* A000084eY
ST)

Turing machines
with few accepting computations

- J. Kobler
U. Schoning
J. Toran

Report LSI-88-21

=
APWTAT pusFLLrATCN
UL > [A

EiBLIiOicCA
R, 3ag 18 DIC. 1989

Abstract:

In this paper we study complexity classes defined by path-restricted nondeterministic
machines. We prove that for every language L in the class Few a polynomial time
nondeterministic machine can be constructed which has f(z)+1 accepting paths for strings
z € L, and f(z) accepting paths for strings that are not in L, being f a function in PF.
From this result we obtain lowness properties of the class Few, and positive relativizations

of different counting classes.

Resum:

En aquest article estudiem classes de complexitat que es defineixen utilitzant maquines
no deterministes amb pocs computs acceptadors. Demostrem que per tot llenguatge L
dins la classe Few, es pot construir una maquina no determinista que treballa en temps
polindmic, amb f(z) + 1 computs acceptadors per paraules ¢ € L, i f(z) computs
acceptadors per paraules que no pertanyen a L, per una funcié f € PF. Amb aquest
resultat obtenim propietats de “lowness” de la classe Few i, a més, relativitzacions positives

de diferents classes de complexitat associades al comptatge.

TURING MACHINES
WITH FEW ACCEPTING COMPUTATIONS

Johannes Kébler Uwe Schoning Jacobo Toran
Universitat Stuttgart EWH Koblenz Dept. L. S. I. (U.P.C.)
Azenbergstr. 12 Rheinau 3-4 Pau Gargallo 5
D7000 Stuttgart D5400 Koblenz E08028 Barcelona

1. Introduction

The intractability of the complexity class NP has motivated the study of subclasses that
arise when certain restrictions on the definition of NP are imposed. For example, the study
of sparse sets in NP [Ma82], and the study of the probabilistic classes whithin NP [Gi77]
have been two main research streams in the area of complexity theory, and have clarified
many aspects of the class NP.

A different way to restrict the power of NP is to consider the languages for which there
1s a nondeterministic polynomial time Turing machine producing only a small number of
accepting paths in case of acceptance. The first complexity class defined following this idea
was Valiant’s class UP (unique P) [VaT78] of languages accepted by nondeterministic Turing
machines that have exactly one accepting computation path for strings in the language,
and none for strings not in the language. This class plays an important role in the areas
of one-way functions and cryptography, for example in [GrSe84] it is shown that P#UP
if and only if one way functions exist. The class UP can be generalized in a natural way
by allowing a polynomial number of accepting paths. This gives rise to the class FewP
defined by Allender [Al85] in connection with the notion of P-printable sets.

In this paper we study complexity classes defined by such path-restricted nondetermin-

1

istic polynomial time machines, and show results that exploit the fact that the machines
for these classes have a bounded number of accepting computation paths. We will not only
consider these subclasses of NP, namely UP and FewP, but also the class Few, an extension
of FewP defined by Cai and Hemachandra [CaHe89], in which the accepting mechanism of
the machine is more flexible.

The three classes UP, FewP and Few are all defined in terms of nondeterministic
machines with a bounded number of accepting paths for every input siring, but for the
last two classes this number is not known beforehand, and can range over a space of
polynomial size. We show in Section 3 that a polynomial number of accepting paths
implies an exact number of such paths (for another machine). We prove that for every
language L in the mentioned classes a polynomial time nondeterministic machine can be
constructed that has exactly f(z)+1 accepting paths for strings z in L, and f(z) accepting
paths for strings z that are not in L where f is a polynomial time computable function.
This fact extends a result in [CaHe89]|, where it was proved that the classes FewP and Few
are included in @P. From our result follows additionally that FewP and Few are contained
in the counting class GP (exact counting), [Wa86|, thus answering a question proposed in
[Sc88|.

