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Abstract. We present a new computational model for predicting the effect of blast
loading on structures. The model is based in the adaptive coupling of the finite element
method (FEM) and the discrete element method (DEM) for the accurate reproduction
of multifracturing and failure of structures under blast loading. In the paper we briefly
describe the basis of the coupled DEM/FEM technology and demonstrate its efficiency
in its application to the study of the effect of blast loading on a masonry wall, a masonry
tunnel and a double curvature dam.

1 INTRODUCTION

The paper presents a procedure for modelling and simulation of the effect of blast
loading on structures via the adaptive coupling of the discrete element method and the
finite element methods. The theoretical formulation of the discrete element method using
spherical or cylindrical particles is briefly reviewed. The finite element equations for
structural dynamics are integrated using a standard explicit time integration scheme.
The formulation of an adaptive multiscale DEM/FEM model employing the DEM and
FEM in different subdomains of the same body is presented. An overlap zone in the DEM
and FEM domains is introduced adaptively in order to provide a smooth transition from
one discretization method to the other. Coupling between the DEM and FEM overlapping
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subdomains is provided by kinematic constraints imposed via a penalty function method.
The efficiency of the new DEM/FEM method is demonstrated in its application to the
study of the effect of blast loading on a masonry wall, a masonry tunnel and a double
curvature concrete dam.

2 DISCRETE ELEMENT METHOD FORMULATION

The discrete element method (DEM) is widely recognized as a suitable tool to model
geomaterials. This procedure can also be effectively used to model multifracture in “con-
tinuum” structures modelled as a collection of discrete elements. Formulation of spherical
discrete elements following the main assumptions of Cundall [1, 2] has been developed by
Oñate and Rojek [5] and Rojek and Oñate [8, 9] and implemented in an explicit dynamic
formulation. The DEM assumes that the solid material can be represented as a collection
of rigid particles (spheres or balls in 3D and discs in 2D) interacting with each other
in the normal and tangential directions at the contact points. Material deformation is
assumed to be concentrated at the contact points. Appropriate contact laws allow us to
obtain desired macroscopic material properties. The contact law used takes into account
cohesive bonds between rigid particles. Cohesive bonds can be broken, thus allowing to
simulate fracture of material and its propagation.

2.1 Equations of motion

The translational and rotational motion of rigid spherical (3D) or cylindrical (2D) ele-
ments (particles) is described by means of the standard equations of rigid body dynamics.
For the i-th element we have

miüi = Fi , Iiω̇i = Ti (1)

where u is the displacement of the element centroid in a fixed (inertial) coordinate frame
X, ω – the angular velocity, m – the element mass, I – the moment of inertia, F – the
resultant force, and T – the resultant moment about the central axes. Vectors F and T
include all external forces and moments applied to the i-th element, contact forces due
to interactions with neighboring element and other obstacles, as well as forces resulting
from damping in the system.

The equations of motion (1) are integrated in time using an explicit central difference
scheme. For the ith element this gives:
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The first two steps in the integration scheme for the rotational motion are identical to
those given by Equation (2):
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Figure 1: (a) Decomposition of contact force in normal and tangential components. (b) Model of the
contact interface.

The vector of incremental rotation ∆θ = {∆θx ∆θy ∆θz}T is calculated as ∆θi =

ω
n+1/2
i ∆t.
Knowledge of the incremental rotation suffices to update the tangential contact forces.

It is also possible to track the rotational position of particles, if necessary. The rotation
matrices between the moving frames embedded in the particles and the fixed global frame
are updated incrementally using a multiplicative scheme [5, 8, 9].

2.2 Contact search algorithm

Changing contact pairs of elements during the analysis process must be automatically
detected. The simple approach to identify interaction pairs by checking every sphere
against every other sphere would be very inefficient, as the computational time is propor-
tional to n2, where n is the number of elements. In our formulation the search is based
on quad-tree and oct-tree structures. In this case the computation time of the contact
search is proportional to n ln n, which allows to solve large frictional contact systems.

2.3 Evaluation of contact forces

Once contact between a pair of elements is detected, the forces occurring at the con-
tact point are calculated. The interaction between the two interacting bodies can be
represented by the contact forces F1 and F2, which by the Newton’s third law satisfy the
following relation:

F1 = −F2 (4)

We take F = F1 and decompose F into the normal and tangential components, Fn and
FT , respectively as F = Fn + FT = Fnn + FT , where n is the unit vector normal to the
particle surface at the contact point (Fig. 1a).

