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Abstract. A tangential contact model for three-dimensional discrete element simulations
is proposed and used in the micro-mechanical simulation of a drained triaxial test. In this
model, the dependence of the tangential contact force on the contact loading history is
accounted for. A representative volume element with spherical discrete elements and
periodic boundary conditions is used in the simulations to reduce the computation costs.
Numerical results of a triaxial test obtained with a linear and the proposed tangential
contact model are compared. The results for both contact models are qualitatively in
agreement with theory. The linear contact model needs calibration as the used parameters
lack physical meaning, while the proposed contact model only uses physical properties of
the particles.

1 INTRODUCTION

A phenomenological approach, where parameters are used to describe the behaviour
observed in physical tests, such as triaxial tests, is frequently used to study the behaviour
of granular soils. When studying accumulation phenomena in granular soils resulting from
repeated small amplitude dynamic loading, however, phenomenological models exhibit
limitations. Current accumulation models [7, 13] use a large number of parameters that
often lack physical meaning. As a result, little insight in the physical processes is gained,
while an extensive amount of laboratory tests has to be performed for model calibration.
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As an alternative, a micro-mechanical approach can be followed, which has the potential
to overcome the limitations of current phenomenological models. The discrete element
(DE) method [3] is commonly applied for the study of granular materials under monotonic,
static loads [12]. In this method, the equations of motion are solved for each particle,
depending on the interaction with other particles. The contact law has a large influence on
the constitutive behaviour of the sample. Since many microscopic properties are difficult
to measure or model, simplifications are often made to the contact law. Linear models
are mainly used for calculating the contact forces [1, 5]. Contact models based on the
contact theories for elastic frictional contact, such as the theory of Hertz [9] for the normal
component and Mindlin and Deresiewicz [11] for the tangential component, yield more
realistic results. Hertz’ contact theory is frequently used to compute the normal contact
force [4, 6].

As the tangential contact force depends on the loading history of a contact, a linear
incremental relation between the tangential displacement and the contact force is mostly
applied. In order to incorporate the loading history, Walton and Braun [20] proposed a
tangential contact model which is a simplification of the Mindlin-Deresiewicz contact the-
ory, where several different loading histories are considered. Walton and Braun only dis-
tinguished between an increasing or decreasing tangential force. Vu-Quoc and Zhang [18]
improved the model of Walton and Braun by considering 4 loading cases of the Mindlin-
Deresiewicz theory for a varying normal contact force. The model of Walton and Braun
is still applied when the normal force is constant.

A more realistic tangential contact model for elastic frictional contact is proposed [8],
consisting of 16 loading cases which are based on 7 loading cases of the Mindlin-
Deresiewicz contact theory. According to the contact theory, the model only makes use of
scalar quantities. The three-dimensional (3D) implementation utilizes the framework by
Vu-Quoc et al. [19]. Subsequently, numerical results of a triaxial test with the proposed
contact model and a linear visco-elastic tangential contact model are compared.

The present study is a first step towards the development of a realistic micro-mechanical
model of granular soils under repeated cyclic loading.

2 THE TANGENTIAL CONTACT MODEL

Hertz [9] studied the normal contact between elastic spheres. Starting from this theory,
Mindlin and Deresiewicz [11] developed a contact theory for varying normal and tangential
components of the contact forces. As the tangential component depends on the loading
history, the theory is divided in a variety of loading cases. Based on the contact theory, an
incremental solution is proposed, which is only valid when the increments in the normal
∆Fn and the tangential ∆Ft contact forces are small. In each loading case, the tangential
contact force increment is given by:

∆Ft = Kt∆urel
t (1)
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whereKt is the tangential stiffness at the current time step, which incorporates the loading
history, and urel

t is the tangential component of the relative displacement between two
contacting particles. The superscript ‘rel’ is omitted in the following as all displacements
and velocities in this paper refer to the relative values between two particles in contact.
The theory of Mindlin and Deresiewicz [11] is developed considering the stress distribution
over the contact area between spherical particles. The distribution of the normal stress
σn(ρ) over a circular contact area is given by Hertz’ theory [9]:

σn(ρ) =
3Fn

2πa3

√

a2 − ρ2 (2)

where a is the radius of the contact surface and ρ varies between 0 and a. This stress
distribution results from the normal contact force Fn, which is related as follows to the
relative normal displacement un of the two spheres:

Fn =
4
√
ReffEeff

3
u3/2
n (3)

where 1/Reff = (R1+R2)/(R1R2) is the relative contact curvature and Eeff is the effective
elastic modulus, defined as:

Eeff =

(

1− ν2
1

E1

+
1− ν2

2

E2

)−1

(4)

where ν1 and ν2 are the Poisson’s ratios and E1 and E2 the Young’s moduli of the two
spheres in contact.

