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Abstract. We analyze the effect of particle shape non-convexity on the quasi-static
behavior of granular materials by means of contact dynamics simulations. The particles
are regular aggregates of four overlapping spheres described by a nonconvexity parameter
depending on the relative positions of the particles. Several packings are first submitted
to isotropic compression without friction. We find that, as in 2D, the solid fraction of
isotropic packings increases with non-convexity up to a maximum value and then declines
to be nearly equal to that of a packing composed of only spheres. It is also remarkable that
the coordination number increases quickly and saturates so that the packings composed
of grains with a high level of nonconvexity are looser but more strongly connected. Then,
the quasi-static behavior, structural and force anisotropies are analyzed by subjecting
each packing to a triaxial compression. We find that the shear strength increases with
non-convexity. We show that this increase results from the presence of multiple contacts
between trimers leading to enhanced frictional interlocking.

1 INTRODUCTION

Spherical or circular shape have been mostly used to investigate the rheology and
microstructure of granular materials. The widespread use of this idealized shape has
been motivated by the fact that the rheology is mainly governed by the collective contact
interactions of the particles. Nevertheless these models are not able to reflect some of
the more complex aspects of real granular media behavior, such as high shear resistance
observed for angular particles [3, 8, 9] or high volumetric changes in the case of elongated
particles [5].
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Figure 1: (a) Geometry of regular aggregate. (b) Map of particles pressure at the end of isotropic state
for η = 0.4

Among the difficulties, except the fact that numerically the modeling of complex shape
gives rise to various technical difficulties both geometrical and computational [6], is that
1) the shape parameters need to be defined conveniently in order to be able to generate
particle shapes with continuously-variable shape parameters and 2) particle shape can
be broken down into different categories: angular shape, non-convex shape, elongated
shape...

In this work we focus more precisely on the effect of non-convexity on the rheology of
granular media. We consider aggregates of four overlapped spheres as a 3D generalization
of trimers [12] (aggregates of three overlapping disks in 2D). Our numerical approach is
presented in Sec.2. We analyze the stress-strain behavior in sec.3 as well as the topology
of the contact network and force transmission as a function of nonconvexity, respectively
in sec.4 and 5.

2 NUMERICAL PROCEDURES

The shape of a regular aggregate composed of four spheres of radius r can be char-
acterized by considering the radius R of the circumscribed sphere as compared to the
radius R′ of the inscribed sphere; Fig. 1(a). The difference ∆R = R − R′ represents the
concavity of the aggregate which, by definition, corresponds to the inward deviation from
the surface of the circumscribed sphere. Hence, the non-convexity η can be defined by
the ratio η = ∆R/R. This parameter can be calculated as a function of the ratio d/2r,
where d is the distance between the center of two spheres. This definition is similar to
the so-called “Riley Sphericity” used to characterize thin sections in rock mechanic [7].
This parameter varies from 0, corresponding to a sphere, to η ≃ 0.76 corresponding to an
aggregate where the constituting coplanar spheres intersect themselves at a single point
(i.e. d/2r =

√
3/2).

We used contact dynamic (CD) simulations [1, 13, 10] to compact 12 000 aggregates
(48 000 spheres) by isotropic compression inside a box of dimensions L0 × l0 × H0 in
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Figure 2: (a) Normalized shear stress (q/p)∗ averaged in the residual state together with the harmonic
approximation and the friction angle sinϕ, (b) The initial and final solid fractions as a function of
nonconvexity.

which the left, bottom and background walls are fixed and the top, the right and the
front walls are subjected to the same compressive stress σ0. The gravity and friction
coefficients µ and µw between particles and with the walls, respectively, are set to zero in
order to get homogeneous and isotropic dense packings. At equilibrium, all samples were
in isotropic stress state. Eight samples are prepared according to this protocole for eight
values of η ∈ [0, 0.7]. Figure 1(b) shows an example of packing obtain by this procedure
for η = 0.4. The grey-level are proportional to the mean pressure. In order to avoid
long-range ordering in the limit of small values of η, we introduce a size polydispersity
by taking R in the range [Rmin, 3Rmin] and a uniform distribution of particle volume
fractions. These samples are then used as initial configuration for triaxial compression
tests with µ = 0.4 between particles. A downward velocity vz is imposed on the upper
wall while keeping a constant confining stress on lateral wall.

