and kj is the corresponding
permeability of this region, then the effective permeability of the region may be found as,

Series: keff =

∑
n

j=1 hj∑n

j=1
hj

kj

(22)

Parallel: keff =

∑n

j=1 hjkj∑n

j=1 hj

(23)

For this test the models were set up so that a pressure drop is applied between the
inlet and outlet the domain using the Zhou/He pressure boundary condition as with
the other test cases. The resultant flowrate is measured and the permeability is again
calculated using Darcy’s equation (1). The models in series and in parallel were tested
against increasing permeability difference between the two regions, where the maximum
permeability difference is the case when region one has a porosity of 0.05 and region two
has a porosity of 0.95. The results of this test are shown in figures 8 and 9 for the medium
in series and in parallel respectively.

The results for the heterogeneous porous medium in series show excellent agreement
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Figure 9: Results for Simple Heterogeneous Porous Media Model Aligned in Parallel
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between the numerical and analytical effective permeability, with an almost constant error
of ≈ 1%. The results for the heterogeneous porous medium in parallel are almost as good
as for the medium in series, where the error for the smallest permeability difference being
≈ 1% and the error for the largest permeability difference being ≈ 5%.

5 CONCLUSION

The goal of this study was to test the PBB boundary condition and assess its ability
to deal with the type of geometry that would be gained from a micro-CT scan of porous
rock. To this end the relationship between lattice node porosity and permeability was
explored and reported. The PBB condition was then used to evaluate two test cases;
flow past a periodic array of cylinders, and simple heterogeneous porous media. It was
found that the PBB boundary condition is capable of considering boundaries which do
not conform to the computational grid more accurately than if the standard bounce back
boundary condition is used to represent these boundaries. In addition to this it was
also shown in this test that Holdych’s expression for Ωs is indeed more accurate than
Noble & Torczynski’s original expression. It has also been shown that the PBB boundary
condition is able to accurately predict the effective permeability of simple heterogeneous
porous media with a maximum error of 5%. These facts lead us to the conclusion that the
PBB boundary condition is a suitable choice for modelling the flow through a voxelised
representation of the internal micro structure of a rock, while maintaining the definition of
the geometry as determined by a micro-CT scan. Further work will explore the presented
test cases in 3D, and ultimately lead to computational analysis of real rock geometries.
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