The distribution of the tangential stress τ , and thus the tangential contact force Ft,
cannot be written in closed form as it depends on the loading history. Considering the
case where the normal force is constant, the tangential force as a function of the relative
tangential displacement ut is given by a hysteresis curve shown in figure 1. The tangential
stiffnesses, which relate the tangential force with the relative tangential displacement, are
given by [11]:

Kt = Kt0

(

1− Ft

µFn

)1/3

for Ḟt > 0 and |Ft| ≥ F tp
t,max (curve 1) (5)

Kt = Kt0

(

1− F tp
t − Ft

2µFn

)1/3

for Ḟt < 0 and |Ft| < F tp
t,max (curve 2) (6)

Kt = Kt0

(

1− Ft − F tp
t

2µFn

)1/3

for Ḟt > 0 and |Ft| < F tp
t,max (curve 3) (7)

Kt = Kt0

(

1 +
Ft

µFn

)1/3

for Ḟt < 0 and |Ft| ≥ F tp
t,max (curve 4) (8)

Equations (5) to (8) show that the tangential stiffness depends on the normal contact
force Fn, the tangential contact force Ft, the tangential contact force at the last turning
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point F tp
t , the maximal tangential force at a turning point F tp

t,max, the coefficient of friction
µ and the initial tangential stiffness Kt0:

Kt0 = 8a

(

2− ν1
G1

+
2− ν2
G2

)−1

(9)

where G1 and G2 are the shear moduli of the two contacting spheres. The maximal
tangential force F tp

t,max is defined as the highest absolute value of the tangential force at a
turning point occurred in the history of the contact.
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Figure 1: Tangential force Ft as a function

of the tangential component ut of the relative

displacement for constant normal loading.
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Figure 2: Tangential force Ft as a function of

the relative tangential displacement ut for increasing

normal and tangential force, while |F i−1

t
| ≥ F tp

t,max
.

The case with a constant normal contact force occurs only in special configurations.
The normal and tangential components of the contact force mostly vary arbitrarily. To
account for this in DE calculations, equations (5) to (8) are approximated numerically,
resulting into 16 loading cases [8] which depend on the loading history. The loading
cases are divided in four main groups: (1) increasing normal force, increasing tangential
force; (2) increasing normal force, decreasing tangential force; (3) decreasing normal force,
increasing tangential force and (4) decreasing normal force, decreasing tangential force.
These groups are based on the four loading cases defined by Vu-Quoc and Zhang [18],
where the condition of an increasing/decreasing force is evaluated at the current time
step.

In contradiction to the model of Vu-Quoc and Zhang, a distinction is made between
the tangential force at the last turning point F tp

t and the maximal tangential force F tp
t,max.

In many cases, these parameters are equal, e.g. point A for curve 2 (figure 1). If point C
is the last turning point (e.g. F tp

t = Ft,C on curve 5), the values of these parameters differ
and a distinction is needed between F tp

t and F tp
t,max as the tangential stiffness depends on

both. Four different loading situations can therefore be defined within each of the groups,
cf. equations (5) to (8). These loading cases are defined based on the variation and value
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of the tangential force at the previous time step i−1: (1) F i−1
t increasing, |F i−1

t | ≥ F tp
t,max;

(2) F i−1
t decreasing, |F i−1

t | < F tp
t,max; (3) F i−1

t increasing, |F i−1
t | < F tp

t,max and (4) F i−1
t

decreasing, |F i−1
t | ≥ F tp

t,max.
The solution of Mindlin and Deresiewicz [11] is limited to simple loading histories,

which are defined as a sequence of equilibrium positions. An equilibrium position is a
state which can be achieved by holding the normal force constant at the current value
and varying the tangential force. Every point on the curve of figure 1 corresponds to an
equilibrium position for one specific value of the normal contact force.

In the following, as an example, the loading case of the first group (increasing nor-
mal force, increasing tangential force), where F i−1

t is increasing and |F i−1
t | ≥ F tp

t,max, is
discussed. An analogous procedure is used for the other 15 loading cases [8].

