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Abstract

This work presents a Fluid-Structure Interaction framework for the robust and
efficient simulation of strongly coupled problems involving arbitrary large dis-
placements and rotations. We focus on the application of the proposed tool
to lightweight membrane-like structures. Nonetheless, all the techniques we
present in this work can be applied to both volumetric and volumeless bod-
ies. To achieve this, we rely on the use of embedded mesh methods in the
fluid solver to conveniently handle the extremely large deflections and eventual
topology changes of the structure. The coupling between the embedded fluid
and mechanical solvers is based on an interface residual black-box strategy. We
validate our proposal by solving reference benchmarking examples that con-
sider both volumetric and volumeless geometries. Whenever it is possible, we
also compare the embedded solution with the one obtained with our reference
body fitted solver. Finally we present a real-life application of the presented
embedded Fluid-Structure Interaction solver.

Keywords: Fluid-Structure Interaction, Embedded Boundary Methods, Level
set methods, Coupled problems, Black-box coupling, Volumeless bodies

1. Introduction

1.1. The Fluid-Structure Interaction problem. Numerical approaches.

The understanding of the interaction mechanisms that occur between a mov-
ing body and a surrounding (or passing through) fluid was one of the most rel-
evant engineering challenges of the past century. Initially, the interest in this
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phenomenon, which is widely known as Fluid-Structure Interaction (FSI), was
limited to the comprehension and quantification of the dynamic effects arising
from the interaction with unsteady fluid flows. Some practical examples are the
aeroelastic phenomena (e.g. fluttering) occurring in slender structures such as
aerofoils or bridge decks [1], the performance analysis of wind mill blades [2] or
the water hammer in fluid ducts.

There also exist lots of natural phenomena, which include some of the human
body processes, that involve FSI mechanisms. Specially in recent decades, this
has motivated the appearance of new research lines that aim at understanding
the mechanics behind them. Some examples are the flapping of insects wings [3],
the hydrodynamics of fish fins [3] or the motion of jellyfish [4]. In the biomedical
field, we can find some successful applications in [5], [6], [7] and [8], which study
the blood flow in human vessels. Similarly, FSI numerical methods are applied
in [9], [10] and [11] to study the movement of the hearth valves or, more recently,
in [12] to study the human cell motion.

The main feature common to all FSI problems is the mutual dependency
between the Computational Fluid Dynamics (CFD) and the Computational
Solid Mechanics (CSM) problems. Such dependency comes from the fact that
the structure is deformable under the action of the fluid load. At the same time,
the structure deformation implies a modification in the fluid problem geometry.
This turns into a change in the load distribution over the structure, meaning
that the fluid and the mechanical problem are somehow linked. This makes the
FSI to belong to the so called coupled family of problems.

In this context, the tracking of the wet (or coupling) interface between the
fluid and structure domains becomes crucial for the proper resolution of the FSI
problem. Based on the movement of such coupling interface, we can roughly
divide the FSI problems in two main groups.

On the one hand, it may happen that there is barely interaction between
the fluid and the solid domains (e.g. massive civil engineering structures). In
these cases, which are denoted as one-way coupled FSI problems, it is commonly
assumed that there is no interaction on the wet interface. This greatly simplifies
the problem as the coupling becomes in a simple load mapping from the fluid
to the structure.

At the other extreme, we find the strongly coupled FSI problems, whose solu-
tion involves a high dependency between the fluid and the structure subdomain
problems. This implies the need of taking into account arbitrary, and possibly
large, movement of the wet interface.

This is not a problem in the solid domain as it is generally solved in a La-
grangian frame of reference. On the contrary, standard Eulerian fluid techniques
are no longer valid as they cannot consider the movement of the coupling in-
terface. Traditionally, this has been achieved either by upgrading the Eulerian
frame of reference to the Arbitrary Lagrangian Eulerian (ALE) one [13][14] or
by using non-conforming approaches such as the Immersed Boundary Method
(IBM) [15].

The ALE methods are based on modifying the Eulerian advection velocity
such that the solution is still consistent despite the movement of the Eulerian
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mesh. As the movement of the background mesh is only known in the coupling
interface and domain boundaries, it is required to solve an extra mesh motion
problem to spread it into the domain. The most common approach to achieve
this is the Laplacian smoothing [16]. Alternatively, one can solve a structural
similarity problem [17], which is known to be slightly more robust, specially
when moderate rotations appear.

Disregarding the extra mesh motion problem overhead, the main disadvan-
tage of ALE methods is that they are prone to yield excessively distorted, or even
inverted, elements when large displacements or rotations occur in the bound-
aries. As a consequence, remeshing is often needed to tackle these undesired
situations.

Another option to deal with moving interfaces, is to adopt purely Lagrangian
approaches such as the Particle Finite Element Method (PFEM) [18][19][20].
While the use of a Lagrangian framework provides obvious advantages in fol-
lowing the internal interfaces, such methods imply remeshing at every time step.

Chimera type methods are also a feasible alternative for the problems at
hand. These are based on representing the analysed bodies with a set of in-
dependent body conforming mesh patches, that can freely move over the back-
ground fluid domain. Thanks to this feature the rigid body movements can
be easily treated. However, the method might still suffer from local elemental
degeneration due to the deformation of the patch meshes.

All the methods that we have presented so far are based on body conforming
(also known as body fitted) discretizations. This means that the mesh bound-
aries match, as closely as possible, the ones of the analysed bodies. Even though
this is the most straightforward representation of the geometry, which typically
leads to a simplification in the Boundary Conditions (BCs) imposition, it comes
at the price of requiring a mesh updating technique (mesh motion or remeshing).

1.2. Embedded mesh methods in Fluid-Structure Interaction problems

1.2.1. Embedded computational fluid dynamics

The need to overcome some of the limitations of body fitted approaches has
led to the development of a wide variety of non-conforming mesh methods. Some
of these are the IBM [15][21], the Embedded Boundary Method (EBM) (also
known as Cut-FEM) [22] and the Shifted Boundary Method (SBM) [23][24].

All these techniques feature a volume mesh discretization, denoted as volume
or background mesh, that is completely independent of the analysed bodies.
As the interaction boundaries are no longer represented by the mesh, these
techniques require doing some extra operations to implicitly represent the FSI
boundaries in the background mesh.

Although this introduces another difficulty to the problem, the implicit rep-
resentation becomes in an advantage when mesh updating issues are experienced
since it allows substituting the mesh deformation problem by an update of the
objects representation.

We highlight [25] as the pioneering work that applied non-conforming mesh
methods to the resolution of an FSI problem. To consider the effect that the
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immersed body has in the fluid, the authors apply an artificial body force.
This same approach is successfully applied also in [15] and [26]. However, it is
reported to lack accuracy and (or) stability in other applications.

As an alternative, approaches based on the level set method can be used
[27]. These implicitly represent the analysed geometries by using a signed dis-
tance function, which is computed by an auxiliary algorithm. Although all
these algorithms are built on top of the skin and background mesh intersections
calculation, we can classify them into two main families.

On the one hand, there are the algorithms that deal with the concept of
inside/outside by using computer graphics techniques such as the ray-casting.
These are the most extended level set methods as they always return a smooth
continuous level set function (Fig. 1). Their main drawback is that they can
only be applied to volumetric bodies. This is a direct consequence of the fact
that the distance is computed node-by-node.

Figure 1: Continuous distance function. Body with a well defined internal volume (left) and
its continuous distance representation (right). Green and red markers denote the positive and
negative distance nodes. The dashed lines represent the zero isosurface ´skin representation
(source [28]).

On the other hand, we have the discontinuous level set algorithms [29]. As
it can be observed in Fig. 2, in this case the level set is not computed node-
by-node but element-by-element. This is the key aspect that makes possible to
represent not only volumetric bodies, but also membrane-like bodies with no
internal volume [30][28]. Nonetheless, this feature comes at the price of having
a potentially discontinuous level set, meaning that the same node may have
different distance signs and values depending on the element considered.

Among all the level set based non-conforming mesh methods, the IBM is
possibly the most straightforward approach to deal with the problems at hand.
In short, the IBM consists in using the first layer of nodes laying inside the anal-
ysed bodies to impose the fluid essential BCs [31]. This means that the BCs
are not imposed on the wet interface but on its closest dry nodes, something
that makes the method prone to suffering from mass conservation issues. Nev-
ertheless, it is possible to find different flavours of the IBM that are successfully
applied to solve challenging FSI problems [32][33][34].

In this context, the SBM [23][24] arises as a novel alternative that aims to
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Figure 2: Discontinuous distance function. Body without internal volume (left) and its dis-
continuous distance representation (right). Red and green portions of the cut elements in-
dicate the positive and negative discontinuous distance regions. Light green denotes the
non-intersected elements (source [28]).

overcome the potential mass conservation issues of the IBM. This is achieved
by computing a modified boundary value that takes into account the distance
between the level set and the dry nodes where the BCs are imposed.

Both the IBM and the SBM rely on the internal (dry) nodes to impose the
fluid BCs. This precludes the analysis of thin-walled (volumeless) structures as
the inside/outside concept becomes meaningless in this case.

In this regard, the eXtended Finite Element Method (X-FEM) appears a
feasible alternative to the previous methods. As the boundary condition is im-
posed over the level set zero isosurface, the X-FEM can be applied to both CFD
[35] and FSI [36][37] problems involving not only volumetric structures but also
thin-walled ones. The most representative feature of the X-FEM is that the FE
space is enriched in the elements intersected by the embedded skin. Such en-
hanced FE space makes possible the representation of the velocity and pressure
discontinuities arising after the immersion of the analysed bodies. However,
this comes at the cost of introducing extra Degrees Of Freedom (DOFs) that
correspond to the enrichment unknowns.

The extra DOFs computational overhead becomes crucial when the problem
involves moving boundaries as the system matrix graph needs to be recon-
structed each time the level set is updated. Besides this, the extension of the
method to distributed memory environments could be a challenge due to the
presence of blending elements, which might lay in a different partition that the
one of the intersected element.

The EBM is another feasible alternative to deal with the problems at hand.
Like the X-FEM, the EBM also relies on applying the BCs over the Solid-
Fluid interface cuts. Such BCs imposition is, however, done in a weak sense
by using techniques such as the penalty method, the Nitsche method [38] or
Lagrange multipliers based methods [39]. Despite the weak BCs imposition
may introduce some stability issues, the EBM is purely local, avoiding thus the
previously commented computational drawbacks of the X-FEM.

Among all the weak BCs imposition techniques we prefer the Nitsche-based
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approaches, as they are known to be more stable than penalty based ones.
Moreover, they avoid the inf-sup stability issues and the DOFs set modification
(and matrix graph reconstruction) of Lagrange multiplier methods.