The value of the contact forces Fn and FT is obtained using a constitutive model
formulated for the contact between two rigid elements. The contact interface in our
formulation is characterized by the normal and tangential stiffness kn and kT , respectively,
the Coulomb friction coefficient µ, and the contact damping coefficient cn (Fig. 1b). For
details see [5, 8, 9].
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3 FINITE ELEMENT FORMULATION

In the present work the so-called explicit dynamic formulation of the finite element
equations of structural dynamics is used. The discretized equations of motion in the
current configuration have the following form:

MFüF = Fext
F − Fint

F , (5)

where MF is the mass matrix, rF is the vector of nodal displacements in the finite element
mesh, Fext

F and Fint
F are the vectors of external loads and internal forces, respectively.

The global matrices and vectors, MF, Fext
F and Fint

F , are assembled from the respective
elemental matrices and vectors, me, f ext

e and f int
e , defined as follows:

me =

∫

Ωe

ρNTN dΩe , f int
e =

∫

Ωe

BTσ dΩe , f ext
e =

∫

Ωe

NTρb dΩe +

∫

Γe

NTt dΓe

(6)
where ρ is the mass density, σ is the Cauchy stress tensor, b are the body forces, t is the
surface traction, N is the matrix of interpolation (shape) functions and B is the linear
strain-displacement operator matrix [8].

Similarly to the DEM algorithm (Equation (2)), the central difference scheme is used
for time integration of Equation (5):
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F (Fext
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F )n , u̇
n+1/2
F = u̇

n−1/2
F + ün

F∆t , un+1
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F ∆t . (7)

Use of a diagonalized mass matrix yields a decoupled set of equations, and eliminates the
necessity of matrix inversion in Equation (7.1). This leads to a very efficient solution for
each time step. For details see [5, 8, 9].

4 COMBINED DEM/FEM MODEL

The coupling of DEM and FEM techniques leads to a powerful scheme for analysis of
multifracture problems in solids. Successful attempts to develop a coupled DEM/FEM
algorithm have been reported in [5, 4]. The adaptive DEM/FEM multiscale model used
in this work is obtained by combining the discrete element and finite element methods
in different subdomains of the same body. The coupling algorithm used here follows
the concept presented in [10] for molecular dynamics coupling with a continuous model.
The DEM and FEM subdomains can overlap each other. In this way a transitory zone
between the microscopic-scale zone (discrete elements)and the macroscopic-scale zone
(finite elements) is introduced. In the overlapping zone contributions of each of the two
methods to the overall stiffness vary gradually. This allows us to avoid or minimize
unrealistic wave reflections at the interface between the DEM and FEM domains.

The total domain Ω is split into two subdomains: ΩF , discretized with finite elements
and ΩD, modelled with discrete elements. Domains ΩF and ΩD can overlap with each
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Figure 2: Schematic representation of DEM, FEM and DEM/FEM overlapping domains.

other over a region ΩDF (Fig. 2). The virtual work (VW) in the total domain Ω (δWΩ)
is written as a linear combination of the virtual work in the subdomains ΩF and ΩD, i.e.

δWΩ = αδWF = (1 − α)δWD (8)

where α is a parameter that takes a zero value on ΩD, a unit value on ΩF and it varies
linearly between 0 and 1 on the overlapping region ΩD−F .

Subdomains ΩF and ΩD are coupled in the overlapping region ΩD−F . Coupling is
introduced via kinematic constraints relating the displacements (u), velocities (u̇) and
accelerations (ü) of the nodes of the finite element mesh and the discrete elements be-
longing to ΩD−F . The kinematic constraint can be generically written as

δuDi
− NFδuF = 0 , u̇Di

− NFu̇F = 0 , üDi
− NFüF = 0 (9)

where (·)Di
and (·)F respectively denote values at the discrete element i and the finite

element mesh nodes and NF are the standard FEM shape functions. The constraints (9)
are applied on the overlapping region ΩD−F only.

The constraints (9) are introduced in the VW equation via a penalty function method.
For details see [9].

5 ADAPTIVE DEM-FEM SCHEME

An adaptive DEM/FEM solution procedure has been developed based on the progres-
sive introduction of discrete elements in zones of the finite element mesh where cracking
and multifracture occurs. This optimizes the use of discrete elements to zones where they
can be more efective which considerably simplifies the contact search process.