The loading case for F i
n, F

i
t and F i−1

t increasing and |F i−1
t | ≥ F tp

t,max

According to the Mindlin-Deresiewicz theory [11], the increment in the tangential con-
tact force is achieved by first changing the normal force while the tangential force remains
constant and then changing the tangential force under constant normal force. This means
that first the normal force is increased to F i

n = F i−1
n + ∆Fn. The values of F tp

t and
F tp
t,max are set to zero since this case corresponds to curve 1 in figure 1, where no turning

point has yet occurred (figure 2). Then, under constant normal force, the tangential force
is increased through a sequence of equilibrium positions (‘simple loading history’) until
the final state is reached (figure 2, from state 0 to state 2). Two subcases are derived:
∆Ft ≥ µ∆Fn and ∆Ft < µ∆Fn. Since ∆Ft is unknown, these subcases are changed
into [21] ∆ut ≥ (∆ut)01 and ∆ut < (∆ut)01, where the displacement from state 0 to
state 1 (∆ut)01 = µ∆Fn/ (Kt)01. The tangential stiffness (Kt)01 is taken constant and
equal to the initial stiffness Kt0 for a loading under constant normal force F i

n. The latter
is only true when the increment in the normal force ∆Fn is small.

When ∆ut ≥ µ∆Fn/Kt0, as indicated in figure 2, the subsequent tangential force is
given by:

F i

t = (Ft)1 + (Kt)12 (∆ut)12 = F i−1
t + µ∆Fn + (Kt)12

(

∆ut −
µ∆Fn

Kt0

)

(10)

where the tangential stiffness (Kt)12 is equal to (cf. equation (5)):

(Kt)12 = Kt0

(

1− F i−1
t + µ∆Fn

µF i
n

)1/3

(11)

When ∆ut < µ∆Fn/Kt0, the subsequent tangential force is given by:

F i

t = F i−1
t +Kt0∆ut (12)

However, the final state in equation (12) does not correspond to an equilibrium position,
as it is not equivalent to a state of constant normal force and varying tangential force. The
loading is therefore no longer part of a simple loading history. This causes inaccuracies,
since the model is based on the assumption of simple loading histories.
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3 IMPLEMENTATION IN 3D DISCRETE ELEMENT METHOD

To use the proposed tangential contact model in a 3D DE method requires vector
manipulation since the model is only valid for a 2D model where the tangential plane at
a contact point reduces to a line.

First, it is assumed that the orientation of the contact plane remains constant. In a 3D
simulation, the direction of the tangential force in the tangential plane varies during the
simulation. As a result, the above scalar model is not applicable. Nevertheless, the model
can be applied in a 3D simulation if the components Ft‖ and Ft⊥ of the tangential force
parallel and perpendicular to the initial relative tangential displacement increment ∆ut0

are considered [19]. The model is then applied in each direction separately. The direction
of Ft‖ is equal to t‖ = −∆ut0/||∆ut0||. The minus sign shows that the tangential force
on a particle is opposite to the relative displacement of that particle.

After the directions of the tangential force components have been determined, the
model proposed in the previous section can be applied. An increase or decrease in the
tangential force Ft is derived from the sign of the relative tangential displacement in-
crement ∆ut, since the increment in each component ∆Ft‖ and ∆Ft⊥ of the tangential
force is always opposite to the corresponding component ∆ut‖ and ∆ut⊥ of the relative
tangential displacement increment (figure 3). For example, when ∆ut‖ is opposite to
t‖, the components ut‖ and Ft‖ of the relative tangential displacement and the tangen-
tial force parallel to the initial tangential displacement are increasing. The increment
∆Fn = F i

n − F i−1
n in the normal force and the tangential force Fi−1

t‖ at the previous time
step determine which loading case applies to the current time step. In the implementation
of the model, the loading cases with a constant normal force are not considered, because
the cases where the normal force is increasing converge towards the cases with a constant
normal force.

∆Ft

∆Ft‖

∆Ft⊥

∆ut

∆ut‖

∆ut⊥

t‖

t⊥

n

Figure 3: Positive increments of the relative tangential displacement and the tangential force shown in

the tangential contact plane.

After application of the tangential model, the two components of the tangential force
at the current time step i are known. These components, however, may not exceed the
Coulomb friction limit, which determines the value of the tangential force in case of sliding:
|F i

t‖| ≤ µF i
n and |F i

t⊥| ≤ µF i
n.
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So far, the directions and the values of the two components of the tangential force are
calculated assuming the orientation of the tangential plane remains constant through the
simulation. To account for the change in orientation of the contact plane, the direction
of the components is corrected in each time step. The direction at the previous time step
is projected onto the tangential contact plane at the current time step:

ti‖ = ti−1
‖

− (ti−1
‖

· ni)ni (13)

ti⊥ = ti−1
⊥ − (ti−1

⊥ · ni)ni − (ti−1
⊥ · ti‖)ti‖ (14)

where ni is the unit normal vector of the tangential contact plane at time step i. This is
less accurate than a rotation around the contact point, but acceptable since the force and
displacement increments are small. The latter is a requirement of the tangential force-
displacement model and inherent to the DE method. The third term in equation (14)
ensures that t⊥ is always perpendicular to t‖.