It is possible to find in the literature multiple Nitsche based approaches to en-
force the no-slip (stick) condition over the embedded fluid interface [40][41][42].
We highlight the approach presented in [40] due to its simplicity and perfor-
mance. Concerning the slip condition, the Nitsche method is also used in [43]
and [44], which we also highlight because of its stability and wide application
range. However, all these techniques can only be applied to bodies that have a
well defined internal volume.

In [3] this limitation is overcome by using a ghost cell method that relies
on the neighbouring elements to enforce the embedded BCs. In [28] a purely
elemental alternative is presented. This approach is based on the substitution
of the common FE space within the intersected elements by a discontinuous one
proposed in [45].1 This makes possible to represent the velocity and pressure
discontinuities arising from the immersion of any body, regardless of its type
(volumetric or volumeless). This formulation is enhanced in [46] by using a
Nitsche method to impose a Navier-slip condition, allowing thus the represen-
tation of any wall behaviour from the no-slip to the slip limits.

1.2.2. Embedded mesh methods and moving bodies

As commented before, one motivation for the use of non-conforming mesh
methods in the context of FSI is that they can efficiently handle arbitrary large
movements and rotations. This enhanced robustness, however, comes at the
price of some particularities that require to be taken care of.

The first one is the small cut instability which manifests when the level set
function cuts an element so that there is a very small intersection. Although
this issue also happens when solving steady objects CFD problems, its frequency
may be even higher when the analysed bodies move across the background mesh.
Therefore, it is required to use an auxiliary strategy to ensure the convergence
of the problem. Some approaches, such as the ghost penalty method [22] or
the ghost cell method [47], prevent the small cut ill-conditioning by using the
neighbouring nodes or elements to control the solution.

Although the stability of this family of methods is proven, to the best of our
knowledge no purely local approach exists that does not require the neighbouring
elements calculation. Taking this into account, our proposal to avoid the small
cut instabilities is to use a level set quality check and correction algorithm [28].
The robustness of this approach is evinced in [28], where the distance check
and correction algorithm is applied in the resolution of CFD problems involving
potentially ill-conditioned distance functions.

The second particularity is the historical data initialization problem. This
issue appears when the values required for the temporal derivatives approxima-

1From now on we will denote this modified discontinuous FE space as Ausas FE space
after the name of the original author.
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tion are not consistently initialized in those nodes that move from one side to
the other of the level set (Fig. 3). As reported in [28], this leads to an unphys-
ical velocity field in the surroundings of the moving body as the approximation
of the inertial terms is not consistent with the updated level set position. We
remark that no distinction is done between continuous and discontinuous dis-
tance functions, as the historical values need to be consistently updated in both
cases.

Figure 3: Embedded nodal initialization example. The node highlighted in green changes its
position from one side to the other of the level set (red dashed line), which moves as indicated
by the black arrow. This requires to re-initialize the historical values in the green node to
consistently approximate the time derivatives.

For the consistent historical data initialization we rely on the Fixed Mesh
- Arbitrary Lagrangian Eulerian (FM-ALE) method. The FM-ALE method is
described and applied to moving boundaries embedded CFD problems in [48].
This is extended in [49], where it is similarly applied to solid mechanics and FSI
problems.

The main idea behind the FM-ALE method is to retrieve the consistent
historical values from an auxiliary mesh, which is denoted as virtual mesh by the
original authors. Such virtual mesh, is initially set as a copy of the background
one. Then it is deformed by solving a mesh moving problem to follow the
motion of the level set. After doing this, the historical values, as well as the
mesh velocity, are projected back from the virtual mesh to the background origin
one where the embedded CFD problem is solved. Finally, the virtual mesh is
reset to its original configuration.

We note that the FM-ALE mesh motion problem likely involves small dis-
placements and rotations as the virtual mesh movement is not accumulated but
restarted at each time the FM-ALE algorithm is applied. As a consequence,
the common problems associated with body conforming ALE solvers (element
distortion or inversion) rarely appear when using the FM-ALE method. This
is also confirmed in [48], [49] and [50] where the FM-ALE method is applied to
problems that involve large displacements and rotations of the immersed bodies.
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1.3. Algorithms for Fluid-Structure Interaction

1.3.1. Coupling schemes: FSI transmission conditions

The resolution of any coupled problem requires satisfying the so called inter-
face transmission conditions. In the FSI case, this implies complying with the
interface force equilibrium and continuity. In order to achieve this, a coupling
scheme is required.

Coupling schemes can be classified according to how the transmission condi-
tions are enforced in: Dirichlet-Neumann (DN), Neumann-Neumann (NN) and
the Robin type ones such as the Robin-Robin (RR) or the Neumann-Robin
(NR). In this work we opt for a DN coupling scheme due to its proved per-
formance and stability. Besides, its implementation is reasonably simple and
does not require to modify the subdomain formulations, enabling thus the use
of non-intrusive coupling algorithms.

Hence, a Dirichlet BC is enforced over the coupling interface of one subdo-
main. This is commonly the lower density one, which in the FSI case is most
likely the fluid medium. Accordingly, the fluid load is applied as a Neumann BC
over the structure interface. The stability and performance of the DN scheme, as
well as its interaction with different time discretization schemes, are thoroughly
studied in [51].

Nevertheless, we note that DN schemes may lack convergence or have sta-
bility issues in some particular applications. In this context, NN and Robin
type schemes can be an effective choice to overcome these limitations. As these
applications are out of the scope of this work, we refer the reader to [52] and [53]
(RR) as well as to [54] and [55] (NR) for a detailed analysis of these alternative
coupling schemes.

1.3.2. Coupling strategy: monolithic and partitioned coupling

After defining the transmission conditions that ensure the coupling between
the subdomain solutions, it is required to define a coupling strategy to solve the
problem. These can be divided in two main families: monolithic and partitioned
(also known as staggered) strategies.

Monolithic strategies are considered to be the more robust option to solve
a coupled problem. They consist in solving all the subdomain problems within
a unique coupled system of equations. This approach is successfully applied to
FSI problems in [19] and [56]. More related to our case, in [49] the authors use
an embedded monolithic formulation to solve both the fluid and the structure
domains.

Despite its better coupling stability, monolithic strategies tend to yield poorly
conditioned system matrices that eventually preclude the use of iterative solvers.
Moreover their implementation is intrusive and typically requires the develop-
ment of a new specific solver for the coupling.

On the contrary, partitioned approaches keep a separated solver for each one
of the subdomains. This enables the reuse of already existent robust and widely
validated subdomain solvers, thus allowing to focus the implementation effort
on the coupling algorithm. However, this advantage comes at the price of a
convergence rate that is typically not as good as that of monolithic alternatives.
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Another feature of partitioned strategies is that the fulfilment of the trans-
mission conditions is ensured by exchanging information at the coupling inter-
faces. Depending on how many times per time step such information exchange
occurs, we can further classify these in loosely-coupled (or explicit) and strongly-
coupled partitioned strategies.

In loosely-coupled staggered approaches the information exchange occurs
once per time step [57]. Although these is the cheapest approach in terms
of computational and implementation effort, they only converge when there is
limited interaction between the coupled subdomains. Besides, they are known
to suffer a lot from the so called added mass effect instability that appears when
solving FSI problems involving incompressible fluids [58][59].

Conversely, in strongly-coupled staggered approaches the information ex-
change occurs until a certain coupling convergence criterion is reached. Even
though the convergence rate is not optimal, implicit staggered approaches can be
used in combination with convergence acceleration algorithms to alleviate this
when dealing with strongly coupled problems. Concerning the computational
effort, as pointed in [60] it is difficult to do a fair comparison with monolithic
approaches because this is completely problem dependent.

Besides, according to how the information is exchanged we can further clas-
sify implicit strategies in Jacobi and Gauss-Seidel type iterations. In Jacobi
type strategies all the information exchanges occur at the same time, allowing
thus the parallel resolution of the subdomain problems. Contrariwise, Gauss-
Seidel type strategies solve the subdomain problems in a sequential manner.
This means that the latest obtained data from one subdomain is used within
the same iteration to solve the next one, as opposite to Jacobi type iterations,
which will use the latest information in the next iteration.

Furthermore, there also exist alternative semi-implicit strategies. To this
regard, we refer the reader to [55] where a comparative study of multiple alter-
natives to traditional coupling strategies can be found.

After having reviewed all the possible coupling strategies, we opt to use
a Gauss-Seidel strongly-coupled staggered strategy. Disregarding monolithic
approaches, this is the most robust technique that allows to reuse our existent
CSM and embedded CFD solvers. At the same time, it brings up the concepts
of black-box coupling [61][62]. Hence, we also require our coupling algorithm to
not interfere with the subdomain solvers more than to get and set information,
implying that these are considered as black boxes that return a solution for the
provided input data.

Finally, we would like to highlight that the use of black-box coupling tech-
niques not only enables the use of already existent in house codes but also
external, even commercial, ones. This new wave of flexible coupling is denoted
by the community as co-simulation [63].

1.3.3. Black-box interface residual minimization techniques

The selection of a Gauss-Seidel strongly-coupled strategy requires the def-
inition of an interface residual function to be minimized. By doing this, it is
ensured that the coupling transmission conditions are fulfilled. Since the choice
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of such residual is completely problem dependent, in this subsection we assume
that it is already defined. We recover this in the methodology chapter 3 in where
we discuss the particularities of the embedded FSI interface residual calculation.

As we are in favour of black-box coupling techniques, we require our residual
minimization technique to have restricted access to the subdomain solvers.

The most straightforward approach is a fixed-point iteration with relaxation.
Despite convergence can be reached using a constant relaxation parameter, the
computational cost is normally prohibitive. In this context, dynamic relaxation
schemes appear as a rather simple but effective alternative to reduce the number
of coupling iterations. Among all of them, we highlight the second order Aitken
relaxation scheme, which is widely used in the FSI community [64][65]. Although
the Aiken relaxation scheme has an astonishing performance compared to its
implementation effort, the required iterations are still far from being optimal.

A more efficient alternative is to pose the interface residual problem as a
non-linear Newton-Raphson (N-R) iterative procedure, leading to the so called
Jacobian-based resolution schemes. However, the use of a black-box coupling
scheme intentionally precludes the exact calculation of the interface Jacobian
that minimizes the problem. Nonetheless, this can be avoided by using Jacobian-
free Newton-Krylov (JFNK)[66] or Quasi-Newton (QN) methods [62].

