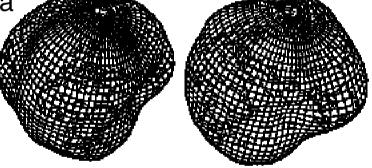


4.1. Modelado matemático de la superficie terrestre: El geoide.

Geodesia: ciencia que estudia la forma y las dimensiones de la Tierra Breve historia:

- Piágoras (550 AC) es el primero en admitir la esfericidad de la Tierra
- Aristóteles (384 AC) ve la sombra de la Tierra sobre la Luna (eclipses)
- Eratóstenes (250 AC) primero en medir el radio de curvatura de la Tierra, estimando la longitud de la circunferencia en 40.000 Km
- ~ 1600: medida de distancias mediante triangulación
- Picard (1670 DC) invención del anteojo de retícula => mejora la precisión
- Newton: Tierra es un fluido que gira sobre sí mismo => forma elipsoidal



4.1. Modelado matemático de la superficie terrestre: El geoide.

El geoide:

ullet El **geoide** es una superficie sobre la que la gravedad es constante y $ec{g}$

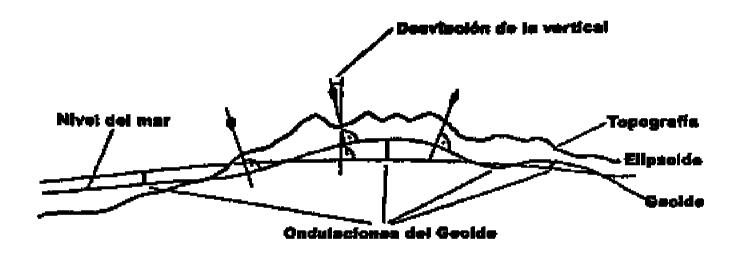
es perpendicular a ella

- Vista del Geoide con las deformaciones exageradas [Gei87]

 Si la distribución de masas fuera uniforme el geoide sería un elipsoide de revolución centrado en el centro de masas
- El geoide es muy difícil de modelar: se aproxima por un elipsoide con un error máximo de unos ±100 m.

• Algunos elipsoides internacionales

Elipsoide	Semieje mayor (a)	Semieje menor (b)
Struve (1)	6.378.298,300 m	6.356.657,142 m
Hayford (1909) ⁽²⁾	6.378.388,000 m	6.356.090,900 m
WGS-66	6.378.145,000 m	6.356.759,800 m
WGS-72	6.378.135,000 m	6.356.750,500 m
$WGS-84^{(3)}$	6.378.137,000 m	6.356.752,314 m


⁽¹⁾ Antigua red geodésica española

⁽²⁾ Elipsoide internacional de referencia desde 1924

⁽³⁾ Utilizado en GPS

• Superficie topográfica, Geoide y elipsoide:

Las tres superficies: topografía, Geoide y elipsoide [Sch93]

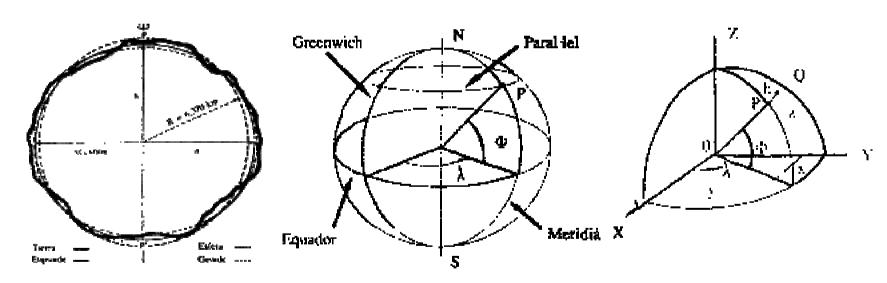
• Alturas elipsoidales y geoidales respecto a la elevación del terreno

h: altura elipsoidal

H: altura ortométrica

N: altura geoidal

 $h \sim H + N$


• Modelos digitales de elevación del terreno (DEM) normalmente referidos al geoide. Significado físico: altura sobre el nivel del mar, mares y lagos aparecen con niveles horizontales.