We use the above result to prove in Section 4 lowness properties of the class Few. The
concept of lowness for the classes in the polynomial time hierarchy was first introduced
in [Sc83]. This idea was translated to the classes in the counting hierarchy in [Tc38aj
and [To88b]. Intuitively, a set 4 is low for a complexity class K if A does not increase
the computational power of K when used as oracle; K4 = K. We prove that Few is
low for the complexity classes PP, GP, and ®P (parity-P, [PaZa83]), showing PPFe¥=PP,
GPF*Y = GP and §PF¥ = @P.

The lowness results from Section 4 are used in the last part of the paper to obtain pos-
itive relativizations of the questions NPé_G-P, NPéEBP and @P?QPP?. The corresponding
relativized classes have been separated in [To88a], and more recently in {Be88]. We show
here that if the mentioned separations can be done using sparse oracles, then they imply
absolute separations. Results of this kind (positive relativizations) have been obtained
before for the classes of the polynomial time hierarchy in [LoSe86] and [BaBoSc86] (see
also [Sc85)).

2. Basic definitions

The notation used althrough the paper is the common one. We present here definitions of

2

the less known complexity classes mentioned in this article.

Definition 2.1: For a nondeterministic machine M and a string z € T*, let accay(z)
be the number of accepting computation paths of M with input z. Analogously, for a
nondeterministic oracle machine M, an oracle A, and a string z € T*, accj{‘,,(:c) is the

number of accepting paths of M4 with input z.

Definition 2.2: A language L is in the class FewP if there is a nondeterministic polynomial
time machine M and a polynomial p such that for every z € £*,

1) accp(z) < pllz|)

it) ¢ € L <= accpy(z) >0

By the definition, it is clear that UPCFewPCNP. Another interesting path-restricted
class, which is not known to be in NP, is the class Few, an extention of FewP with a more

powerful accepting mechanism. This class was introduced by Cai and Hemachandra in
[CaHe89].

Definition 2.3: A language L is in the class Few if there is a nondeterministic polynomial
time machine M, a polynomial time predicate (), and a polynomial p such that for every
r € I,

1) acem(e) < p(lel)

it) ¢ € L < Q(z,accy(z))

It is obvious that FewPCFew. It was shown in [CaHe89] that this class is closed under
bounded truth-table reductions.
We say that a nondeterministic polynomial time machine M is a Few machine if there

is a polynomial p s.t. for every ¢ € £*, acem(z) < p(Jzl).

Next we define the complexity classes PP, GP and &P that are also defined consid-
ering the number of computation paths of a nondeterministic machine, but in this case

the number of paths is not necessarily polynomially bounded. These classes were first
introduced in [Gi77],[Wa86|, and [PaZa83], respectively.

Definition 2.4: A language L is in the class PP (or CP in the notation of [Wa86]) if there
is a nondeterministic polynomial time machine M and a function f € FP such that for

every r € &*,

z € L <= acepm(z) 2 f(z).

Definition 2.5: A language L is in the class GP if there is a nondeterministic polynomial

time machine M and a function f €FP such that for every z € &*,
z € L & acem(z) = f(x).

Definition 2.6: A language L is in the class @P if there is a nondeterministic polynomial

time machine M such that for every z € L*,

z € L <= accp(z) is even.

It is known that FewC &P [CaHe89] and GPCPP [Ru85]. In [To88a] relativizations
are presented under which the classes NP, GP and @P are all incomparable.

3. Few accepting paths imply an exact number of such paths

In this section we will show that for every Few machine M and every FP function ¢ :
¥* x IN — IN, a nondeterministic polynomial time machine M’ can be constructed with
the property that for every input z € £*, M’ has exactly accar(z) = g(z, accpr(z))+27U=D
accepting paths, for a certain polynomial p. From this result follows directly that the
complexity class Few is included in GP and &P. First we introduce a technical lemma that

will help us to handle the number of accepting paths of a nondeterministic machine.