An application of JFNK methods in the FSI context can be found in [67].
Rather than approximating the complete interface Jacobian, JFNK methods
are based on approximating its projection onto the iteration update vector by
using a finite differences formula. Due to the inherent non-linearity of the FSI
problem, such projection needs to be linearized by introducing a small pertur-
bation in the finite differences formula. Although there exist in the literature
some formulas to compute the value of such small perturbation [68], its optimal
value is completely problem dependent.

The selection of such perturbation constant can be bypassed by using a QN
algorithm. In short, the idea behind any QN algorithm is to use the information
from previous iterations to calculate an approximation of the interface Jacobian
by using a linearized formula. Depending on how such formula is obtained, we
end up with one or another QN method. In the following we highlight those
ones that have been successfully applied to solve FSI problems.

Although nowadays it is not the most popular method, we acknowledge
Broyden’s iteration as the pioneer QN algorithm applied to FSI problems [68].
A more recent approach is the Interface Quasi-Newton with Inverse Jacobian
from Least Squares model (IQN-ILS) proposed by Degroote et. al. in [60]. The
IQN-ILS is further studied in [69], where the authors do a thorough performance
analysis of the method, showing that the IQN-ILS performance overcomes the
Aitken and JFNK ones in all the reported examples. A fairly similar approach
to the IQN-ILS is the MultiVector Quasi-Newton (MVQN) algorithm presented
by Bogaers et. al. in [62], which according to the original authors converges
slightly faster than the IQN-ILS. This comes however at the price of requiring to
compute a square matrix inversion, whose size equals the interface residual one,
each time the interface Jacobian needs to be approximated. Such limitation has
been not long ago surpassed in [70].
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In this work we decide to use a black-box coupling strategy based on QN
algorithms. Despite QN methods can be more computationally expensive than
JFNK approaches, as they involve a rather large number of linear algebra oper-
ations, they are proven to be a robust and efficient approach for the FSI residual
minimization. Among all the presented QN algorithms, we select the MVQN
method as reference convergence accelerator due to its reported well perfor-
mance. Besides this, we do not foresee that its matrix inversion becomes in a
limitation for the problems we aim to solve in this work.

1.4. Objectives

The main target of this work is to build a robust and efficient FSI framework
able to solve strongly coupled problems involving structures that undergo large
displacements and rotations, with possible topology changes. Taking these re-
quirements into account, we build an implicit black-box coupling strategy on
top of a non-conforming embedded CFD solver.

Besides this, we focus on having a unique framework that works with both
thin-walled (shells and membranes) and volumetric structures. This is achieved
by switching the level set type depending on the nature of the immersed bod-
ies (i.e. continuous for volumetric bodies and discontinuous for membrane-like
ones).

The paper is organized as follows. The 2nd section briefly describes the em-
bedded fluid and structure formulations. The 3rd section details the method-
ology we follow to achieve the FSI coupling of an embedded CFD solver with
a body conforming mechanical one. The 4th section presents our improvement
to the FM-ALE method. The 5th section collects the benchmarking of our
proposal. A real-life application is also presented in this section. Finally, the
conclusions and further work lines are collected in the last section.

All the methods presented in this work are implemented and available to use
within the Kratos Multiphysics open source framework [71] [72]. All the models
are generated, meshed and post-processed using the GiD pre and post-processor
[73][74].

2. Formulation

In this section we describe the formulations that are implemented in each
one of the subdomain solvers. We firstly describe the governing equations, sta-
bilization technique and BCs imposition of the embedded CFD solver. Secondly,
we briefly present the element technologies we use in the structural solver.

2.1. Fluid domain

2.1.1. Governing equations

In this work we only consider viscous incompressible Newtonian fluids. There-
fore, the Cauchy stress tensor σ is defined as σ = −pI + C : ∇sv, where v is
the fluid velocity, p the fluid pressure, ∇s the symmetric gradient operator
and C the Newtonian constitutive tensor that describes the viscous behaviour.
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Inserting the previous definition of σ into the linear momentum equilibrium
equation and combining the resulting equation with the incompressible (diver-
gence free) mass balance equation yields the well-known viscous incompressible
Navier-Stokes (N-S) equations.

Even though this form of the N-S equations is extensively used to solve
almost incompressible flows, we opt to introduce a slight compressibility in
the mass conservation equation. This is done to avoid the pressure field to
be undefined when isolated fluid domains (i.e. bubbles) appear in the level set
function. We note that this undesired situation could be immediately dealt with
by imposing a Neumann BC inside the isolated fluid cavities. However, it is not
always possible to “a priori” known their location, as they likely appear after
the level set calculation, either because it is computed from a poorly defined
input geometry or due to the deformation of the immersed geometry. In this
context, the extra pseudo-compressibility becomes in a numerical tool to ensure
that the pressure field remains always bounded.

Hence, we assume that the density ρ can be related to the pressure by the
simplified speed of sound c equation of state p = ρc2 =⇒ c2 = ∂p/∂ρ, which is
valid for almost incompressible fluids. By further considering that the density
fluctuations are negligible, meaning that ∇ρ ≈ 0, we obtain the final form of
the pseudo-compressible N-S equations used in this work

ρ
∂v

∂t
+ ρa ·∇v −∇ · (C : ∇sv) + ∇p = ρb (1a)

1

ρc2
∂p

∂t
+ ∇ · v = 0 (1b)

where ∂ • /∂t and ∇ denote the partial time derivative and gradient operators,
b the volume (body) forces and a the convective velocity, which in an ALE
framework equals v−vm being vm the mesh velocity. In fixed mesh approaches,
like the one presented used this work, it is commonly assumed that a = v.
However, we highlight that it is essential to keep a 6= v for the future application
of the FM-ALE algorithm.

We also note that the single-fluid fully-incompressible form ∇ · u = 0 is
recovered as c → ∞. Taking this into account, the speed of sound is taken
as 1012m/s, so that the compressibility is effectively negligible. Nonetheless,
the option to employ a different value is left for those cases in which isolated
volumes of fluid may appear.

We refer the reader to [28] for a detailed description of the variational form
derivation and implementation of the governing equations.

2.1.2. Stabilization

In this work we only use simplicial elements with same velocity and pressure
interpolation order. These elements do to not satisfy the inf-sup condition,
requiring thus the use of a stabilization method [75]. Among all the techniques
that have been proven to be effective in similar CFD problems (e.g. the Finite
Increment Calculus [76] or the Galerkin Least Squares (GLS) [77]) we select the
Variational Multiscales Method (VMS) [78][79].
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The VMS relies on separating the solution fields v and p in two scales as
v = vh+vs and p = ph+ps. vh and ph are the FE resolvable scales while vs and
ps are the subscales representing the fluctuations that cannot be captured by
the FE mesh and thus need to be modelled. The subscale models are commonly
built as a projection of the FE residuals. In our case we apply the most simplest
approach, which is to use an identity projection operator, leading to the well-
known Algebraic Sub-Grid Scales (ASGS) approach [80].

Hence, the ASGS velocity (us) and pressure (ps) subscales are computed
from the FE velocity and pressure solutions as

us = τ1R
M(uh, ph) (2a)

ps = τ2R
C(uh, ph) (2b)

where τ1 and τ2 are the stabilization constants, that we take from [80], and RM

and RC are the residuals of the momentum and mass conservation equations,
which can be found in [28].

2.1.3. Embedded boundary condition imposition

This subsection presents the two embedded methods that we employ to
weakly impose the fluid BCs over the level set intersections. On the one hand,
we use the modified Nitsche method presented in [40] for those bodies that have
a well defined internal volume, On the other hand, we use the discontinuous for-
mulation described in [46] for the membrane-like bodies that feature no internal
volume. In the following, we briefly describe the particularities of each one of
these approaches.

Volumetric bodies: Modified Nitsche method no-slip imposition. The modified
Nitsche method proposed by Codina and Baiges requires to firstly identify the
set of nodes that are in the interior side of the level set, which is to say, the ones
that have a negative distance value. Then, the N-S momentum contribution is
substituted in these by an L2 minimization of the velocity constraint error. We
refer the reader to [40] for the implementation details and convergence analysis
of the method.

We highlight that, despite its simplicity, the method features a remarkably
good performance. We also observe that the stability of the method is only
compromised when elements with a small portion of fluid appear. This is due
to the fact that the interior nodes that enforce the velocity constraint are in
this case far from the embedded skin. Therefore, their shape function values
are close to zero in the level set intersection, inducing thus the appearance of
spurious peak values. As we mention in the introduction of the paper, we tackle
these issues with our level set quality check and correction algorithm.

Volumeless bodies: Ausas FE space and Nitsche Navier-slip imposition. Follow-
ing the ideas presented in [28], we propose to use the Ausas discontinuous FE
space (Fig. 5) to represent the elemental velocity and pressure jumps arising
from the immersion of a thin-walled body. This capability comes however at
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the price of featuring worse interpolation properties than the standard linear
FE space as only piecewise constant functions can be exactly represented.

Figure 4: Partition of a triangular finite element ABC into subelements following the interface
PQ (source [45]).

(a) NA (b) NB (c) NC

Figure 5: Triangle shape functions for the Ausas finite element space and the splitting pattern
in 4 (source [45]).

On top of that, we also follow the ideas presented in [44] to do a Nitsche-
based imposition of the Navier-slip condition over the discontinuous level set
intersections.

The Navier-slip condition can be understood as a wall law whose behaviour
is regulated by the so called slip length parameter ε. Hence, it approaches the
no-slip limit as ε → 0. Contrariwise, it tends to the slip limit as ε → ∞.
Having said this, it is important to remark the capability of the Nitsche method
presented [44] to deal with both the slip and the no slip limits without losing
its stability.

From a numerical perspective, the Navier-slip condition is indeed a no pene-
tration condition in the normal direction combined with a shear force imposition
in the tangential one. This allows to split and express these two contributions
as

Pn (v − g) = 0 (3a)

Pt (ε ([C : (∇∇∇sv)] · n− h) + µ (v − g)) = 0 (3b)

where g and h denote the velocity and the tangential traction to be imposed
over the level set intersection. Pn and Pt denote the normal and tangential
projection operators, which are computed from the unit normal n as Pn = n⊗n
and Pt = I− n⊗ n, being I the second order identity tensor.
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We note that in the Nitsche imposition of Eq. 3 needs to be applied in both
sides of the level set intersections after the ability of the Ausas FE space to
disconnect the solutions in each element subdivisions.

More details on the implementation, convergence and accuracy analysis of
the discontinuous Nitsche Navier-slip imposition can be found in [46]. This
approach is also validated with data from biomedical in vitro experiments in
[8].

2.2. Structure domain

Bearing in mind that our goal is to solve FSI problems that involve large dis-
placements and (or) rotations, we only consider non-linear finite displacements
formulations.