Finally, the total tangential force in time step i is given by:

Fi

t = Fi

t‖ + Fi

t⊥ = F i

t‖t
i

‖ + F i

t⊥t
i

⊥ (15)

Since this force has a larger value than each of its components, the Coulomb friction limit
|F i

t | ≤ µF i
n is additionally enforced.

4 TRIAXIAL TEST SIMULATIONS

The proposed contact model is applied in the micro-mechanical simulation of a drained
triaxial test and implemented in the DE software program DEMeter++ [17].

The results are compared to results of a triaxial test simulation with a linear visco-
elastic tangential contact model. The linear contact model is also applied incrementally:

Fi

t = min

(

Fi−1
te −Klin∆ut − AlinKlin∆vt , µFn

Fi
te

||Fi
te||

)

(16)

where Fi−1
te is the elastic part of the tangential force at the previous time step i− 1, Klin

is a constant tangential stiffness, Alin is a dissipative coefficient and vt is the relative
velocity between two contacting spheres.

The normal contact force, in both simulations, is given by Hertz’ theory (equation (3)),
extended with a term to account for the dissipation of energy in every contact [14]:

Fn =
4Eeff

√
Reff

3

(

u3/2
n + An

√
un vn

)

(17)

where the dissipative coefficient is taken equal to An = 10−8 to ensure the stability of the
calculations without affecting the results. This term is only added during the isotropic
compression of the sample (section 4.1).

A soil sample with a diameter of 5 cm, a height of 12 cm and a mean particle diameter
of 1mm is used in the simulations. For a dense sand with a porosity n = 0.35, a huge
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amount of particles are needed to simulate a full-scale triaxial test, which results in very
high computation costs. Therefore, only a part of the soil sample is considered, indicated
in figure 4a as a representative volume element (RVE). This RVE is much smaller than
the soil sample, but large enough to give meaningful results.

(a) RVE Triaxial sample (b) σ1

σ1

σ2 σ2

σ3

Figure 4: (a) Representative volume element (RVE) and (b) soil sample under triaxial conditions.

The simulation of a triaxial test is performed using a cubic RVE which contains 817
spherical particles. The micro-mechanical properties of the particles are based on the
properties of quartz sand [16]: E = 70GPa, ν = 0.3, density ρs = 2650 kg/m3 and
friction coefficient µ = 0.3. The parameters Klin and Alin for the linear contact model are
found by calibrating the linear model to the proposed contact model. A poorly graded
sand is used where the radii of the spheres follow a log-normal distribution with an average
of 0.5mm and a standard deviation of 0.05mm. The minimum and maximum values for
the radii are equal to 0.35mm and 0.71mm, respectively.

The RVE is modeled with periodic boundaries to represent the behaviour of the whole
sample and avoid boundary effects. To control the deformation of the RVE the particles
are subjected to a strain-rate tensor ε̇ij in addition to the displacements resulting from the
interaction with other particles. A servo-control algorithm relates the strain-rate tensor
to the stress tensor, which enables to follow stress-controlled loading paths [16]:

(

∆εij
∆t

)i

=

(

∆εij
∆t

)i−1

+ g
(

σd
ij − σi−1

ij

)

(18)

where σd
ij is the target stress tensor, σi−1

ij is the calculated stress tensor at the previous
time step and g is a gain parameter which value is obtained by trial and error [16]. A
good value for g is found when the target stress path is followed correctly. The stress
tensor is obtained as a volume average over all the contacts:

σij =
1

V

Nc
∑

c=1

lciFcj (19)

where V is the volume of the RVE, Nc is the total amount of contacts, lci is the i-th
component of the contact vector for contact c connecting two particles at their centers
and Fcj is the j-th component of the contact force vector at that contact. Equation (18)
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may be expressed in terms of individual or combinations of components of the strain-rate
and stress tensors, depending on the loading path followed [16]. Since a triaxial test is
a special case where the principal stresses σi are known (figure 4b), only these stresses
are controlled by equation (18) and the corresponding strain rates ε̇i are applied to the
particles to control the deformation of the RVE.

Due to the high Young’s modulus, the critical time step is very small. The estimation
of the critical time step [10] is based on an infinite series of point masses m connected
with springs k. The smallest period, and thus the critical time step, occurs when the
masses are moving in counter-phase, such that there is no motion at the center of each
spring. A very small time step of ∆t = 10−7 s is then obtained.