•GPS: referido al elipsoide WGS-84 => no se corresponden las coordenadas

4.2. El elipsoide como modelo de referencia: Elipsoides globales y locales

• Las coordenadas cartográficas longitud (λ) y latitud (ϕ) están definidas sobre el elipsoide de referencia.

• Fórmulas de conversión:

$$X = (v+h)\cos\varphi\cos\lambda \qquad \qquad \varphi = \arctan\left(\frac{z+e^{t^2}b\sin^3\theta}{s-e^2a\cos^3\theta}\right)$$

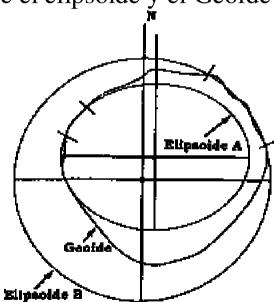
$$Y = (v+h)\cos\varphi\sin\lambda \qquad \qquad \langle \longrightarrow \rangle \qquad \lambda = \arctan\left(\frac{Y}{X}\right)$$

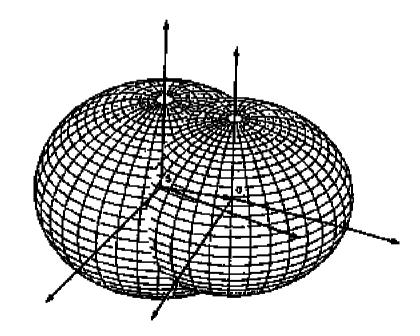
$$Z = (v(1-e^2)+h)\sin\varphi \qquad \qquad h = \frac{s}{\cos\varphi} - v \qquad \text{(altura elipsoidal)}$$

Donde:

$$e^2 = \frac{a^2 - b^2}{a^2}$$
 (primera excentricidad) $e^{-2} = \frac{a^2 - b^2}{b^2}$ (segunda excentricidad)

$$v = \frac{a}{\sqrt{1 - e^2 \sin^2 \varphi}}$$
 (radio de curvatura)


$$s = \sqrt{X^2 + Y^2} \qquad \theta = \arctan\left(\frac{Z}{s} \frac{a}{b}\right)$$


• A pequeña escala, los elipsoides globales no acaban de ser una buena aproximación del Geoide

• Cada país adopta un elipsoide local (DATUM) que minimiza las desviaciones

entre el elipsoide y el Geoide

El Geoide y 2 elipsoides diferentes

Posición de un elipsoide de referencia respecto al elipsoide de la Tierra

• La definición de un **DATUM** requiere 7 parámetros:

a, b: semiejes mayor y menor (o semieje mayor a y achatamiento α =(a-b)/a) Δx , Δy , Δz : centro del elipsoide local respecto del centro de masas de la Tierra β , γ : giros para colocar el eje del elipsoide paralelo al de rotación terrestre

• Además del mapa o DEM hay que saber qué datum se ha usado.

• Existen datums para continentes:

Europa: ED50, ED79

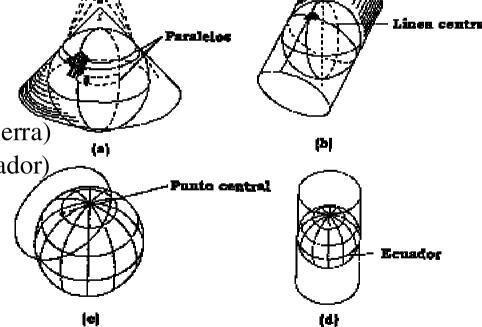
USA: NAD27, NAD83

Parámetro	WGS 84 -> ED 50	ED 50 -> WGS 84
Δx (m)	137,5808	-137,58190
$\Delta y(m)$	67,73973	-67,74147
Δz (m)	168,457878	-168,45980
m	$-1,141043 \ 10^{-5}$	$1,1410562\ 10^{-5}$
α (rad)	10^{-12}	-10^{-12}
β (rad)	10^{-12}	-10 ⁻¹²
γ (rad)	-7.012451 10 ⁻⁶	-7,012451 10 ⁻¹²