Therefore, volumetric bodies are discretized by using Total Lagrangian linear
quadrilateral elements. With regard to Total Lagrangian solid FE, we refer the
reader to [81].

Regarding the thin-walled structures, shells are modelled by an enhanced
Discrete Kirchhoff Triangular (DKT) based element. This formulation is devel-
oped in [82] by combining the DKT plate bending element with the OPtimal
Triangle (OPT) membrane element, yielding the so called DKT-OPT element.
Such element implements a corotational non-linear formulation capable to effi-
ciently deal with small strain large displacement and rotation problems.

As the benchmarking experiments we reproduce do not require advanced
constitutive laws, we can assume throughout the paper that the material re-
sponse always lays in the elastic regime. Thus, we use the neo-Hookean and
Kirchhoff-Saint-Venant material models, which are compatible with the chosen
finite displacements formulations.

3. Embedded Fluid-Structure Interaction coupling

In his section we detail the particularities of the embedded FSI coupling.
First of all, the embedded DN interface residual is defined together with the non-
linear strategy we implement for its minimization. Then, we briefly describe the
implementation of such strategy, which is conceived to ease the integration in
an existent FSI solver. From now on, we denote the fluid and structure domains
as Ωf and Ωs while their corresponding FSI interfaces are denoted as Γf and
Γs. Similarly, k superscripts stand for the FSI non-linear iterations counter.

3.1. Dirichlet-Neumann interface residual minimization

Prior to the definition of any interface residual, we recall that the use of an
embedded CFD solver entails that Γf is implicitly represented by the level set
function. As a consequence, the FSI interface residual can only be defined in
terms of the structure interface Γs.

In this context, the FSI interface residual vector rk+1
Γs

to be minimized can

be computed from the current and previous iteration displacement results ũk+1
Γs

and uk
Γs

as

rk+1
Γs

= ũk+1
Γs
− uk

Γs
(4)
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Here the vector ũk+1
Γs

is the unrelaxed displacement solution obtained after ap-

plying the iteration k+1 fluid load. Conversely, uk+1
Γs

is the relaxed displacement

obtained after the addition of the solution update ∆uΓs
k+1 as

uk+1
Γs

= uk
Γs

+ ∆uΓs

k+1 (5)

According to our black-box FSI coupling choice, we require the interface
residual (Eq. 4) minimization to be done with a non-intrusive method (e.g.
relaxation, JFNK or Quasi-Newton). To that purpose we opt for the MVQN
method [62], which allows to obtain the correction ∆uΓs

k+1 from the current
iteration interface residual rk+1

Γs
and the previous iteration solution uk

Γs
.

At this point it is important to recall that we tackle the non-linearity of the
FSI problem by using a staggered iterative strategy. Hence, we also define an
absolute convergence criterion to stop the subdomain iteration when the next
residual norm condition is met ∥∥rk+1

Γs

∥∥
√
nΓs

< tolFSI (6)

where nΓs denotes the number of interface unknowns, whose value equals the
structure interface residual rΓs size.

All these ingredients are combined in Algorithm 1, which describes the steps
of our embedded FSI iterative strategy. In this algorithm φf stands for the level

set function while the operators F, Pf→s, S and CA represent the fluid solver,
the interpolator from the fluid background mesh to the structure skin one, the
solid solver and the convergence accelerator. We note that all these operators
are considered and implemented as independent objects that, from a given input
data, give back an output result.

With regard to the pressure interpolation Pf→s, we point out that the same
FE space used in the resolution of the CFD problem is employed. Hence, when
dealing with volumetric bodies we use the standard linear FE space. On the
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contrary, we use the Ausas FE space when volumeless bodies are analysed.

Algorithm 1: Embedded FSI partitioned strategy for DN scheme.

k = 0;
max it = n;
while k ≤ max it do

k += 1;

1) update level set: uk
Γs
−→ φk+1

f ;

2) do FM-ALE operations: FMALE(φk+1
f );

3) solve embedded fluid: F(φk+1
f ) −→ (vk+1

f , pk+1
f );

4) interpolate pressure to structure skin: Pf→s(pk+1
f ) −→ pk+1

Γs
;

5) solve structure: S(pk+1
Γs

) −→ ũk+1
s ;

6) compute residual in Γs: rk+1
Γs

= ũk+1
Γs
− uk

Γs
;

7) update solution in Γs: CA(rk+1
Γs

,uk
Γs

) −→ uk+1
Γs

;

if
‖rk+1

Γs
‖

√
nΓs

< tolFSI then

break;
end

end

3.2. Implementation: the FSI interface object

In this subsection we describe our Object Oriented (OO) implementation
proposal for Algorithm 1. Such implementation approach, which is schemati-
cally depicted in Fig. 6, is based on two basic requirements.

First of all, it is mandatory that each subdomain solver (Fluid Solver and
Structure Solver in Fig. 6) works as a stand-alone unit (class) to achieve an
effective OO implementation. Secondly, it is important that the communication
of the subdomain solvers with the rest of the code is done through the already
existent Application Programming Interface (API). The combination of these
two requests ensures that there is no need to modify the implementation of
neither the fluid nor the structure solvers for the specific purpose of coupling.

The design is completed by the introduction of a Coupling Interface ob-
ject (Fig. 6), which encapsulates the tools used in the coupling, such as, map-
ping, residual calculation and solution update.

Multiple options exist for the implementation of the Coupling Interface

object. Our choice is to duplicate it, so to make an independent instance in
each single domain interface. In other words, one interface object operates on
the Γ̄f interface mesh while the other does so on the Γ̄s one.

In a general case, either of these two coupling interface instances can be used
to perform the residual minimization and interface solution update. However,
in the embedded case the skin mesh corresponding to the Γ̄f interface object
needs to be created as an exact copy of the Γ̄s one. This choice is taken since
the Γf mesh only exists implicitly, as the zero isosurface of the level set function
φf .
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Figure 6: Coupling objects and methods schematic representation. The dashed lines represent
the fluid and solid solvers as well as the FSI coupling interface classes. The dotted lines
represent the information exchanges.

The DN coupling scheme described in Algorithm 1 can be implemented
according to these guidelines. In the following, we tag those operations that are
performed in the fluid coupling interface instance with CIf. Equivalently, we
mark those ones belonging to the structure interface with CIs. Hence, Algorithm
1 translates to

1. Ωf : compute the level set function φf from the Γ̄f interface mesh

2. Ωf : solve the embedded CFD problem.

3. CIf: interpolate the pressure from Ωf to Γ̄f .

4. CIf→CIs: transfer the pressure from Γ̄f to Γ̄s.

5. CIs: transfer the pressure load in Γ̄s to Γs.

6. Ωs: solve the mechanical problem.

7. CIs: get the obtained displacement ũ from Γs, calculate the interface
residual (Eq. 4) and call the convergence accelerator (owned by CIs) to
do the solution update ∆u (Eq. 5).

8. CIs→CIf: update the Γ̄f interface mesh accordingly to compute the next
iteration level set function if convergence is not reached.

We would like to conclude this section highlighting the potential of this
implementation. The crucial advantage of this approach is to make the FSI
implementation essentially the same for the body-fitted and embedded cases.
This can be efficiently achieved by simply overriding some of the auxiliary dot-
ted lines operations in Fig. 6. Furthermore, the Coupling Interface can be
used out of the box for coupled problems other than the FSI as its API allows
customizing the variables the data is retrieved from and sent to.

4. Lagrangian interface FM-ALE algorithm

In this section we target the embedded moving bodies historical data initial-
ization issue described in the introductory section. With that aim, we firstly
describe the main features of the FM-ALE algorithm proposed by Codina et.
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al. in [48]. Secondly, we present our proposal to compute the FM-ALE mesh
moving problem BCs from the motion of the embedded body.

As we have already mentioned, the purpose of the FM-ALE algorithm is
to perform a consistent advection of information in the vicinities of the em-
bedded bodies so that their historical values are consistently initialized as their
boundaries move across the background mesh.

To this end, a copy of the fixed background mesh M0 is created at the
beginning of the simulation. Such copy is the so called virtual mesh, which we
denote asMv. The idea of the method is to deformMv, by solving a standard
ALE mesh motion problem, to follow the embedded boundaries motion. Then,
the historical data, as well as the mesh velocity, are projected from the deformed
Mv to M0 where the CFD problem is to be solved. Hence, the FMALE call
in Algorithm 1 can be implemented as described in Algorithm 2. We refer the
reader to [48] for a detailed discussion about the implementation and validation
of the FM-ALE method.

Algorithm 2: FM-ALE algorithm.

if virt mesh == false then
create virtual mesh: Mv = CopyMesh(M0);
create mesh motion solver: M(Mv);
virt mesh = true;

end
1) mesh motion problem;

1.1) set mesh motion BCs: M(Mv).SetBCs();
1.2) solve mesh problem: M(Mv).Solve() ;
1.3) compute mesh velocity: M(Mv).ComputeMeshVel() −→ vm;

2) data interpolation from Mv to M0;
forall nodei ∈M0.Nodes() do

2.1) find nodei in Mv.Elements() −→ elemv;

2.2) interpolate vn
i , vn−1

i , vmi
, pni , pn−1

i within elemv;

end
3) revert Mv movement;

At this point, it is interesting to discuss which are most suitable BCs for
the mesh motion problem in the step 1.1 of Algorithm 2. Taking the body
fitted case as reference, it is required that the FSI interface has a Lagrangian
motion to ensure the mass conservation. This turns into enforcing uΓ

m = uΓ
s

and vΓ
m = vΓ

s . However, this cannot be imposed in a strong sense when using
an embedded discretization due to the implicit representation of Γs.

With this regard, we present a slight improvement to the FM-ALE algorithm
to approximatively fulfil such Lagrangian motion of the interface. The proposal
is based on modifying the step 1.1 in Algorithm 2 to impose a set of um nodal
values in the split elements such that their interpolation in the level set inter-
sections yield uΓ

s . This ensures that the mesh displacement field obtained after
the deformation of Mv (step 1.2 in Algorithm 2) matches the movement of Γs
in an approximate Lagrangian sense.
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In Fig. 7a we present a simple toy example to explain our proposal. In
this figure, the background mesh is represented with solid black lines while
the intersecting structure skin is represented with dashed red lines. To ease
the discussion we assume that the variable to extrapolate, which we denote as
aΓ, is scalar. Nonetheless, the same procedure can be identically applied to a
vector variable by extending what is explained in here to each one of the vector
components. We note that in the FM-ALE case, the variable of interest is the
structure displacement increment ∆us = un+1

s − un
s .