In essence, the adaptive DEM/FEM procedure operates as follows:

1. Start with a discretization of the analysis domain using a finite element mesh only
(i.e. ◦Ω ≡ ◦ΩF ).

2. At each time instant (t) check the stress and strain levels at each element. For linear
triangles and tetrahedra this simple implies computing the strains and stresses at
the element centroid.
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3. Evaluate the threshold of failure (fracture) of each element. This can be done via
procedures based on the point-wise value of the stresses (or the strains), or using
an adequate energy norm. In our work a simple Tresca failure model has been used
to define the onset of fracture at the element mid-point.

4. Introduce a collection of discrete elements within the finite elements that have ex-
ceeded the failure threshold. In our work this occurs when the stresses at the element
mid-point reach 90% of the Tresca failure stress. At this moment, the continuum
region previously occupied by finite elements is now modelled with a collection of
discrete elements.

The introduction of discrete elements will create an overlapping between the new dis-
crete elements and the finite elements remaining in the mesh. Overlap DEM/FEM
regions are treated as explained in the previous section.

5. Solve for the displacements, velocities and accelerations of the regions occupied with
finite elements (ΩF ) and discrete elements (ΩD) at t+∆t using the explicit schemes
(2) and (7) with the constraints (9).

6. The introduction of additional discrete element regions on the finite element mesh
evolves in time in an adaptive manner accordingly to the evolution of the stress and
strain fields in the analysis domain.

For blast problems the transition of the finite element mesh to the discrete element
region occurs quite rapidly, as the fracture zone progresses almost at the blast speed on
the whole analysis domain. However, the adaptive DEM/FEM procedure is still effective
in these cases as the time increment for the explicit solution is very small and the delay
in introducing discrete elements leads to considerable savings in computing time.

6 EXAMPLES

6.1 Failure of a vertical wall due to blast loading

This relatively simple 2D example shows the failure of a vertical masonry wall induced
by a blast loading due to an explosive placed within a concrete box modelled with discrete
elements (Fig. 3a). The effect of the explosive is simulated by an inpulse pressure load,
with a peak pressure of 600 MPa acting the center of the box. The explosion induces the
multifracture of the box in many fragments that impact the adjacent wall inducing its
instant failure (Fig. 4).

The cylinder wall has been initially discretized with a mesh of finite elements. The dis-
crete elements have been progressively introduced in the wall using the adaptive DEM/FEM
coupling algorithm. The evolution of the discrete element region in the wall is shown for
three time instants in Figure 5.

Figure 6 shows a similar 2D problem for a masonry tunnel under the same type of blast
loading.
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(a) (b)

Figure 3: Masonry wall under blast loading induced by an explosive within a concrete box. (a) Concrete
box and explosive condition, (b) Geometry of box and wall.

Figure 4: Masonry wall under blast load. Deformation of the wall at three time instants.

Figure 5: Detail of adaptive DEM/FEM procedure on the masonry wall at three time instants.

6.2 Analysis of the fracture of a double curvature dam due to blast loading

The final example is the study of the fracture induced by a blast load on a double
curvature concrete dam. The load is induced by an explosive placed at the top of the
central section, reproducing the effect of the explosion of a vehicle circulating over the
dam top. The region adjacent to the explosion has been modelled with discrete (spherical)
elements while the rest of the dam has been modelled with standard 4-noded tetrahedral
elements.

Figure 7 shows the evolution of the fracture at the dam top due to the explosion and
the final fractured zone.
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Figure 6: Masonry cylinder under internal blast load induced by an explosive within a concrete box.
Deformation of structure at three time instants.

Figure 7: Effect of a blast load an a double curvature dam. The explosive load has been modelled as a
peak pressure load of 600 MPa acting at the center of the dam top.

7 CONCLUDING REMARKS

The adaptive DEM/FEM procedure presented in this work is an effective technique for
the modelling and simulation of the progressive multi-fracture and failure of structures
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due to blast loading. The adaptive DEM/FEM scheme allows the optimal use of DEM
and FEM in different parts of the structure as the failure region evolves.
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[5] Oñate, E. and Rojek, J. 2004. Combination of discrete element and finite element
methods for dynamic analysis of geomechanics problems. Comput. Meth. Appl. Mech.
Eng. 193:3087–3128.
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