• Transformaciones de datums (transformaciones de Bursa-Wolf o de Helmert)

$$\begin{bmatrix} x_T \\ y_T \\ z_T \end{bmatrix} = \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} + (1+m) \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} X_A \\ Y_A \\ Z_A \end{bmatrix}$$
parámetro matriz de de escala rotación

$$a_{11} = \cos \beta \cos \gamma \qquad a_{21} = -\cos \beta \sin \gamma \qquad a_{31} = \sin \beta$$


$$a_{12} = \cos \beta \sin \gamma + \sin \alpha \sin \beta \cos \gamma \qquad a_{22} = \cos \beta \cos \gamma - \sin \alpha \sin \beta \sin \gamma \qquad a_{32} = -\sin \alpha \cos \beta$$

$$a_{13} = \sin \alpha \sin \gamma - \cos \alpha \sin \beta \cos \gamma \qquad a_{23} = \sin \alpha \cos \gamma + \cos \alpha \sin \beta \sin \gamma \qquad a_{33} = \cos \alpha \cos \beta$$

4.3. Proyecciones cartográficas

- Las proyecciones/desarrollos se pueden hacer sobre:
- un **plano** (proyecciones o perspectivas)
- un **cono** (desarrollos)
- un **cilindro** (desarrollos)
- Se llamarán:
- ecuatoriales o directas (eje || eje rot Tierra)
- meridianos o transversales (eje ⊂ ecuador)
- horizontales o oblícuos
- Se llamarán:
- conformes: conservan ángulos
- afilácticas: conservan distancias
- equivalentes: conservan superficies

Proyecciones o perspectivas:

el plano puede ser tangente a la superficie, pasar por el centro de la esfera o a cualquier punto interior o exterior de la misma

$$x = \frac{(D+1)\cos\varphi\sin\Delta\lambda}{D+\sin\varphi\sin\varphi_0 + \cos\varphi\cos\varphi_0\cos\Delta\lambda}$$

$$\varphi_0, \lambda_0 \quad \text{V\'ertice de proyecci\'on}$$

$$\Delta\lambda = \lambda - \lambda_0$$

$$y = \frac{(D+1)\left(\sin\varphi\cos\varphi_0 - \cos\varphi\sin\varphi_0\cos\Delta\lambda\right)}{D+\sin\varphi\sin\varphi_0 + \cos\varphi\cos\varphi_0\cos\Delta\lambda}$$
D distancia del centro de la Tierra al v\'ertice de proyecci\'on normalizada a R_T

Coordenadas proyección

Escenográfica: el vértice de proyección está fuera de la esfera a una distancia finita

Tipo proyección	Ecuatorial	Meriadiana	Horizontal
Gnomónica	$\varphi_0 = 90^{\circ}$	$\varphi_0 = 0^{\mathbf{o}}$	φ ₀ ≠ 0°, 90°
	$\dot{\mathbf{D}} = 0$	$\dot{\mathbf{D}} = 0$	$\dot{\mathbf{D}} = 0$
Estereográfica	$\varphi_0 = 90^{\circ}$	$\varphi_0 = 0^{\circ}$	$\phi_0 \neq 0^{\circ}, 90^{\circ}$
	$\dot{\mathbf{D}} = 1$	$\dot{D} = 1$	$\dot{D} = 1$
Ortográfica	$\varphi_0 = 90^{\circ}$	$\varphi_0 = 90^{\circ}$	$\phi_0 \neq 0^{\circ}, 90^{\circ}$
	D = ∞	D = ∞	D = ∞

Desarrollos cónicos conformes de Lambert

$$x = r_e \operatorname{tg}^n \left(\frac{\xi}{2}\right) \sin(n\lambda)$$

$$y = r_0 - r_e \operatorname{tg}^n \left(\frac{\xi}{2}\right) \cos(n\lambda)$$

$$n = \sin \varphi_0$$

$$\xi = 90^{\circ} - \varphi$$

$$r_0 = \cot \varphi_0$$

$$r_e = r_0 \left[tg \left(\frac{\pi}{4} - \frac{\varphi_0}{2} \right) \left(\frac{1 + e \cos(\pi/2 - \varphi_0)}{1 - e \cos(\pi/2 - \varphi_0)} \right)^{e/2} \right]^{-n}$$