The proposed technique consists in solving an extrapolation problem on an
auxiliary mesh made up with the background mesh intersected edges. This
problem is implemented within the step 1.1 of the FM-ALE algorithm 2 by
adding the following sub-steps

1. find those elements that are intersected by the level set. For each inter-
sected element, isolate their intersected edges (Fig. 7b).

2. for each intersected edge eij , obtain the point xint (light green square
dots in Fig. 7b) in where the edge intersects the structure skin. Save the
distance de =

∥∥xint − x0
∥∥ /le, where x0 and le are the i-node coordinates

and length of eij .

3. interpolate and save the value of the variable of interest aΓ from the struc-
ture skin to the intersection points xint.

4. create one extrapolation line element from each intersected edge

5. solve the problem in the green light nodes auxiliary mesh (Fig. 7c).

After the resolution of the edge mesh extrapolation problem, we obtain a
set of nodal values aij whose interpolation in the level set intersections (light
green square dots in Fig. 7c) equals the aΓ values previously obtained from
the structure skin Γs. Besides the extrapolation contribution, we add an extra
term that penalizes the gradient of the solution values aij. This prevents the
appearance of spurious values in those situations in which the solution is not
unique (e.g. isolated edges).

Hence, for an intersected edge eij the problem takes the form

LHSijaij = RHSij (7)

where the left and right hand sides of the problem are defined as

LHSij =

(
NiNi NiNj
NjNi NjNj

)
+

(
κGκG −κGκG
−κGκG κGκG

)
(8)

and

RHSij =

(
Nia

Γ

Nja
Γ

)
(9)

Ni and Nj are computed from the edge intersection distance de as Ni = 1− de
and Nj = de while κG is the solution gradient penalty constant. According to
our experience, small values of κG (of the order of 10-3-10-4) are sufficient to
drive the problem towards a smooth solution.
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We would like to conclude this section saying that taking the extrapolation
problem values as mesh motion BCs guarantees that the movement is large
enough to properly initialize the historical values but sufficiently small to avoid
the common mesh motion problems (i.e. element distortion and inversion).
Last but not least, we also highlight that the extra computational effort of the
extrapolation problem is negligible compared to the mesh motion one as it is
exclusively solved in those nodes belonging to the intersected edges.

5. Validation

In this section we present the validation of the proposed embedded FSI
framework. We base the correctness assessment on the comparison with refer-
ence data available in the literature. Whenever it is possible, we also compare
the embedded solution with the ones obtained with our reference body fitted
FSI solver.

Bearing in mind that one of the main motivations for the use of an embedded
FSI solver is to get rid of the ALE mesh motion problems, we only consider ex-
amples that could be challenging from the mesh motion perspective. Therefore,
all the problems presented in this section involve structures that undergo large
displacements and (or) rotations.

Besides this, embedded mesh methods can be also exploited to efficiently
simulate membrane-like structures, allowing to circumvent all the meshing com-
plexities (i.e. interface entities duplication) associated to the volume meshing
of structures without internal volume. In this regard, we also present cases that
imply the analysis of thin-walled bodies.

Taking this into consideration, on the one hand we solve three examples in-
volving volumetric bodies. The first two are the well-known Mok and the Turek
& Hron benchmarks. The third one is proposed by us to prove the capabili-
ties of embedded mesh methods when dealing with arbitrary large rotations. It
consists in a two-dimensional mixer with flexible blades. On the other hand,
we also present two three-dimensional cases that involve thin-walled structures.
The first one is a simple lid-driven cavity problem with a flexible membrane in
the bottom. The second one is a potential industrial application of the presented
FSI framework that is the FSI analysis of a four-point tent built as a system of
beams and cables supporting a prestressed membrane.

5.1. 2D Mok benchmark

5.1.1. Problem description

The Mok benchmark was firstly presented in [65]. It consists in a convergent
channel with an internal flexible wall. The main challenge of the problem is
that the fluid and structure densities have a similar order of magnitude, leading
to a strongly coupled problem with large interaction between the two fields.

The geometry and boundary conditions are depicted in Fig. 8. As it can be
observed, the top edge is set as a slip boundary while the inferior one is no-slip.
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The pressure is imposed to zero in the right edge. A parabolic inlet defined as

vx(y, t) = 4v̄y(1− y) [m/s] (10)

is applied to the left edge. v̄ is a time dependent reference velocity such that

v̄ =

{
0.06067

2

(
1− cos πt10

)
if t ≤ 10

0.06067 otherwise
(11)

The fluid and structure material properties are collected in Table 1. We
highlight that the structural material response is modelled using a unit thickness
plane stress linear elastic constitutive law. The simulation runs from 0s to 25s
with a fixed time step of 0.1s. The FSI coupling tolerance is set to 10-8.

Table 1: 2D Mok benchmark. Material properties.

Structure Fluid

ρs 1.5e3 kg/m3 ρf 956.0 kg/m3

E 2.3e6 N/m2 µ 0.145 Pa · s

ν 0.45

As it is done in the original work by Mok [65], as well as in [83] by Valdés,
we take the structure control points A and B ux displacement evolution as
comparison magnitude. These two reference nodes are located at the top and
centre points of the windward edge of the wall (Fig. 8).

Some discrepancy can be observed with respect to the ux results reported in
[65] and [83]. As the mesh used in the current examples is however much finer
than the one employed in the two references, we decided to perform a preliminary
body-fitted mesh convergence study to obtain a comparable reference solution.
Therefore, we solve the Mok benchmark problem with three different body fitted
meshes: mesh 0, mesh 1 and mesh 2. Mesh 0 is generated as similar as possible
to the one described in [83]. Mesh 1 is created by halving the element sizes of
mesh 0. Similarly, mesh 2 is created by doing so with the element sizes of mesh
1.

Table 2 collects the number of structure and fluid elements (nΩs
el and n

Ωf
el )

employed in each case together with the maximum ux) obtained in both control
points A and B. Furthermore, Fig. 9 compares our ux results with the ones in
[65] and [83]. We observe that the solution converges to larger values, specially
when the peak displacement occurs, than the ones reported in [65] and [83].

Accordingly, from now on we consider as reference solution the one obtained
with our body fitted solver and the finest mesh discretization level (mesh 2).

With these results in mind, and for the sake of a fair comparison, we set our
embedded mesh as similar as possible to the finest body fitted one (mesh 2).
Hence, the background fluid mesh (Fig. 10) is formed by 82k linear triangular
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Table 2: 2D Mok benchmark. Body fitted convergence study.

Mok [65] Valdes [83]
Body fitted

Mesh 0 Mesh 1 Mesh 2

nΩs
el 6 (quadratic) 6 (quadratic) 0.4k 1.6k 6.4k

n
Ωf
el 1.9k 6k 6.6k 18.8k 65.5k

max(uAx ) [cm] 7.789 8.190 8.363 8.756 8.856

max(uBx ) [cm] 2.743 2.917 3.052 3.204 3.244

elements (Q1P1)2.
As it is done in the body fitted case, the mesh is refined in the region close

to the structure in order to properly represent the embedded coupling interface
(Fig. 10b). However, we note that in the embedded case it is not possible
to “a priori” know the location of the structure interface. As a consequence,
the mesh refinement needs to be done in the region in where the embedded
structure is expected to move across, rather than only refining the geometry
edges of interest. This yields thus a slightly larger number of elements for the
same refinement level.

Finally, we use the same structure mesh employed in the finest body fitted
case (mesh 2). Hence, the embedded structure mesh is also meshed with a total
of 6.4k linear quadrilateral Total Lagrangian elements.

5.1.2. Results assessment

The Figs. 11 and 12 present some snapshots of the vx and p solution fields
together with the corresponding zero isosurface of the distance function. As ex-
pected, the structure undergoes a large displacement, whose value is maximum
at the end of the first transition phase. Once the inlet velocity becomes constant
in time, the solution reaches a steady state, whose maximum deflection value is
around 7cm.

Taking into account that this example involves a low Re number flow, we
decide to solve the reference body fitted case (mesh 2) with and without con-
sidering the wall shear component in the structure load. The obtained solutions
are compared in Figs. 13 and 14. As it can be observed, the embedded ux time
evolution in both control points is in very good agreement with the body fitted
reference ones (Fig. 13a and 14a). Nonetheless, we note minor differences in
the peak displacement values (Figs. 13b and 14b). We also notice that such
differences are almost imperceptible when the embedded solution is compared
to the body fitted one without the wall shear component (denoted as “Body
fitted (mesh 2) - p” in Figs. 13 and 14).

On top of the wall shear stress contribution, we believe that the small de-

2Henceforth, we follow the same element nomenclature as in [14]. Therefore, Q1P1 states
for a linear velocity and pressure interpolation element.
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viations in the results are possibly due to the intrinsic particularities of the
embedded CFD formulation, which we recall inherently smooths sharp corners
as these cannot be represented in terms of a continuous distance function. Con-
sidering that the control point A coincides with one vertex of the structure,
minor discrepancies in the values can be expected.

With regard to the computational efficiency, we also compare the number
of required FSI coupling iterations. The results depicted in Fig. 15 show that
the embedded solver is slightly more efficient than the body fitted one. We
think that these results cannot be taken as a general rule. Instead, what we can
asseverate is that the use of an embedded framework in the fluid domain does
not deteriorate the convergence of the FSI coupling.

Finally, we would like to point out that this problem can be alternatively,
and possibly more efficiently, solved by modelling the flexible wall as a non-linear
beam and using discontinuous level set based formulation in the fluid.

5.2. 2D Turek & Hron benchmark - FSI2

5.2.1. Problem description

The second example we present is the well-known Turek & Hron benchmark
(also known as Turek benchmark). In their original work [84], Turek and Hron
present three FSI variants, being the second and the third ones the most chal-
lenging ones. Since we want to exploit the capabilities of embedded formulations
to deal with large boundary displacements, we choose the second variant, de-
noted by the original authors as FSI2. In this case the problem settings are
selected in such a way that the structure undergoes extremely large deflections,
being thus a tough example from the mesh motion perspective.

The problem geometry consists in a rigid cylinder inside a straight channel
(Fig. 16a). Attached to the cylinder, there is a flexible cantilever beam (Fig.
16b). The problem geometry is depicted in Fig. 16 and its dimensions are H
0.41m, L 2.5m, h 0.02m, l 0.35m and r 0.05m. The centre of the cylinder is
placed at (0.2,0.2)m while the coordinates of control points A (initial position)
and B are (0.6,0.2)m and (0.15,0.2)m.

