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Abstract: This paper provides a parallel algorithm that compute a tetra-
hedrization of a set of points. The algorithm works in O(log® nlog* n) parallel
time using O(n) processors.

Abstract: Aquest paper presenta un algorisme paral.lel per construir una
descomposicié en tetraédres d’un conjunt de punts. El algorisme treballa en
temps O(log® nlog*n) i fa servir O(n) processadors.
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Abstract: This paper provides a parallel algorithm that compute a tetra-
hedrization of a set of points. The algorithm works in O(log® n.log” n)

parallel time using O(n) processors.

1. Introducticn

The algorithm presented in this paper constructs a tetrahedrization of a set of
points in the three-dimensional Euclidean space. The problem is defined as the descom-
position of the convex hull of the point set in tetrahedra such that 1) every vertex of
the tetrahedra is an element in the point set, 2) every point in the set is a vertex in
the tetrahedrization and 3) the intersection of the interior of two tetrahedra is always
empty. We assume that the points are in general position.

The parallel running time in worst case is O(log® nlog* n) using O(n) processors,
where log* n is defined as the number of applications of the log function required to
reduce n to a constant value. This complexity is due to the fact that the most expensive
part of the algorithm is to compute the convex hull of the point set, shown to be
O(log® nlog™ n) in [3].

The algorithm is based on the sequential process described in [2].

A concurrent read but exclusive write (CREW) memory model is assumed.

2. The algorithm

In this section, we give an outline of the algorithm for constructing a tetrahedriza-

tion of a set of points P in E3.
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Initial step:
Construct the convex hull of the point set P: CH(P). (2.1)
Tetrahedrize the convex hull obtained. (2.2)
In parallel for each point p € P s.t p ¢ CH(P) (2.3)
Compute the tetrahedron 7, in which p lies
Iteration:
While there exists a non empty P N int(r) (int(7) means interior(7) do
In parallel for each tetrahedron r s.t P Nint(r) # §:
Choose a point p in P Nint(r) such that partitioning = into four
tetrahedra by spanning by p and the faces of 7, each one of the new
tetrahedron contains a balanced number of points in its interior. (2.4)
Construct these four new tetrahedra

endwhile
3. Analysis

(2.1) Construct the convex hull: As it has been pointed out in the introduction,
in [3] is shown how to construct the convex hull of a point set in E® in O(log® nlog* n)
parallel time, using O(n) processors. The technique is the hierarchical representation.
Following the notation used in [2], the number of points in the boundary of the convex
hull will be called n’ and the number of points in the interior n”.

(2.2) Tetrahedrize the convex hull: This can be easily done in O(logn’) parallel
time using O(n') processors. The process is to choose a vertex v in the convex hull,
then assigning one processor to each face that does not contain the point v, construct
one tetrahedron for each face with the point v (the faces of the convex hull constructed
above are triangulated).

(2.3) The purpose of this point of the algorithm is to compute P N int(r) for
each tetrahedron 7: This problem can be reduced to the planar point location search.
The subdivision hierarchy technique uses O(log n log™ n) parallel preprocessing time and
O(logn) sequential query time to perform planar point location. This technique can
also be used in 3 dimensional applications due to the fact that every convex subdivision
is equivalent to a bounded planar subdivision [3]. Therefore, assigning one processor to
each interior point in the convex hull, we have a total query time of O(logn'). Thus,
in O(logn'log* n') U O(logn") parallel time we have computed P N int(r) for every T,
in the actual tetrahedrization.

(2.4) Iteration: Complete the tetrahedrization. In [2] is shown the following
result: Let S be a simplex with vertex set V', and let P be a set of n points in the
interior of S such that no four points of PUV are coplanar. Then there is a linear time
algorithm that picks a point p of P such that each simplex spanned by p and a facet of

S contains at most f4(n) points of P, where B4(n) = Ldi_ﬁ_l and d is the dimension of
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the Euclidean space.

In our case, for each tetrahedron 7, we have to find a point p € P Nnt(r) such
that for each new tetrahedron 7’, P Nini(r') is at most J3(m), where 83(m) = | 12|
and m = [P Nint(7)|. F; is defined as the facet of 7 that does not contain the vertex v;
of T.

A parallel algorithm to find such a point p, can be the following:

In parallel for each 7 that P Nint(r) # 0
In parallel for each F;, 1 <1 <d+1
Choose an edge in F; and call it F
In parallel for each F] and for each m € P Nint(r)
Construct the hyperplane passing through F! and m
In parallel for each F} (3.1)
Choose the hyperplane that has exactly ir#"ﬂ — 1 points
of P Nint(r) on the opposite side of it from F;
Mark these [7‘[:—11 — 1 points
Choose one point unmarked and construct the four tetrahedra associated

with it.

Notice that if we tetrahedrize throgh one of the unmarked points, then the max-
imum number of points that a new tetrahedron can have in its interior is |rm - J"’?]
this is because each new tetrahedron 7/ constructed with the face F; and the point p,
does not contain any of the points marked in the process (3.1) associated with the face
F;. For more details see [2].

(3.1) One way to do this could be to sort in decreasing order the hyperplanes
in the order defined by the angle & between F; and the hyperplane, and then mark
the fﬁ] — 1 points of the hyperplanes in the I"f_',_‘—l] — 1 first positions; but there is
a more efficient way to do it: In [1], it is shown how to select the I{*" item between a
set of n elements in O(loglogn) parallel time with O(n) processors, without sorting the
elements; so the only we have to do is to select the hyperplane in the l_d—z—,_] — 1 position
and then assigning one processor to each point p € P Nint(7), determine in which side

of the hyperplane lies the point p. Doing this, we know the points to be marked.

After this process, we have chosen a point p for each tetrahedron r with P N
int(7) # 0. Thus, if we tetrahedrize through this point, we obtain four more tetrahedra
with at most i—m points each one. If we repeat the process with each one of the new
tetrahedra then we will obtain 16 tetrahedra with at most (%)2m points each one, and
so on. Since the sequence of |P Nint(7)| forms a decreasing geometric series, the total
number of steps is O(logn) and since each execution of the iteration costs O(loglogn),

the total time is O(lognloglogn). We can conclude that the total complexity of the

algorithm is:
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In the initial step:

time Processors
Convex hull

O(log® nlog* n) O(n)
Initial tetrahedrization

O(logn") O(n')
Construct P Nint(r),Vr

O(logn'log* n') U O(logn) O(n')U O(n'")

and in the Iteration:
O(logn" loglogn') O(n'")

Therefore, the total parallel running time of the algorithm is O(log®nlog* n) and

the number of processors required is O(n).
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