Lemma 3.1: Let b : &* X Z* — Z be a function in FP, g a polynomial, and M a
nondeterministic polynomial time machine. Then there is a nondeterministic polynomial

time machine M’ and a polynomial r s.t. for every # € %,

q(|=]) ach(x)\ r(|x|)
accpp(z) = E b(z, k) .) +2

k=0

Proof: For machine M, there is a polynomial predicate ¢ and a polynomial p such that
for every input string z, acep(z) = ||{y € 2?20 | Q(z,y)}||- Consider machine M"
described by the following program:

input z;
guess k, 0 < k < ¢(jz|);
if b(z, k) = 0 then reject
else
guess y € {1,...,|b(z, k)|};
guess Y1 < ... < Yk € ez,
if Q(z,y;) forevery i, 1 <1<k
then test :=true
else test :=false;
if (test and b(z,k) > 0) or (~test and (z, k) < 0)
then accept

else reject.

For every guessed k, if b(z, ﬁ)nis positive,rthen M"(z) has b(z, k)(“c"k‘(x)) accepting
paths, and it has |5(z, k)| - [(2pk) — (“cc’i‘(z))] accepting paths if b(z,k) is negative.
Therefore, altogether M"(z) has

b(z,0) (“cc"g (”)) + b(z, 1)(““1;4(“) T b(x,q(n))(ac;é”;()”)> + h(z)

accepting paths where A is the function in FP defined by

o) = 3 [b(e, k)l (2”:“)).

k,b(z,k)<0

Since M" runs in polynomial time, there is a polynomial r such that for every string
z € T*, h(z) < acepn(z) < 272D, We obtain the desired machine M’ by increasing
the number of accepting paths of M". The computation tree of M'(z) consists of two
subtrees: one of them has exactly 27(z]) — h(z) accepting paths, and the other one is
the computation tree of M"(z). M'(z) has then acep(z) = 27UZD — h(z) + acepn(z) =
2r(l=) 4 Z‘,ﬁf]') bz, k)(“”,‘c‘(z)) accepting paths. O

If the machine considered is a Few machine, then there is a polynomial ¢ bounding
accy, and for every x, accy(z) can only take values in {0,...,¢(|z|)}. This fact, as
we will see next, allows to calculate for every function ¢ : £* x IN — IN, values for
5(z,0),...,b(z,q(jz])) satisfying

q(lz])
Z b(z, k) (aCC]\I:(w)) = g(z_’ a,cr;M(;p)) (*)
k=0

There are two important points to be taken into consideration in the calculation of b: In
first place, the value of zg(__l_ﬂal) b(z,k)(7) depends only on the values of b(z,0),...,b(z,m).
Therefore, if there are values for b(z,0),...,d(z,m), satisfying equality (%) in the case
acep(z) < m, the above equality would hold independently of the values given to b(z, m +
1),...,b(z,q(|z])). The second consideration is that after b(z,0),...,5(z,m) have been
given values satisfying () in case accpr(z) < m, a value for 8(z,m + 1) can be found so

that (x) is also true in case accpy{x) = m + 1. This fact Toilows from the equality

q(|=]) m

m-4+1 m+1 1
E bz, k = E b(z, k) +bd(z,m+1) (=g(z,m+1)
k=0)(k) k=0 (k) ?)

from which the value of b(z, m+1) can be obtained from b(z,0),...,b(z,m) and g(z, m+1).
To prove our result it is only left to show that if ¢ €FP, then the values of b can also be

computed in polynomial time.

Theorem 3.2: For every Few machine M and every function g in FP from &* x IN to IN,
there is a nondeterministic polynomial time machine M’ and a polynomial r such that for

every © € =%, accyp(x) = g(z, acepr(z)) + 27D,

Proof: Let ¢ be a polynomial such that for every ¢ € ™ acem(z) < g(|z|), and let
b:E* x N — Z be a function in FP satisfying for every m,0 < m < q(|z|),

q(|=0) m
Z b(:v,k)(k) = g(z,m)
k=0

By Lemma 3.1, there is a nondeterministic polynomial time machine M’ and a polynomial
r with

q(|z])
aceyp () = z b(z, k) (accl\g(a:)> + or(l=h
k=0

= g(=, acem(x)) + 271D

accepting paths. As stated above, b(z, k) can be inductively computed:

6

b(z,0) := g(z,0)

k
k
bz, k+1):=g(z,k+1)— Zb(x,i)(‘1‘1)
1=0

for k =0,...,q(Jz]) — 1 and b(z, k) := 0 for k > ¢(|z|). It is clear that if the values of b do
not become tco large, then the function is in FP. We see that these values are bounded.
For a string z € £* let gmax be the maximum of the values of |g(z, k)|, for k = 0,..., ¢(|z}]).
We show by induction over k that

k y r . v
Ib(:l:, k)' S Ck = gmax'2(2i=0 z) = gmax.2’°(k+1)/2

We have

lb($,0)| < 9max = Co,

k k
o (k+1 k41
|b(:L‘,k I 1)I < Ygmax Z[b(-’l),”l() S gmax Ci(?)
0

;)
=0

=

E k41
< gt ard (FT7) = ot a2 -
1=0

< Ck2k+1 = Ck+1

We use the above result to show the inclusion of Few in the classes GP and @P.

Corollary 3.3: For every language L in Few there is a nondeterministic polynomial time
machine M’ and a function f €FP such that for every string z € Z*:

if £ € L then aceprr(z) = flx) +1

if z & L then accyr(z) = f(z)

Proof: Let L be a language in Few, M a Few machine and @ a pclynomial time predicate

such that for every string z, z € L <= Q(z,accy(z)). Define function g as

¢ .
, _J 1 ifQ(z,m)
““m*‘h)ﬁﬂmam)
By Theorem 3.2, there is a nondeterministic polynomial time machine M’ and a polynomial

r with accpr(z) = g(z, acep(z)) + 27020, therefore

7

orz) +1 ifreL
acen(z) = {2r(|zl) ifz gL

The result follows since the function f defined by f(z) := 2r(=]) is in FP. a

Corollary 3.4:
i) Few C GP
it) Few C ®P [CaHe89]

4. Lowness of Few

We will see in this section that the class Few is low for the complexity classes PP, G and
@P. The concept of lowness for classes in the polynomial time hierarchy was introduced in

[Sc83|. We extend the concept here to other complexity classes.

Definition 4.1: For a language L and a complexity class K (which has a senseful rel-
ativized version K©), we will say that L is low for K (L is K-low) if KX = K. For a
language class C, C is low for K if for every language L in C, K = K.

In order to show the lowness properties of Few, first we need a lemma which states
that a nondeterministic machine querying an oracle in Few can be simulated by another
machine of the same type with the same number of accepting paths that queries just one

string on every path to another oracle in Few.

Lemma 4.2: For every nondeterministic polynomial time machine M and every language
A €Few, there is a nondeterministic polynomial time machine M’ and a language A’ €FewP
such that for every z € T*, accfd (z) = accfy (z) and M'(z) queries just one string to the

oracle in every computation path.

Proof: Let M be a polynomial time nondeterministic machine, with an cracle 4 in Few.
There is a polynomial time predicate) and a Few machine M" such that for every z € T*
z € A e Q(z,accpn(2)).

Consider the nondeterministic oracle machine M’ described by the following algo-

rithm:

input z;
guess w = (z,(q1, 41, -, ¥})+ (@, yEs -+ UE))
{ computation path of M, queries made to the oracle following this path, and accepting
computation paths in machine M" for the guessed queries }
if z is an accepting path for M(z) in which exactly the sequence of oracle queries
q1,---,qk is made, and every query g¢; is answered “yes” if and only if Q(g;,7;), and
for every j, vl < ... < yf;,, and 7, ..., ny are accepting paths of N(g;) then

if w € A’ then reject

else accept

end.