Concerning the boundary conditions, the pressure is fixed to zero along the
right edge of the channel. The velocity is fixed to zero in both top and bottom
edges as well as in the cylinder boundary. In the left edge, the parabolic inlet
function

vx(y) = 1.5v̄
y(H − y)(

H
2

)2 = 1.5v̄
4

0.1681
y(0.41− y) [m/s] (12)

is applied. v̄ is a reference velocity that equals 1m/s in the FSI2 case. The
previous inlet function is multiplied by an initial ramp-up function to obtain
the final velocity profile

vx(y, t) =

{
vx(y)

1−cos(π2 t)
2 if t ≤ 2

vx(y) otherwise
(13)
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As is done all throughout the paper, the fluid material response is modelled
using a Newtonian constitutive law. Conversely, a Kirchhoff - Saint-Venant
material model is used in the structure. The material properties of both the
fluid and the structure are collected in Table 3. The problem is run for 20s
using a time step of 2e-3s, which equals the one used in [84]. The non-linear
FSI tolerance is set to 10-8.

Finally, the computational domain is meshed using linear triangular elements
(Q1P1) in the fluid domain and linear quadrilateral Total Lagrangian elements
in structural one. As in this case we aim to compare the embedded solution to
the one obtained with a body fitted alternative solver, the background fluid mesh
is set as similar as possible to the body fitted one. Therefore, the number of
elements of the embedded background and body fitted fluid meshes is 63.5k and
28k, which we consider reasonably close taking into account that elements that
fall within the embedded structural domain are deactivated. Besides this, we
also note that, as in the previous example, the differences in the total number
of elements are due to the local refinement we do in the leeward side of the
cylinder. By doing this we ensure that the level set function is computed with
an accuracy level somewhat comparable to the body fitted discretization. With
regard to the structure domain, the same structured mesh made up with 2.6k
elements is used in both the embedded and the body fitted simulations.

Table 3: 2D Turek & Hron benchmark - FSI2. Material properties.

Structure Fluid

ρs 10e3 kg/m3 ρf 1000 kg/m3

µs 0.5e6 kg/ms2 µf 1 Pa · s

ν 0.4

5.2.2. Results assessment

Figs. 17 and 18 collect snapshots of the obtained embedded velocity and
pressure fields together with the level set zero isosurface representing the struc-
ture skin. Because the solution is periodic in this case, we present these magni-
tudes for a complete period of oscillation (T) starting at a reference time t0. It
can be observed that the periodic vortex shedding generates a pressure pattern
that yields the expected large deflections in the cantilever beam.

The structure deflection evolution is compared with the body fitted solver
one in Figs. 19 and 20. Even though the transition phase is shorter in the
embedded case, barely differences between both solutions can be observed once
the periodic regime is reached. Complementary, Figs. 19b and 20b zoom in on
the embedded and body fitted solutions from time 15s to 16s, confirming that
the peak values and oscillation periods are almost identical in both solutions.

Table 4 collects the mean and amplitude values of the displacement for the
last period of oscillation. These values are in good agreement with the reference
ones reported in [84], being the embedded solution values slightly larger.
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Finally, we would like to add that for this test case the embedded solver,
is remarkably robust. On the contrary, it tends to be challenging to achieve
a similar robustness when using the body fitted approach, mainly because of
the mesh deformation solver, which tends to yield excessively distorted (or even
inverted) elements due to the large deformations and rotations of the tail. Con-
versely, the embedded solver, which worked out of the box, bypasses all these
mesh motion issues.

Table 4: 2D Turek & Hron benchmark - FSI2. Point A displacement values [m].

ux
[
×10−3

]
uy

[
×10−3

]
Body fitted −14.76± 12.64 1.29± 81.21

Embedded −15.29± 12.77 1.31± 83.15

Turek & Hron [84] −14.58± 12.44 1.23± 80.60

5.3. 2D mixer with flexible blades

5.3.1. Problem description

So far we have presented two examples that are considered as reference
benchmarking test cases in the FSI community. Although they served us to
prove the accuracy of our embedded proposal, they do not highlight the specific
capabilities of the new method since they can also be solved by employing ALE
approaches. In order to prove the extended scope of application of the proposed
technique, we present next an example that involves extremely large rotations,
and that would be thus impossible to solve by using body fitted approaches.

The problem is conceived as a 2D idealization of a turbine mixer with
clockwise-anticlockwise alternate rotation. Hence, the fluid geometry consists in
a unit length square domain whose centre coincides with the coordinates origin.
The structure geometry represents the three blades of the mixer. These are
also centred in the coordinates origin and aligned such that there is a 120°radial
symmetry. The blades are 0.375m long (measured from the origin) while their
thickness is 0.05m.

With regard to the BCs, a slip BC is enforced in the outer walls while a no-
slip behaviour is assumed in the embedded FSI coupling interface. Besides this,
we also fix the pressure to zero in the entire wall to obtain a radially symmetric
solution. Concerning the structure domain, a rigid body rotation with angular
velocity ω equal to ±1rad/s is imposed in the centre of the blades (pink region
in Fig. 21b) to emulate the spinning of the mixer, which changes its direction
after each lap (2π rad) is completed.

The material properties are collected in Table 5. We note that the stiffness
of the blades is intentionally set to an unrealistic value. Although this value
might be unfeasible when comparing with a real mixer, it allows to test our
solver under the action of not only large rotations but also displacements. On
top of that, we also set ρf = ρs to yield a strongly coupled behaviour. As in
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the previous example, the material response is modelled using a Newtonian and
Kirchhoff - Saint-Venant constitutive models.

Table 5: 2D mixer with flexible blades. Material properties.

Structure Fluid

ρs 1.0 kg/m3 ρf 1.0 kg/m3

E 1.0e2 N/m2 µ 1.0e− 2 Pa · s

ν 0.3

The problem is run for 20s to reproduce three complete rotations (anticlock-
wise, clockwise and anticlockwise) of the mixer. The time step is 0.01s while
the non-linear FSI tolerance is 10-7.

Finally, both the fluid and the structure domains are meshed using struc-
tured meshes. On the one hand, we use a structured mesh with 110 perimeter
subdivisions in the fluid domain. This amounts a total of 24,2k linear triangu-
lar elements (Q1P1). On the other hand, each one of the blades of the rotor
is meshed with a 8x39 grid made with linear quadrilateral Total Lagrangian
elements. In the rigid body motion region of the rotor we use 64 triangular
elements to enforce the rotation.

5.3.2. Results assessment

Prior to any results assessment, we note that what we present in the following
is a qualitative analysis of the obtained solution due to the lack of reference data.

Hence, we firstly focus on the displacement evolution of one of the three
blades of the mixer. To this purpose, we present in Fig. 22 the time evolution
of one control point in the blade that is initially in a vertical position. The
initial coordinates of such control point are (0,0.375)m and coincide with the
short edge centre point of the blade. We note that as the problem has radial
symmetry, there is no need to assess the three blades as they behave exactly
the same.

From the results in Fig. 22, we observe that after each n rotation is com-
pleted (values at time n2π) the tip of the blade almost recovers its original
position. This can be also observed in Fig. 23 which tracks the evolution of the
control point coordinates.

To better comprehend the deformation of the flexible blades, we present in
Fig. 24 a collection of snapshots that depict the structure during the second
rotation (ω -1rad/s and 2π ≤ t ≤ 4π). In Fig. 24a it can be observed that at the
end of the first anticlockwise rotation (t≈ 2π s) the structure almost recovers the
initial spatial configuration. Then, the rotation direction is suddenly inverted,
thus inducing a high acceleration in the structure. As a consequence of its small
stiffness, such acceleration yields a large deformation in the blades, (Figs. 24b
and 24c) that is recovered as the rotation evolves.

This transient-to-steady cycle is repeated at each rotation and can be also
observed in the fluid domain. As it can be noted in Figs. 25 and 26, at the

27



end of each rotation the flow reaches a steady solution, which presents a radial
velocity pattern that grows from zero to a maximum value around 0.4m/s in the
ends of the blades (Fig. 25a). However, when the rotation changes its direction
the flow tends to accordingly do so. Hence, the sudden inversion of the rotation
generates three initial pressure (Fig. 26b) and velocity (Fig. 25b) peaks in the
three corresponding ends of the flexible blades.

Last but not least, we report the history of FSI non-linear coupling iterations
required to reach convergence in Fig. 27. Although the number of FSI iterations
varies as the problem evolves, it remains always bounded between 4 and 8
iterations, being in most cases 6 or 7 iterations. This is a remarkable result
considering that the densities of the fluid and structure are the same.

Once arrived to this point, we think that the obtained solution feasibly rep-
resents the physics of the experimental set up, proving again the correctness of
the solver. On top of that, we highlight the capability of our proposal to effi-
ciently solve not only large displacement problems, but also arbitrary extremely
large rotation ones. Considering that to solve this problem with a traditional
ALE-based solver would definitively require remeshing, we dare say that this is
a proof of the enhanced robustness that embedded approaches have to face such
extremely large rotation scenarios.

5.4. 3D lid-driven cavity with flexible shell

5.4.1. Problem description

The most distinguishable feature of the example we present in this section is
that it involves a thin-walled structure. Considering that one of the advantages
of embedded mesh methods is the capability to efficiently deal with complex
volumeless bodies, this example aims to test the performance of the proposed
FSI solver when these structural typologies are analysed. On top of that, this
example also tests the implementation in a 3D scenario.

The problem geometry is taken from the cavity with a thin bottom shell
benchmark presented in [65] and consists in a 1x1x1m fluid cavity (Fig. 28a)
whose bottom face is a 2.0e-3m thickness flexible membrane (Fig. 28b).

Assuming that the bottom flexible membrane is placed in the 0m z-coordinate,
the oscillatory velocity profile

vx =
z − 0.875

0.125
(1− cos (0.4πt)) [m/s] (14)

is imposed in the surfaces highlighted in Fig. 28c (the vy and vz components
are fixed to zero). The pressure is fixed to zero in the surface depicted in Fig.
28d. A no-slip BC is set in the remaining lateral faces.

Concerning the constitutive behaviour, a Newtonian model is used in the
fluid domain while an elastic one is used in the shell structure, which has no
initial prestress. The corresponding material properties are collected in Table
6.

The same fluid and structure meshes are employed in the body fitted and
embedded simulation. The fluid volume mesh (Fig. 28a) has around 117k linear
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tetrahedra elements (Q1P1) while the structure one (Fig. 28b) is made with
5.5k DKT-OPT shell elements [85]. The problem is run for 60s with a time step
equal to 2.5e-2s. The FSI coupling tolerance is set to 10-6.

Table 6: 3D lid-driven cavity with flexible shell. Material properties.