3 STRESS-STRAIN BEHAVIOR

The stress tensor σ can be evaluated from the simulation data as an average over all the
contact of the dyadic product of contact force f c and branch vector ℓc : σαβ = nc�f c

αℓc
β�c

[1], where nc is the number density of contacts c. Under triaxial conditions with vertical
compression, we have σ1 ≥ σ2 = σ3, where the σα are the stress principal values. We
extract the mean stress p = (σ1 + σ2 + σ3)/3 and the stress deviator q = (σ1 − σ3)/3.

During shear, the shear stress jumps initially to a high value before decreasing to a
nearly constant value in the steady state. The steady-state shear stress (q/p)∗ charac-
terizes the shear strength of the material. According to the Mohr-Coulomb model, in
triaxial geometry, the internal angle of friction, representing the shear strength of the
material, is defined by sin ϕ∗ = 3q/(2p + q) [7]. Figure 2(a) shows the variation of (q/p)∗

and sin ϕ∗ averaged in the steady state as a function of η. We see that both (q/p)∗ and
sin ϕ∗ increases with η. We also observe that the prediction of an approximation from
force and fabric anisotropies, to be discussed below, provides a nice fit to the simulation
data.
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Figure 3: Different types of contact between two aggregate: (a) simple (s), (b) simple-double (sd) and
double (d), (c) triple double-simple (tsd), double (td), simple (ts) and (d) quadruple contacts
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Figure 4: (a) Coordination Z and connectivity Zc numbers as a function of η both at initial and residual
state, (b) Proportion of k each contacts in the residual state as a function of η.

Figure 2(b) displays the solid fraction ρ at initial (isotropic) ρ0 and critical ρ∗ state
as a function of non-convexity η. Interestingly, the solid fraction first grows in the range
η < 0.3, then it declines slowly with η up to a value close to that for spheres for initial
state and bellow to that of sheres for critical state. A similar unmonotonic behavior of
packing fraction has been previously observed for granular packings of elongated particles
such as ellipses, ellipsoidal particles, sphero-cylinders and rounded-cap rectangles [5, 11] .
This is somewhat a counterintuitive finding as the shear strength (a monotonous function
of η) does not follow the trend of solid fraction (non-monotonous).

4 CONTACT vs NEIGHBOR NETWORK

A major effect of concavities is to allow for multiple contacts between two aggregates.
Various kinds of contacts can occur as shown in Fig3: (1) simple contact, (2) simple-
double as two simple contacts between two pairs of spheres, or double contact, defined as
two contacts between one sphere of one aggregate with two sphere of another aggregate,
(3) triple contacts (t) defined as a combination of simple and double contacts (tsd), or one
sphere of one aggregate and three spheres of other aggregate (td) or three simple contacts
(ts), and (d) quadruple’(q) contacts as two times (2b) contacts. Note that, cinquple and
sixtuple are possible but very rare, as well as td and ts contacts.

Thus, given multiple contacts between aggregates, we can distinguish between the
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Figure 5: (a) Map of the neighbor force network at η = 0.6 Line thickness is proportional to the radial
force. s-contacts are in black, sd-contacts in red, d-contacts are in green, t-contacts are in blue and
q-contacts are in yellow. (b) branch, length-branch, radial and orthoradial force anisotropies averaged in
the residual state as a function of η.

“coordination” number Z as the mean number of contact neighbors per particle (i.e.
double, triple... contacts are seen as one contact), and the “connectivity” number Zc

defined as the mean number of contacts per particle.
Figure 4(a) plots Z and Zc both in the isotropic and residual state as a function of η.

We see that Z0
c jumps from 6 for spheres to ≃ 12 for η > 0. Indeed, this is compatible

with the isostatic nature of our packings prepared with a zero friction coefficient [2]. For
frictional aggregates, in the residual state, Z∗

c is less important but increases from 3.5
to 5.5 with η. Interestingly, we see also that, both in the isostatic and residual state, Z
remains nearly constant for η > 0. In others words, the effect of increasing nonconvexity
is therefore expressed by an increasing number of multiple contacts with the same average
number of neighboring aggregates and thus for large η, the packings are loose but well
connected. Figure 4(b) displays the proportion of each contact type in the residual state
as a function of η. By definition, all contacts are simple at η = 0. We see that the fraction
of simple contacts declines as η increases and that of multiple contacts increases at the
same time. We see also that, for η > 0.4 the proportion of each contact type remains
constant with η. The increasing connectivity of the particles is obviously correlated with
the increase of shear strength. This is well illustrated in Fig. 5(a) which shows a map of
radial forces fn′ = Fn′, where F is the resultant of point forces acting at their contacts
between two aggregates, projected along the branch vector n′ (i.e. unit vector joining the
centers of the two contacting aggregates). We see that stronger force chains are composed
of simple contacts reinforced by double contacts, double-simple, triple and quadruple
contacts.
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5 FORCE TRANSMISSION AND FRICTION MOBILIZATION