The oracle for the algorithm is the set A’ €FewP

A= {(z’(QIay%r-*;yill)’---a(qkayfv"-’yzﬁ)) l ajay s.t. y is an accepting path of
A/[”(QJ') and Yy ?é y.l19 ay;"]j}

The algorithm guesses the accepting computation paths for the queries of M, and then
checks that it has not guessed “too many” of these paths. Then, the query to A’ {answered
negatively) assures that all such paths have been guessed, and therefore membership in A
of the queries made by machine M, is correctly decided. Observe that there is a polynomial
p (depending on A and M) such that for every input string z, and every guessed string w
in M' that leads to acceptance, |w| < p(|z|), and therefore the machine runs in polynomial
time. Note also that in every accepting computation path, the answer to the oracle has to
be answered negatively.

Then A’ € FewP since A €Few, and therefore for every possible query g;, there are
at most a polynomial number of accepting paths for machine M" with input g;. 0

Theorem 4.3: For every nondeterministic polynomial time oracle machine M and ev-
ery language A €Few, there is a nondeterministic polynomial time machine M' and a

polynomial ¢ such that for every z € &%, accpr(z) = accfy(z) + 290D,

Proof: Let M be a nondeterministic polynomial time machine and A a language in Few.
By (the proof of) Lemma 4.2, it is not hard to see that there is a predicate R €FewP, and
a polynomial p such that for every z € T*, accfy(z) = ||{y € =2U=D | =R(z, y)}||.

9

By Theorem 3.2, there is a nondeterministic polynomial time machine M" and a
polynomial r such that for every pair (z,y), M"(z,y) has exactly 27((=¥D accepting
paths if R(z,y) is true, and it has exactly orl(=9D 4 1 accepting paths otherwise. Define
a function h by h(z) = 27((= ’OP(III))D, and consider the following nondeterministic machine
M’

With input z, M' guesses a string y of length p(|z|). Then M' simulates M" with
input (z,y).

M'(z) has then 2PUsDh(z) + ||{y € ZPUD | sR(z, y)}I = 22UzDh(2) + accd (z) accepting
paths. A small modification of M’ increases the number of its accepting paths, as in
the proof of Lemma 3.1. Therefore, it follows that there is a polynomial ¢ for which
acchy(z) = accty(z) + 292D, n]

A direct consequence of the above theorem is that Few is low for the class PP, GP

and @P.

Corollary 4.4:

i) Few is PP-low.
11) Few is GP-low.
111) Few is ©P-low.

It is not hard to see, looking at the proofs, that the above results relativize. More
precisely, for every oracle set 4, the classes PPF e“'A, GPFe*" and @PF"‘”A, are included
in PP4, GP4 and @P4, respectively. We will make use of the relativized version of the

results in next section.

5. Positive relativizations

The complexity classes NP, PP, GP and ®P seem all to be different, although a proof of
“Tany separation would imply immediately P#PSPACE, and therefore the question is hard
to answer. It is easier to separate the classes in relativized worlds; this has been done in
[To88a] and in [Be88]. We will show here that if the relativized separation of the classes
could be done using sparse oracles, then this would imply that the classes are different.

Actually, the separation results in [To88a| are done with non-sparse oracles. These results

10

are on the same line as the positive relativizations for the classes in the polynomial time
hierarchy obtained in [LoSe86] and [BaBoSc86].

Definition 5.1: For a language A define the function print4 : {0}* — I* as
print4(0™) = (a1, az,...,ak)

where ay,as,...,ar are the lexicographically first strings in A of length less than or equal

to n.

Lemma 5.2: Let S be a sparse language. The function prints can bhe computed in

polynomial time relative to an oracle in FewP?.

Proof: For a sparse language S, consider the set
Ls ={(0",y,z2) | there is a string w € S,s.t. |[w|<nAy <w <z (in lex. order)}

Ls is in FewP? since for every string (07, y, z) there are only a polynomial number of strings
on length < n in S, and therefore there are only a polynomial number of possible witnesses
for membership of (0",y,2) in Lg. The function 0™ — prinis(C™) can be computed in

polynomial time by iterating a binary search process in Lg. O

Theorem 5.3:

i) NP C GP<«= for every sparse oracle set §, NP° C GP?.
i1) NP C @P <= for every sparse oracle set S, NP° C @P~.
i1i) @P C PP«=> for every sparse oracle set S, @P C PP”.