Structure Fluid

ρs 500.0 kg/m3 ρf 1.0 kg/m3

E 250.0 N/m2 µ 0.01 Pa · s

ν 0.0

5.4.2. Results assessment

Fig. 29 depicts the vertical displacement evolution (uz) of the shell midpoint.
As expected, the deformation becomes periodic after a first transition phase.
The obtained solution is compared with the one in [83] and also with the one
obtained with the reference body fitted solver. We observe that both solutions
are similar, in amplitude and period of oscillation, to the one reported by Valdés
in [83]. However, there are noticeable differences in the peak oscillation values.
Taking into account the good agreement between the embedded and body fitted
solutions, we believe that such differences come from the mesh discretization,
which is much finer in our case.

Furthermore, Table 7 compares the values that characterize the oscillatory
regime. We highlight the remarkably good correlation of the oscillation period
(T) and minimum uz values between the embedded and body fitted solutions.
Nonetheless, there is a noticeable difference in the maximum uz value. This is
explained in Fig. 30, which compares the body fitted and embedded pressure
fields when the maximum structure deflection occurs. As it can be observed, the
mass below the bottom membrane is considered in the embedded problem (Fig.
30b). On the contrary, this is not taken into account in the body fitted case
(Fig. 30a). The movement of such extra mass turns into a vertical overpressure,
whose maximum value appears when the bottom shell undergoes the maximum
deflection, that explains the differences in the maximum uz values.

Finally, we present two snapshots of the embedded shell displacement norm
‖u‖ during the periodic oscillation regime (Fig. 31). The first one (Fig. 31a)
depicts the deformed geometry of the shell for the minimum uz periodic dis-
placement. Conversely, the second one (Fig. 31b) does so for the maximum uz
periodic displacement.

5.5. 3D four-point tent

5.5.1. Industrial motivation

This last example presents a feasible industrial application of the proposed
embedded FSI tool. The problem at hand is the FSI analysis of a four-point
tent under the action of an intense wind load.
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Table 7: 3D lid-driven cavity with flexible shell. uz oscillation magnitudes.

min(uz) [m] max(uz) [m] A [m] T [s]

Valdés [83] 0.163 0.251 0.088 5.1

Body fitted 0.192 0.276 0.084 4.8

Embedded 0.189 0.287 0.098 4.75

Since their appearance in the mid past century, there has been an always
growing interest on this kind of highly flexible structures. Although they were
initially conceived as more appealing alternatives to traditional structural ty-
pologies, their versatility and efficient manufacturing encouraged designers to
use them as reference structural solutions in some specific applications [86].
Some examples are the design of extremely lightweight roof covers, such as
the Olympiastadion München one by Frei Otto, or the design of sustainable
and versatile temporary structures (e.g. inflatable hangars or rapid deployment
emergency shelters) [87].

In this context, the use of the embedded approach circumvents all the prepro-
cessing issues that appear in the membrane boundaries during the fluid volume
mesh generation. On top of that, these structures are known to suffer from
large displacements and rotations, which might even turn into topology changes
if self-contact and wrinkling appear. In this regard, the embedded approach is
a robust alternative to efficiently handle this situation.

5.5.2. Problem description

The geometry of the problem consists in a four-point tent inside a straight
wind channel. Fig. 32 collects multiple views of the structure geometry. As
it can be observed, the four-point tent is made as a system of beams and pre-
stressed cables supporting a prestressed membrane, whose edges are prestressed
cables too (Fig. 33). The membrane is a 1e-3m thickness hyperbolic paraboloid,
whose plan size and elevation are 8x8m and 4m.

The wind channel geometry is a 100x40x20m rectangular prism (Fig. 34),
which yields a blockage coefficient of the 4%. The membrane centre is located
in the point (4,4,0)m of the channel, which is 24m far from the inlet yz-plane.

The fluid BCs are rather simple in this case. A constant x-velocity of 50 m/s
is imposed in the inlet region (Fig. 34a) while the other two components are set
to zero. The pressure is fixed to zero in the outlet region (Fig. 34b). Moreover,
we enforce a slip (symmetry) condition in rest of the channel walls (Fig. 34c).
In the embedded FSI interface, we set the slip length ε to 10-3.

We remark that the slip BC is also applied to the ground wall. Although
the slip BC is only well defined for inviscid fluids, it is a good approximation in
high Reynolds number (Re) scenarios [88]. Bear in mind that imposing a no-
slip condition in the ground would have required the use of an overkill boundary
layer mesh to properly capture the wall viscous effects.

Concerning the structural problem BCs, the displacements are constrained
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in the ground, that is to say in the bottom ends of the supporting beams and
cables as well as in two of the membrane corners (Fig. 33d).

The fluid and structure material properties are collected in Table 8. For
the cables (Fig. 33b) we present the density ρc, the cross section area Ac, the
Young modulus Ec and the prestress σ0

c . The same information is provided for
the supporting beams (Fig. 33a) in ρb, Ab, Eb and σ0

b . Equivalently, ρm, νm,
Em and σ0

m stand for the prestressed membrane density, Poisson ratio, Young
modulus and x,y and z-directions prestress. ρf and µf are the fluid density and
dynamic viscosity. An elastic material response is used in all the elements that
conform the structure while a Newtonian one is used in the fluid.

Both the supporting beams and cables are meshed with a single element. An
average element size of 0.15m is used in the prestressed membrane as well as in
its edge cables. These mesh settings yield a 21k elements mesh. For the beams
we use standard non-linear Total Lagrangian elements while we use standard
non-linear Total Lagrangian truss ones for the cables [81]. The prestressed
membrane element formulation is taken from [89].

As it can be observed in Fig. 34 the fluid volume mesh is divided in three
refinement regions. The 1st region (Fig. 34d) is the one surrounding the four-
point tent and has an average element size of 0.15m. The 2nd one (Fig. 34e) has
0.5m (in the vicinities of the 1st region) and 1m as average element sizes. The
3rd region (the outer one) has an average element size of 2.5 m. Altogether, the
three refinement levels amount a total of 3M linear tetrahedra Q1P1 elements.

Table 8: 3D four-point tent. Material properties.

Structure
Fluid

Cables Beams Membrane

ρc 8300.0 kg/m3 ρb 8300.0 kg/m3 ρm 800.0 kg/m3 ρf 1.225 kg/m3

Ac 1.5e− 4 m2 Ab 7.06858e− 2 m2 νm 0.2 µf 1.846e− 5 Pa · s

Ec 200.0e9 N/m2 Eb 200.0e9 N/m2 Em 300.0e3 N/m2

σ0
c 1333.3e6 N/m2 σ0

b 0.0 N/m2 σ0
m [5.0e6, 5.0e6, 0] N/m2

5.5.3. Results assessment

Owing to the lack of experimental results, what we present in the following
is therefore a description and qualitative assessment of the obtained solution.

First of all, we show in Fig. 35 the time evolution of the three displacement
components of a control node whose initial xy-coordinates are (5.25,3.25)m. We
select this point because it is located in the region where the structure undergoes
the maximum displacements. As it can be observed, all the displacement com-
ponents show an almost periodic behaviour after an initial transition regime. We
also note that the displacement in the wind direction (x-component) is around
0.2m while the vertical one (z-component) is around 1.0m.

Furthermore, Fig. 36 presents some snapshots of the deformed geometry
together with the corresponding displacement norm field ‖u‖. This figure also
compares the deformed geometry with the initial configuration (Fig. 36c).

31



Besides that, the Fig. 37 collects a set of cross sections of the fluid pressure
field p. All these sections are parallel to the xz-plane, which is aligned with
the wind direction. Likewise, the Fig. 38 depicts the corresponding pressure
interpolation on both sides of the membrane structure.

As it is expected, a flow separation occurs in the front region of the tent.
This generates an upwards overpressure (Fig. 38) that induces the positive
displacements in the vertical direction (Fig. 36c). On the contrary, a downwards
overpressure appears in the rear part of the tent. Such pressure load in the
negative direction is indeed much more relevant than the positive one as the
maximum deflections are located in this area of the membrane (Figs. 36b and
36c).

Although we are confident about the accuracy and reliability of the obtained
results, these also reveal some of the possible further enhancements. On the one
hand, we notice some issues with the pressure interpolation in the vicinities
of the membrane boundaries (Fig. 38). More specifically, these can be easily
observed by focusing on the two top membrane edges in Fig. 38a and on the
right one in Fig. 38b. These phenomena, which are also reported in [8], are due
to the fact that we do not consider any specific treatment of the edge intersected
elements (i.e. the intersected elements neighbouring with non-intersected ones).
Thus, we can say that this becomes in a “variational crime” that propagates
along the contour of the membrane yielding such edge pressure oscillations.

On the other hand, we note that the mesh resolution in the membrane sur-
roundings is not as good as the one that could be achieved by using an equivalent
body fitted mesh (Fig. 37). Nonetheless, a reasonably similar resolution can be
always achieved upon mesh refining.

Summarizing, the test showcases the capabilities of the method for a realistic
application. Aside of the simplifications during the model generation, which
allow to bypass the volume meshing of a thin-walled structure, the embedded
solver is proved to efficiently solve the problem out of the box. We also note
that this example could be a tough case for a traditional ALE mesh motion
based solver. Last but not least, we highlight the relevance that these results
have for the possible extension of the presented tool to industrial applications.

6. Conclusion

In this work we present an embedded framework for the resolution of strongly
coupled FSI problems involving structures of any type. On top of the idea
that any structure can be classified as volumetric or volumeless, we put special
emphasis on creating a single FSI tool to deal with both types of bodies.

Besides this, the paper also includes some technical advances that could be
eventually used in other contexts. These are

• the use of a discontinuous FE embedded approach for the CFD analysis of
volumeless structures. This approach is based on the combination of the
Ausas discontinuous FE space with a Nitsche imposition of the Navier-slip
wall condition.
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• the improvement of the FM-ALE algorithm to consider a Lagrangian mo-
tion of the embedded interface. Our proposal is to solve a small extrap-
olation problem in the intersected edges to find the BCs of the FM-ALE
mesh motion problem. Such extrapolation problem is built so that the
interpolation of its results over the embedded skin equals (in a variational
sense) the structure mesh displacement.

• the black-box FSI OO implementation. We put special interest on the
implementation of our strongly coupled staggered strategy. For the sake
of modularity and code reusability we use a black-box coupling approach
with a Quasi-Newton interface residual minimization. We highlight the
flexibility of the OO implementation we follow, which makes possible to
solve not only FSI problems but also alternative multiphysics ones (e.g.
Conjugate Heat Transfer) or to easily integrate it in already existent codes.