To allow for a larger time step, density-scaling is applied [16]: the density is scaled up
by a factor b = 1012. This results in an increase of the time step with a factor

√
b = 106,

as the forces F and displacements dx, which determine the stresses and strains, are not
affected by the scaling. The accelerations a and velocities v are reduced by factors b
and

√
b, respectively, but these quantities are not important when considering quasi-

static behaviour. The following values for the density and time step are thus applied:
ρs = 2650× 1012 kg/m3 and ∆t = 0.1 s.

4.1 Sample preparation

The RVE is created by random placement of the spherical particles, without over-
lapping, in a cubic volume with initial side length of 10mm. The porosity is initially
equal to n = 0.55. The sample is isotropically compressed to a mean normal stress
p = −100 kPa, using principal strain rates, calculated with equation (18), with an initial
value of ε̇1 = ε̇2 = ε̇3 = −10−4/s, a maximal value of |ε̇|max = 10−4/s and a gain parameter
of g = 10−7. In order to create a dense assembly, the friction coefficient is set to zero
during the isotropic compression [16]. Prior to the triaxial test simulation, the friction co-
efficient is adjusted to µ = 0.3. When applying the proposed tangential contact model, the
porosity and mechanical average coordination number (amount of contacts per particle)
after isotropic compression are n = 0.3517 and Zm = 4.68, respectively. When applying
the linear contact model, the porosity and mechanical average coordination number after
isotropic compression are n = 0.3518 and Zm = 4.71, respectively. This shows that the
initial conditions for the two simulations are almost equal.

4.2 Triaxial test

A static triaxial test is performed by increasing the axial pressure σ1 under constant
confining stress σ2 = σ3 = σc = −100 kPa. The increase in the axial pressure is carried
out in a strain controlled manner: a constant strain rate of ε̇1 = −10−5 /s is applied
vertically to the top and bottom of the RVE. The stresses σ2 and σ3 are held constant by
applying the servo-control algorithm (equation (18)) with an initial value for the strain
rates of ε̇2 = ε̇3 = 0 and a gain parameter of g = 10−9.

9
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The stress-strain behaviour for the simulation with the proposed tangential contact
model is shown in figure 5 (black curve). A qualitative agreement with the theory of
critical state soil mechanics [2, 15] is observed: yielding starts at a strain value of about
3%, after which a strain-softening and dilative behaviour is observed, converging to a
constant deviatoric stress and volumetric strain. The critical state line is reached at
about 30% axial strain.
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Figure 5: Stress-strain behaviour of the triaxial test simulation with the proposed tangential contact

model (black) and a calibrated linear tangential contact model (gray): (a) deviatoric stress and (b)

volumetric strain as a function of the axial strain.

Calibration of the two simulations yields values of Klin = 105 N/m and Alin = 1 for
the parameters of the linear contact model. With these values, the results of the two
simulations are almost equal (figure 5). This illustrates that the stress-strain behaviour
in a triaxial test is mainly governed by the normal contact model, which is the same in
both simulations. The benefit of the proposed tangential contact model is that, while
the parameters in the linear contact model have no physical meaning, it only makes use
of physical properties of the particles, which are also used in the normal contact model
(equation (17)): the Poisson’s ratio ν, the Young’s modulus E and the friction coefficient
µ. The proposed model does not need calibration when the microscopic properties of the
soil are known. The friction coefficient, however, is difficult to determine as it is function
of the surface roughness of the particles. Nevertheless, the use of physical properties is
expected to result in a more profound understanding of the behaviour of granular soils as
insight is gained in the physical processes at micro-scale.

5 CONCLUSIONS

A tangential force-displacement model is proposed for elastic frictional contact between
spherical particles, which is based on the theory by Mindlin and Deresiewicz [11]. The
contact loading history is accounted for by considering 16 different loading cases. This re-
sults in an accurate evaluation of the tangential contact force. Since the model only makes
use of scalar quantities, a 3D implementation of the model is given which requires vector
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manipulation to keep track of the orientation of the tangential force and the evaluation
of this force has to be done for each of its components separately.

A drained triaxial test on a dense sand is simulated, which is qualitatively in correspon-
dence with the theory of critical state soil mechanics [2, 15]. The comparison of numerical
results of a triaxial test obtained with the proposed and a linear tangential contact model
shows the minor influence of the tangential contact force to the stress-strain behaviour
compared to the normal contact force. The parameters of the proposed contact model
have a physical meaning, which is expected to result in a more profound understanding
of the micro-mechanical behaviour of granular soils.
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