The anisotropic structures seen in Fig.5(a) can be characterized more generally trough
the angular dependence �fn′�(Ω) and �ft′�(Ω) of radial and orthoradial forces along the
direction n′, where ft′t

′ = F − fn′n′, and Ω = (θ, φ) the azimutal and radial angles that
define the orientations of n′ in 3D. We can show that the mean radial and orthoradial
force, �fn′� and �ft′� are respectively given by:

�fn′� =

�

Ω

�fn′�(Ω)PΩ(Ω)dΩ and �ft′� =

�

Ω

�ft′�(Ω)PΩ(Ω)dΩ, (1)

where, dΩ is the solid angle and PΩ(Ω) the angular distribution of the branch vector. Note
that due to quasi-static shearing, we have �ft′� = 0. This means that �ft′�(Ω) and PΩ(Ω)
are orthonormal. Under the axisymmetric conditions of our simulations, these angular
distributions are independent of φ, so that, at leading order on the spherical harmonic
basis, we have [4, 9]:







(a) Pθ(θ) = 1
4π
{1 + a′

c[3 cos2(θ − θc) − 1]},
(b) �fn′�(θ) = �fn′�{1 + afn′ [3 cos2(θ − θfn) − 1]},
(c) �ft′�(θ) = �fn′�aft′ sin 2(θ − θft),

(2)

where, a′

c, afn′ and aft′ are the branch, radial and orthoradial force anisotropy param-
eters, and θc = θfn′ = θft′ = θσ the privileged directions of the corresponding angular
direction coinciding with the principal direction of the shear stress. These anisotropies
are interesting descriptors of granular microstructure and force transmission properties,
because they underlie the different microscopic origins of shear strength. Indeed, it can
be shown that the general expression of the stress tensor leads to the following simple
relation [4, 9]:

q

p
≃ 0.4(a′

c + afn′ + aft′), (3)

where the cross products between the anisotropy parameters have been neglected. Figure
2(a) shows that Eq. 3 holds well for all values of η.

Figure 5(b) shows the variation of all anisotropies averaged in the steady state as
a function of η. We see that a′

c and afn′ increases from 0.2 to 0.3 and to 0.2 to 0.4,
respectively, but they saturate for η > 0.3. The saturation of a′

c is correlated with the
fact that the mean number of neighbors per particle remains nearly constant with η. The
large amplitude of afn′ reflects the fact that stronger forces chains are developed due to
the increase of multiple contacts with η. Nevertheless, as shown in Sec. 4, at larger η the
proportion of multiple contact remains constant and thus afn′ saturate also.

In contrast, we see that aft′ increases rapidly with η from 0.05 for η = 0 to be nearly
equal to a′

c for η = 0.7. Remarking that, at the contact scale the ratio |ft|/(µfn) ∈ [0, 1],
where fn and ft are the normal and tangential forces, provides a good measure of the
degree of the mobilization of friction, Eq. 2(c) can thus be seen as the angular mobilization
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of friction in the neighbor frame [9, 12]. Indeed, it is easy to see that the mean mobilization
of friction is simply given by �|ft′ |�/�fn′� = 5aft′/2. In other words, the increase of aft′

underlies an increase of the friction mobilization. In fact, with η much more contacts are
interlocked which have to effect to freeze the relative motion of the particles, and thus to
increase the proportion of sliding particles.

6 DISCUSSION AND CONCLUSION

In this paper, we applied the contact dynamics method to simulate large samples of
nonconvex aggregates. A single parameter was defined to characterize shape nonconvexity
and it was varied in order to investigate its effect on the shear strength, solid fraction,
texture and force transmission. It was shown that the shear strength increases with
nonconvexity. By distinguishing the contact network from the neighbor network we have
shown that the origins of this increase result from the increase of multiple contacts between
aggregate. This leads to an increase of the proportion of interlocked aggregates. As the
consequence the increasing mobilization of friction force and the associated anisotropy are
key effects of non-convexity

In this article, we have developed the texture and force transmission in terms of the
neighbor orientation. It will be instructive to reinterpret and to compare this result as a
function of the contacts orientation. Much more work is needed in order to understand
the mechanical role of each contact type on the stress transmission. An idea is to isolate
the contribution of each contact on the texture and forces anisotropies. This investigation
is presently underway and will be presented in a forthcoming publication.
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