
EUROVIS 2020/ J. Byška and S. Jänicke Poster

A Tool for N-way Analysis of Programming Exercises

C. Andujar1, M. Comino1, M. Fairen1, A. Vinacua1

1ViRVIG, Computer Science Department, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Barcelona, Spain

Abstract
Programming exercises are a corner stone in Computer Science courses. If used properly, these exercises provide valuable feed-
back both to students and instructors. Unfortunately, the assessment of student submissions through code inspection requires
a considerable amount of time. In this work we present an interactive tool to support the analysis of code submissions before,
during, and after grading. The key idea is to compute a dissimilarity matrix for code submissions, using a metric that incor-
porates syntactic, semantic and functional aspects of the code. This matrix is used to embed the submissions in 2D space, so
that similar submissions are mapped to nearby locations. The tool allows users to visually identify clusters, inspect individual
submissions, and perform detailed pair-wise and abridged n-way comparisons. Finally, our approach facilitates comparative
scoring by presenting submissions in a nearly-optimal order, i.e. similar submissions appear close in the sequence. Our initial
evaluation indicates that the tool (currently supporting C++/GLSL code) provides clear benefits both to students (more fair
scores, less bias, more consistent feedback) and instructors (less effort, better feedback on student performance).

1. Introduction and Related Work

Grading programming exercises takes a considerable amount of
time. Automatic judges [AM05, PGR12, FJA16, KCF∗19] have
been proposed to simplify grading. These are valuable tools but
since the output is just a pass/fail verdict, they provide limited feed-
back to students and disregard non-functional aspects of the code.

Our tool aims to support the following evaluator tasks:

• Define grading criteria considering not only functional correct-
ness but also code quality (readability, efficiency, robustness).

• Analyze the submissions to apply the defined criteria.
• Detect similar or identical code submissions (plagiarism).
• Collect and report evidences supporting plagiarism suspicions.
• Identify frequent errors and major flaws in student’s skills.

By supporting these tasks, we wish to achieve the following goals:

• Minimize evaluator efforts.
• Get more fair scores, e.g. by minimizing score variance between

similar solutions.
• More accurate plagiarism detection: minimize false positives,

spot most true positives.

We realized that many of the tasks above can greatly benefit from
a global view of the student submissions (or a representative sample
of these) and as such the tool has been designed to facilitate code
comparisons. Most code comparison tools (e.g. diff-like) have been
designed to facilitate merging different versions of the same file. As
such, these tools are often limited to pair-wise comparisons (three
and four-way comparisons at most) and show changes at character-
level. We do use pair-wise comparisons, but our scenario has sub-
stantially different needs. Instead of code merging, the main goal is

the analysis of code submissions. Here, we are interested in syntac-
tical aspects (code readability, potential evidences of plagiarism)
but also semantic and functional aspects that go beyond character-
level differences. Furthermore, we should be able to perform n-way
comparisons. Moreover, student submissions might exhibit large
variations (e.g. in terms of identifiers, structure and sentence or-
der).

Concerning the assessment of functional correctness, automatic
judges [KLC01, PGR12, FJA16] provide a pass/fail verdict based
on test sets. Some of these judges support Computer Graphics as-
signments by comparing the output image of student submissions
with the instructor reference solution [ACFV18]. Some authors
tackle the problem of semantic understanding of computer pro-
grams [HICS80], but state-of-the-art methods for checking func-
tional equivalence [Gör16, Jam17] are limited to elementary algo-
rithms.

A few works [ARVV19] address the automatic syntactic and se-
mantic analysis of student submissions. Besides checking the out-
put against test sets, a set of instructor-defined and automatically-
generated rubrics are computed for all submissions to facilitate
marking and provide richer student feedback.

Although plagiarism detection was not the main focus of our
tool, incidentally we observed that it facilitates copy detection and
we could spot copies in past course submissions that were not de-
tected at that time. Most plagiarism detection tools are designed
for essays [NLM15,WW16,BRG20] and perform poorly on source
code. Some tools do specialize in source code [PMP∗02, ASR06,
LCHY06, CJ11, RK19, Mos], but often result in false positives that
must be inspected carefully.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

DOI: 10.2312/eurp.20201122 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/eurp.20201122


C. Andujar & M. Comino & M. Fairen & A. Vinacua / N-way Analysis of Programming Exercises

2. Our approach

Pair-wise dissimilarities Given two source files F1, F2, we com-
pute their dissimilarity d(F1,F2) as αdo(F1,F2) + βdc(F1,F2) +
γds(F1,F2), where α, β and γ are user-defined weights and do, dc
and ds represent respectively operational, character-level, and se-
mantic dissimilarities. The operational dissimilarity is computed
by running test sets on all submissions, and counting the cases for
which F1 and F2 yield a different pass/fail result. The character-
level dissimilarity mimics diff-like tools. We first find the longest
contiguous matching subsequence s in F1, F2, and repeat this re-
cursively to the pieces to the left and to the right of s. Once all
matches have been found, dc is computed as 1− 2M/T , where M
is the number of characters in the matching blocks and T is the total
number of characters in F1 and F2. Before computing dc, we use a
parser to identify tokens, reformat the code and remove comments.
The semantic dissimilarity is based on the analysis ideas presented
in [ARVV19]. Our tool generates automatically a large number of
features (e.g. calls to asin() function, or coordinate space in which
variables are used). Then, a Pearson’s χ