We validate our proposal by solving several examples involving both volu-
metric and membrane-like bodies. The first two examples are the well-known
Mok and Turek & Hron benchmarks. The results of the embedded formulation
are in really good agreement with the reference ones, as only minor discrep-
ancies, which we believe are associated to the differences in the discretization
as well as in the CFD formulation, can be observed. We also highlight the
robustness of the embedded approach, which worked out of the box in both
cases.

The third example (two-dimensional mixer with flexible blades) is specifi-
cally conceived to prove the robustness of the embedded approach to deal with
arbitrary and extremely large rotations. Despite the lack of reference results,
we observe that the obtained solution is perfectly feasible. We highlight the
value of our method to deal with such a challenging scenario, which would have
definitively required remeshing if an ALE-based solver was used.

With regard to thin-walled structures, we present two examples involving
such structural typologies. The first one is a lid driven cavity problem with a
flexible shell structure in the bottom. Although we observe that the embedded
deflections are slightly larger than the reference ones, the period and amplitude
of the oscillation are however almost identical to the reference ones.

The second one is the the FSI analysis of a 4-point tent during a extreme
wind load episode. We note that, aside of further assessing the performance
of the solver when volumeless bodies are considered, this problem represents
a feasible real-life application of the proposed technology. Despite the lack of
reference results, we can say that the solver accurately solves the problem and
is capable of capturing the flow features that induce the large deflection of the
membrane. These results make us be confident about the application of the
proposed tool to real engineering problems.

Once arrived to this point, we can say that our embedded FSI framework
arises as a possible alternative to solve the problems at hand. We would like
to stress the achievements concerning thin-walled structures. It is known that
these structures are prone to suffer from extremely large displacements that
likely turn into topology changes when self-contact and wrinkling appear. In
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view of the obtained results and according to the nature of the method, we think
that our proposal has the potential of being an alternative to efficiently handle
such challenging scenario.

As a summary, we collect in the following lines the main features of our
proposal. The first one is that it does not need to reconstruct the system
matrix graph each time the level set is updated. Besides that, it is purely local
for both volume and volumeless bodies. Hence, any computational overhead
coming from the neighbours calculation is completely avoided. Another feature
that distinguishes our approach from other non-conforming alternatives is that
we do the FSI interface BC imposition (both for volume and volumeless bodies)
over the zero isosurface of the level set function, which is the best implicit
representation of the real interface. Complementary, we would like to mention
that, up to our knowledge, there is no other work in the literature that presents
a strongly coupled embedded FSI framework conceived in an object oriented
black-box fashion.

Nonetheless, we also note some disadvantages after comparing our technique
to the standard body fitted approach. The main drawback is of course the lack
of resolution in the vicinities of the immersed bodies. With this regard, we
observe that ALE body fitted meshes normally yield a more accurate solution in
the FSI interface than the one obtained with a similar embedded discretization.
As this is a direct consequence of the nature of the method, which relies on
solving the problem using an approximation of the discrete geometry, details
can only be recovered upon mesh refinement. In short, we notice that for a
similar resolution level, embedded methods normally require a finer mesh in the
structure surroundings, which turns into a computational overhead.

We conclude the paper by briefly describing the further investigations arising
from this work. The first task that is left to be done is the distributed memory
implementation of the presented tool. Although both the embedded CFD and
the CSM solvers are already compatible with MPI parallelism, we still lack the
the FSI coupling implementation in order to efficiently solve real-life problems.
Alternatively, we also plan to explore the possibilities of adaptive mesh refine-
ment to tackle the reported mesh resolution issues. Last but not least, we also
want to further work on the discontinuous level set representation of volumeless
bodies. As we report in the 4-point tent example, it still has some issues in the
embedded skin boundaries. We believe that these could be efficiently located
and handled by using a discontinuous edge-based level set function instead of
the current elemental one.
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(a) Toy example representation. Black solid lines represent the background mesh. Red dashed lines
represent the embedded structure skin mesh.

(b) Intersected elements and edges search (black solid lines). Edge intersection points highlighted
with light green square dots.

(c) Edge elements mesh to solve the extrapolation problem (black solid lines). The nodes of interest
where the extrapolation is solved are highlighted in light green.

Figure 7: Embedded nodal variable extrapolation from skin to background mesh.
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Figure 8: 2D Mok benchmark. Geometry and boundary conditions (source [83]).

(a) Point A. (b) Point B.

Figure 9: 2D Mok benchmark. Control points ux [cm] convergence study.

(a) Complete view. (b) Zoom view.

Figure 10: 2D Mok benchmark.Fluid background mesh snapshots.

45



(a) t = 5 s.

(b) t = 10 s.

(c) t = 15 s.

(d) t = 20 s.

(e) t = 25 s.

Figure 11: 2D Mok benchmark. Level set zero isosurface and vx velocity field [m/s] at different
time steps.
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(a) t = 5 s.

(b) t = 10 s.

(c) t = 15 s.

(d) t = 20 s.

(e) t = 25 s.

Figure 12: 2D Mok benchmark. Level set zero isosurface and pressure field [Pa] at different
time steps.
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(a) Complete time history. (b) Zoom from 7 to 11s.

Figure 13: 2D Mok benchmark. Control point A horizontal displacement ux [cm].

(a) Complete time history. (b) Zoom from 7 to 11s.

Figure 14: 2D Mok benchmark. Control point B horizontal displacement ux [cm].

Figure 15: 2D Mok benchmark. FSI non-linear iterations history.
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(a) Fluid domain.

(b) Structure domain.

Figure 16: 2D Turek & Hron benchmark - FSI2. Problem geometry (source [84]).
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(a) t = t0 s.

(b) t = t0 + 0.2T s.

(c) t = t0 + 0.4T s.

(d) t = t0 + 0.6T s.

(e) t = t0 + 0.8T s.

Figure 17: 2D Turek & Hron benchmark - FSI2. Level set zero isosurface and velocity norm
‖v‖ [m/s] for a period of oscillation T.
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(a) t = t0 s.

(b) t = t0 + 0.2T s.

(c) t = t0 + 0.4T s.

(d) t = t0 + 0.6T s.

(e) t = t0 + 0.8T s.

Figure 18: 2D Turek & Hron benchmark - FSI2. Level set zero isosurface and pressure p [Pa]
for a period of oscillation T.
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(a) Complete time history. (b) Zoom from 15 to 16s.

Figure 19: 2D Turek & Hron benchmark - FSI2. Control point A horizontal displacement ux
[m].

(a) Complete time history. (b) Zoom from 15 to 16s.

Figure 20: 2D Turek & Hron benchmark - FSI2. Control point A vertical displacement uy
[m].

(a) Fluid domain. (b) Structure domain.

Figure 21: 2D mixer with flexible blades. Problem geometry with mesh.
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(a) ux [m]. (b) uy [m].

Figure 22: 2D mixer with flexible blades. Control point (0,0.375)m displacement evolution.

Figure 23: 2D mixer with flexible blades. Control point tracking. Solid lines represent the
anticlockwise rotation cycles. Dashed lines represent the clockwise rotation ones. The black
X marker represents the initial position of the control point.
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(a) t ≈ 2π s. (b) t ≈ 2.25π s. (c) t ≈ 2.5π s.

(d) t ≈ 2.75π s. (e) t ≈ 3π s. (f) t ≈ 3.25π s.

(g) t ≈ 3.5π s. (h) t ≈ 3.75π s. (i) t ≈ 4π s.

Figure 24: 2D mixer with flexible blades. Structure displacement norm ‖u‖ [m] snapshots
during the second (clockwise) rotation (2π ≤ t ≤ 4π [s]).
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(a) t ≈ 2π s. (b) t ≈ 2.5π s.

(c) t ≈ 3π s. (d) t ≈ 3.5π s.

Figure 25: 2D mixer with flexible blades. Level set zero isosurface and velocity vector field
[m/s] snapshots during the second (clockwise) rotation (2π ≤ t ≤ 4π [s]).
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(a) t ≈ 2π s. (b) t ≈ 2.5π s.

(c) t ≈ 3π s. (d) t ≈ 3.5π s.

Figure 26: 2D mixer with flexible blades. Level set zero isosurface and pressure field [Pa]
snapshots during the second (clockwise) rotation (2π ≤ t ≤ 4π [s]).

Figure 27: 2D mixer with flexible blades. FSI non-linear iterations history.

56



(a) Fluid cavity. (b) Flexible shell.

(c) Imposed velocity surfaces. (d) Fixed pressure surface.

Figure 28: 3D lid-driven cavity with flexible shell. Problem geometry.
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Figure 29: 3D lid-driven cavity with flexible shell. Midpoint (0.5,0.5)m vertical displacement
uz evolution [m].

(a) Body fitted. (b) Embedded.

Figure 30: 3D lid-driven cavity with flexible shell. Pressure field (Pa) xz-plane cross section
at maximum vertical displacement uz .
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(a) t = 42.0s (min. uz). (b) t = 44.4s (max. uz).

Figure 31: 3D lid-driven cavity with flexible shell. Displacement norm ‖u‖ snapshots during
periodic regime [m].

(a) Isometric view 1.

(b) Isometric view 2.

(c) xy-plane view.

(d) xz-plane view.

(e) Lateral view 1. (f) Lateral view 2.

Figure 32: 3D four-point tent. Structure geometry.
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(a) Beams. (b) Prestressed cables.

(c) Prestressed membrane. (d) Dirichlet boundary conditions.

Figure 33: 3D four-point tent. Element types and boundary conditions. The beams are
highlighted in red. The supporting cables are highlighted in purple while the membrane edges
ones are highlighted in blue. The prestressed membrane is highlighted in light green. The
light brown square dots represent the fixed displacement points.
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(a) Inlet.

(b) Outlet.

(c) Slip walls.

(d) 1st refinement region.

(e) 2nd refinement region.

(f) 3rd refinement region.

Figure 34: 3D four-point tent. Fluid geometry, boundary conditions and refinement regions.
The structure geometry is superimposed to the background mesh geometry for the sake of
visualization.
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Figure 35: 3D four-point tent. Point (5.25,3.25) vertical displacement uz evolution [m].

62



(a) Isometric top view.

(b) Isometric rear view.

(c) Lateral view with undeformed configuration.

Figure 36: 3D four-point tent. Structure ‖u‖ displacement field at time t = 5 s.
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(a) y = 2 m.

(b) y = 4 m (midplane).

(c) y = 6 m.

Figure 37: 3D four-point tent. Pressure field xz-plane cross sections at time t = 5 s.
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(a) Positive (top) membrane side.

(b) Negative (bottom) membrane side.

Figure 38: 3D four-point tent. Pressure over the prestressed membrane at time t = 5 s.
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