Proof: ¢) The direction from right to left is straightforward. For the other direction, let S
be a sparse set and let A be a language in NP computed by a nondeterministic polyromial

time machine M. Consider the set

A" ={(z,a1,...,ak) | M accepts = using the oracle {ai,...,ar} }

There is a polynomial ¢ such that for every string z € &*,

T € A<= (z,prints(0917D)) ¢ 4.

It is clear that A’ €NP and by the hypothesis, A' € GP. Therefore, by Lemma 5.2, in order

to compute A we need first a computation in PF¢*P’ to obtain prints(09(17D), and then a

11

GP predicate to decide whether (z, prints(07=D) belongs to A’. Therefore A € GPFevP’
but by the (relativized version of the) lowness results of Section 4, GPFe"P * = GPS.

For i7) and iit), the proof is completely analogous, considering that by the results of Section
4, FewP is also low for &P and for PP. 0

References
[AlR5] E.W. Allender. Invertibie Funcitens. Ph.D. dissertation, Georgia Inst. of Techn.,
1985.

[BaBoSc86] J.L. Balcazar, R.V. Book, and U. Schéning. The polynomial-time hierarchy
and sparse oracles. Journ. Assoc. Comput. Mach. 33 (1986): 603-617.

[Be88] R. Beigel. Relativized counting classes: Relations among thresholds, parity, and
mods. Manuscript (1988).

[CaHe89] J. Cai and L.A. Hemachandra. On the power of parity. Symp. Theor. Aspects

of Comput. Sci., Lecture Notes in Computer Science, Springer-Verlag, 1989, to appear.

[Gi77] J. Gill. Computaticnal complexity of probabilistic complexity classes. STAM Journ.
Comput. 6 (1977): 675-695.

[GrSe84] S. Grollmann and A.L. Selman. Complexity measures for public-key crypto-
systems. 25th Symp. Found. Comput. Sci., 495-503, IEEE, 1984.

[LoSe86] T.J. Long and A.L. Selman. Relativizing complexity classes with sparse sets.
Journ. of the Assoc. Comput. Mach. 33 (1986): 618-628.

[Ma82] S.A. Mahaney. Sparse complete sets for NP: solution of a conjecture of Berman
and Hartmanis. Journ. Comput. Syst. Sei. 25 (1982): 130-143.

[PaZa83] C.H. Papadimitriou and S.K. Zachos. Two remarks on the power of counting.
6th GI Conf. on Theor. Comput. Sci., Lecture Notes in Computer Science 145, 269-276,
Springer-Verlag, 1983.

[Sc83] U. Schoning. A low and a high hierarchy within NP. Journ. Comput. Syst. Sci. 27
(1983): 14-28.

12

[Sc85] U. Schéning. Complezity and Structure. Lecture Notes in Computer Science 211,
Springer-Verlag, 1986.

[Sc88] U. Schoning. The power of counting. Proc. Ird Structure in Complezity Theory
Conf., 2-9, IEEE, 1988.

[To88a] J. Tordn. Structural Properties of the Counting Hierarchies. Doctoral dissertation,
Facultat d’Informatica, UPC Barcelona, Jan. 1988.

[To88b] J. Tordn. An oracle characterization of the counting hierarchy. Proc. Ird Struct.
Complezity Theory Conf., 213-223, IEEE, 1988.

[Va76] L.G. Valiant. The relative complexity of checking and evaluating. Inform. Proc.
Lett. 5 (1976): 20-23. |

[Wa86] K.W. Wagner. The complexity of combinatorial problems with succinct input
representation. Acta Inform. 23 (1986): 325-356.

13