Desarrollos cilíndricos (i):

Equivalente de Lambert: (zonas próximas ecuador)

$$x = \lambda$$

Con meridianos automecoicos: $(|\lambda| \le 60^{\circ})$

$$x = \lambda$$

$$y = \varphi$$

Conforme (carta de Mercator):

$$\chi = \lambda$$

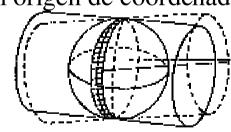
$$y = \ln \left[tg \left(\frac{\pi}{4} + \frac{\varphi}{2} \right) \left(\frac{1 - e \sin \varphi}{1 + e \sin \varphi} \right)^{e/2} \right]$$
Transverso conforme de Gauss: (OK países alargados N-S)

$$x = \ln \left[\operatorname{tg} \left(\frac{\pi}{4} + \frac{H}{2} \right) \right]; \quad \operatorname{tg} Z = \operatorname{tg} \varphi \sec \lambda$$

$$y = Z$$
;

$$\sin H = \sin \lambda \cos \varphi$$

(H,Z) coordenadas de Cassini-Soldner



Desarrollos cilíndricos (ii): Universal Transversa Mercator (UTM):

- La más recomendable (de +84° N a -80° S) junto con la esterográfica polar
- Propiedades:
- Conforme
- Meridiano central es automecoico
- Ecuador y meridiano central: su intersección es el origen de coordenadas
- (x,y) en metros: OK medir distancias
- 60 husos de 6°:

España ocupa del husos 28, 29, 30 y 31

El meridiano de Greenwich está entre los husos 30 y 31

Meridianos centrales

Desarrollos cilíndricos (iii): Universal Transversa Mercator (UTM):fórmulas aproximadas

$$X = \xi v \left(1 + \frac{\zeta}{3} \right) + 500.000$$

$$A_{1} = \sin 2\varphi$$

$$A_{2} = A_{1} \cos^{2} \varphi$$

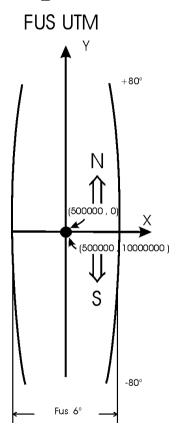
$$A_{2} = \frac{1}{4} \cos^{2} \varphi$$

$$J_{2} = \varphi + \frac{A_{1}}{2}$$

$$J_{4} = \frac{3J_{2} + A_{2}}{4}$$

$$J_{4} = \frac{3J_{2} + A_{2}}{4}$$

$$J_{6} = \frac{5J_{4} + A_{2} \cos^{2} \varphi}{3}$$


$$C = \frac{a}{\sqrt{1 - e}}$$

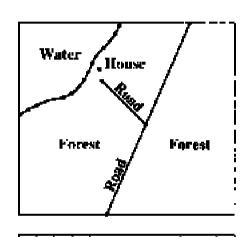
$$V = \frac{c}{1 + e^{1/2} \cos^{2} \varphi} = 0.9996$$

$$\zeta = \frac{e^{1/2}}{2} \xi^{2} \cos^{2} \varphi$$

$$\varphi = \frac{35}{27} \alpha^{3}$$

$$R_{\phi} = 0.996 c (\varphi - \alpha J_{2} + \beta J_{4} - \gamma J_{6})$$

(Precisión del orden de cm si se trabaja con 8 cifras decimales)



4.4. Sistemas de Información Geográfica GIS

- GIS: conjunto de herramientas de procesado y bases de datos utilizadas para analizar la información espacial
- Datos utilizados:
 - mapas topográficos, demográficos...
 - mapas y datos de ocupación del suelo
 - mapas y datos geológicos, geofísicos, biogeográficos...
 - mapas y datos de transporte
 - mapas y datos metereológicos y climáticos
- >- imágenes de satélite, etc
- => transferir información espacial a formato de coordenadas comunes + remuestrear los datos para acceder y procesar la información de una misma posición
 - cambios de coordenadas
 - puntos de control
 - remuestreo: emborronamiento de las firmas espectrales =>1° correc. radiométricas 2° correc. geométricas