2 test is used to determine
the potential impact of each feature on the pass/fail proportion. Fea-
tures with low p-values are likely to impact output correctness and
thus are kept as relevant. We then compute ds as the number of non-
matching features in F1 and F2. We use a high-level API [AVV20]
for detecting such features, so that the tool can show issues compro-
mising code efficiency (e.g. nested loops), quality (e.g. inadequate
coordinate space) or robustness (e.g. float equality comparisons).

Dissimilarity matrix Let N be the number of submissions. Dur-
ing preprocess, we fill an N×N dissimilarity matrix for each of the
three dissimilarities above, where each entry stores the correspond-
ing pair-wise dissimilarity.

Embedding in 2D We represent each submission as a circular
node embedded in 2D (Figure 1). Since we wish distances in the
embedding to preserve as much as possible inter-node dissimilar-
ities, we use non-metric multi-dimensional scaling [Kru64]. We
prevent identical submissions from getting perfectly overlapping
nodes, we add a small constant to all computed dissimilarities.

GUI parts The main window of our prototype has two parts: a 2D
view showing the embedded submissions, and a table with submis-
sion data (student ID, name...) . We used fake IDs and names to
preserve privacy. Submissions can be selected via mouse in the 2D
view or in the table. The 2D view outlines all submissions (Fig-
ure 1). Clusters can be detected easily; depending on the chosen
dissimilarity weights, clusters might represent copies or just sub-
missions adopting a similar approach. When the user moves the
pointer over a node in the 2D view, a hover box shows the asso-
ciated (reformatted) source code. If students were provided with
some starting code, unmodified lines are shown in gray.

Pair-wise inspection Selecting two submissions opens a new win-
dow displaying code differences in a diff-like style. Users can
choose to highlight only character-level differences (using the
block matches resulting from finding longest contiguous matching
subsequences) or to include also differences in terms of semantic
features and operational pass/fail results.

One-to-many inspection Selecting a single node shows a sum-
mary of differences between the selected node and a random set of
surrounding nodes. These differences are shown as labels over arcs
connecting the node and its neighbors. We allow users to choose the
font size and what differences to include: relevant tokens (e.g. C++
identifiers and keywords), relevant features, and/or pass/fail results.
The random subset is chosen so that the labels over different arcs
do not overlap (Figure 1).

3. Results, Discussion and Future Work

In an informal evaluation with 8 exercises and 140 student sub-
missions, the tool was found to greatly facilitate tasks before, dur-
ing and after grading. Before grading, instructors were able to spot
clusters immediately, and the tool helped checking whether these
clusters corresponded to uncompleted exercises (with no or little
changes wrt the initial code), similar approaches, or just copies.
Outliers often revealed completely wrong or overly complex solu-
tions. This global picture provides insights to define grading crite-
ria and for weighting different code aspects. During grading, the
tool computed an approximate solution to the Traveling Salesper-
son Problem (TSP) using the chosen dissimilarity matrix as dis-
tance matrix. This way submissions could be graded in the TSP
rank order, with similar submissions being graded together. In com-
bination with the pair-wise comparison tool, this allowed some sub-
missions to be graded within seconds. Besides assessment perfor-
mance, instructors reported more consistent scores for similar sub-
missions. After grading, the tool facilitated enormously the task of
collecting and reporting evidences for plagiarism suspicions. See
accompanying video. We plan to formally evaluate and quantify
these advantages through a user study. Limitations: the dissimilar-
ity matrices have quadratic cost. We tested up to 200 submissions
and got real-time performance after a few seconds of preprocessing.
For massive groups, the approach should operate hierarchically, or
on a representative subset. Our current prototype focuses on exer-
cises requiring small pieces of code (up to about 100 lines of code).
As future work we plan to add software metrics [SVR∗16].

Acknowledgements This work has been funded by the Span-
ish Ministry of Economy and Competitiveness and FEDER Grant
TIN2017-88515-C2-1-R.