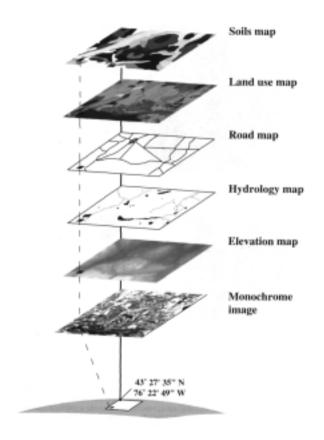
Formato de los datos GIS:

		ļ			ļ ř	ŀ	, F	JF.	R	ļ ļi	ŀ
	i] 			F	ŀ	-		R	F	F
	ļ.	I	I.	11	ŀ	ľ	F	R	F	ŀ	ŀ.
		:	ŀ	k	R	F	F	X.	F.	H	ŀ
		¹F	F	Ŧ	R	R	R	ī.	F	ľĸ	j.
F	· F	ŀF	F	, IL				F	E.	F	F
F	F	F	F	F	F	R	R	F	F	F	F
F	ĪĒ	F	ı E	F			F	F	F	F	ŀ
F	F	F.	F	k	ĸ	R	F	F	F] jF	F
F	F	F	F	Tr'	R	F	F	F	F		F
117	· F	Ŧ	īF	F	R	F	F	17:	F	TiF	ŀ

Vector format

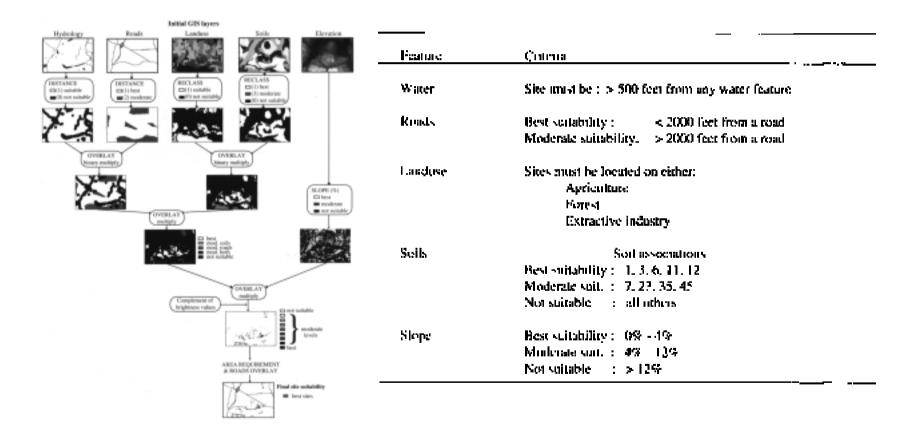
Raster format

Maneras de entrar datos en un GIS:


- Generadas:
 - COordinate GeOmetry (COGO)
- tableta digitalizadora
- digitalización en pantalla
- fotogrametría
- >- teledetección + procesado de imagen
 - escáner (raster)
 - vectorización de datos:
 manual, automática o asistida
- Importadas:
 - bases de datos (conversión formatos)
 - cambio estructura de datos

Fuentes de error:

• modelización, entrada de datos, estructura y gestión de datos, análisis y/o presentación


• Capas de una base de datos GIS

Noerce	Featurerst	Cude		
Lardsat TM	Landuse	Agriculture = :		
Classification map	Water features	Streams = 3 Expactive industry = 3		
		Forest = 4		
		Werlands 5		
		•		
USGS quadrangle	Krust-	Roads = 1		
Digitized manually		Other = 0		
Soil conservation servare	Soit type	Туре A → I		
Digital mils maps	ey - -	Type B = 2		
USGS digitial terrian	l: les ation	l m = 1		
Elevation deta		2 m - 2		
		β in $= 3$		

• Pasos para encontrar los lugares que satisfacen una serie de criterios