Figure 1: Snapshot of our tool. See accompanying video.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

34



C. Andujar & M. Comino & M. Fairen & A. Vinacua / N-way Analysis of Programming Exercises

References
[ACFV18] ANDUJAR C., CHICA A., FAIRÉN M., VINACUA Á.: GL-

socket: A CG plugin-based framework for teaching and assessment. In
EG 2018: education papers (2018), European Association for Computer
Graphics (Eurographics), pp. 25–32. 1

[AM05] ALA-MUTKA K. M.: A survey of automated assessment ap-
proaches for programming assignments. Computer science education
15, 2 (2005), 83–102. 1

[ARVV19] ANDUJAR C., RALUCA VIJULIE C., VINACUA A.: A Parser-
based Tool to Assist Instructors in Grading Computer Graphics Assign-
ments. In Eurographics 2019 - Education Papers (2019), Tarini M.,
Galin E., (Eds.), The Eurographics Association. 1, 2

[ASR06] AHTIAINEN A., SURAKKA S., RAHIKAINEN M.: Plaggie:
GNU-licensed source code plagiarism detection engine for Java exer-
cises. In Proceedings of the 6th Baltic Sea conference on Computing
education research: Koli Calling 2006 (2006), pp. 141–142. 1

[AVV20] ANDUJAR C., VIJULIE C. R., VINACUA A.: Syntactic and
semantic analysis for extended feedback on computer graphics assign-
ments. IEEE Computer Graphics and Applications 40, 3 (2020), 105–
111. 2

[BRG20] BELLI S., RAVENTÓS C. L., GUARDA T.: Plagiarism detec-
tion in the classroom: Honesty and trust through the urkund and turnitin
software. In International Conference on Information Technology & Sys-
tems (2020), Springer, pp. 660–668. 1

[CJ11] COSMA G., JOY M.: An approach to source-code plagiarism de-
tection and investigation using latent semantic analysis. IEEE transac-
tions on computers 61, 3 (2011), 379–394. 1

[FJA16] FRANCISCO R., JÚNIOR C. P., AMBRÓSIO A. P.: Juiz online
no ensino de programação introdutória-uma revisao sistemática da liter-
atura. In Brazilian Symposium on Computers in Education (Simpósio
Brasileiro de Informática na Educação-SBIE) (2016), vol. 27, p. 11. 1

[Gör16] GÖRG T.: Interprocedural PDG-based code clone detection.
Softwaretechnik-Trends 36, 2 (2016). 1

[HICS80] HUNT III H. B., CONSTABLE R. L., SAHNI S.: On the com-
putational complexity of program scheme equivalence. SIAM Journal on
Computing 9, 2 (1980), 396–416. 1

[Jam17] JAMIL H. M.: Automated personalized assessment of compu-
tational thinking MOOC assignments. In 2017 IEEE 17th International
Conference on Advanced Learning Technologies (ICALT) (July 2017),
pp. 261–263. 1

[KCF∗19] KUZI S., COPE W., FERGUSON D., GEIGLE C., ZHAI C.:
Automatic assessment of complex assignments using topic models. In
Proceedings of the Sixth (2019) ACM Conference on Learning@ Scale
(2019), pp. 1–10. 1

[KLC01] KURNIA A., LIM A., CHEANG B.: Online judge. Computers
& Education 36, 4 (2001), 299–315. 1

[Kru64] KRUSKAL J. B.: Multidimensional scaling by optimizing good-
ness of fit to a nonmetric hypothesis. Psychometrika 29, 1 (1964), 1–27.
2

[LCHY06] LIU C., CHEN C., HAN J., YU P. S.: Gplag: detection of
software plagiarism by program dependence graph analysis. In Proceed-
ings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining (2006), pp. 872–881. 1

[Mos] Moss - a system for detecting software similarity. http://
theory.stanford.edu/~aiken/moss/. Accessed: 2020-03-03.
1

[NLM15] NAIK R. R., LANDGE M. B., MAHENDER C. N.: A review
on plagiarism detection tools. International Journal of Computer Appli-
cations 125, 11 (2015). 1

[PGR12] PETIT J., GIMÉNEZ O., ROURA S.: Jutge.org: An educational
programming judge. In Proceedings of the 43rd ACM Technical Sym-
posium on Computer Science Education (New York, NY, USA, 2012),
SIGCSE ’12, ACM, pp. 445–450. 1

[PMP∗02] PRECHELT L., MALPOHL G., PHILIPPSEN M., ET AL.: Find-
ing plagiarisms among a set of programs with jplag. J. UCS 8, 11 (2002),
1016. 1

[RK19] RAGKHITWETSAGUL C., KRINKE J.: Siamese: scalable and in-
cremental code clone search via multiple code representations. Empirical
Software Engineering 24, 4 (2019), 2236–2284. 1

[SVR∗16] SILVA R. R. O. D., VERNIER E. F., RAUBER P. E., COMBA
J. L. D., MINGHIM R., TELEA A. C.: Metric Evolution Maps: Mul-
tidimensional Attribute-driven Exploration of Software Repositories. In
Vision, Modeling & Visualization (2016), Hullin M., Stamminger M.,
Weinkauf T., (Eds.), The Eurographics Association. 2

[WW16] WEBER-WULFF D.: Plagiarism detection software: promises,
pitfalls, and practices. Handbook of academic integrity (2016), 625–638.
1

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

35

http://theory.stanford.edu/~aiken/moss/
http://theory.stanford.edu/~aiken/moss/

