s 140000 MUg
N

Self-reducibility
J.L. Balcdzar

Report LSI-88-18

FACULTAT O 70 ThTIRA
BIBLIOTECA
R, Auey 29 TiT WY |

SELF-REDUCIBILITY

Preliminary version'!
November 1988

José L. Balcazar

Department of Software (Llenguatges i Sistemes Informatics)
Universitat Politécnica de Catalunya
08028 Barcelona, SPAIN
e-mail: eabalqui@ebrupc51 (bitnet)

Abstract: New self-reducibility structures are proposed to deal with sets
outside the class PSPACE and with sets in logarithmic space complexity
classes. General properties derived from the definition are used to prove
known results comparing uniform and nonuniform complexity classes, and
to obtain new ones regarding deterministic time classes, nondeterministic
space classes, and reducibility to context-free languages.

Resum: Proposem noves estructures de auto-reduibilitat per a estudiar
problemes que no pertanyen a la classe PSPACE i problemes en classes
definides per espai logaritmic. Trobem propietats generals derivades de
les definicions que fem servir per demostrar resultats coneguts referents a
la comparacid entre classes uniformes i no uniformes, 1 per obtenir-ne de
nous que es refereixen a classes deterministes amb fites de temps, classes
indeterministes amb fites d’espai, i reduibilitat a llenguatges incontextuals.

1. Introduction

The self-reducibility of some NP-complete sets plays a crucial role in the research on
reductions to sparse sets. See [5], [9], and [16] for results regarding sparse polynomial
time m-reductions from NP-complete sets. Results for more general reducibilities ap-
pear, among others, in [18]. If polynomial time Turing reductions are considered, the
reduction class of the sparse sets can be characterized as the nonuniform class P/poly.
and other nonuniform classes have similar characterizations. As part of the study of po-
tential nonuniform properties of certain sets, very interesting consequences for uniform
complexity classes are shown in [13], clarifying the relationships between nonuniform and

' This work has been partially supported by CIRIT. Some of the results in section 3
were announced at Symposium on Theoretical Aspects of Computer Science, Passau, West

Germany, 1987. The results in sections 4 to 7 were announced at Structure in Complexity
Theory Third Annual Conference, Washington, D.C., U.S.A., 1988.

1

uniform computational models. These results are obtained by three seemingly differ-
ent methods, called there the “round robin tournament” method, the “self-reducibility”
method, and the “recursive definition” method.

Later research on structural complexity-theoretic properties of sets precised that
the second and third methods clearly correspond to particular cases of the general no-
tion of polynomial time self-reducibility. More precisely, the “self-reducibility” method
applies to sets exhibiting a disjunctive self-reducibility structure, while the “recursive
definition” method applies to sets having a truth-table self-reducibility structure, both
as defined in [14]. It is natural to wonder whether the round robin tournament method
can be casted as well into a self-reducibility framework. As expressed by S. Mahaney
in [17], p. 106, “it is not clear whether it [the round robin tournament method| might
be subsumed by the above method of recursive definition.”

We are interested in studying the possibility of such a subsumption. This method
applies to sets having a “game” structure corresponding to alternating computations,
which should be captured by more general self-reducibility structures. The two main
problems are in some sense analogous: to “push up” self-reducibility structures out of
PSPACE, where all sets with standard self-reducibility lie, and to “push them down”
below P, whose sets are trivially self-reducible under the standard definition.

We propose here new definitions of self-reducibility structures allowing to use the
same techniques to show properties of complexity classes above PSPACE or below P.
We obtain several of the results of [13], together with other results, as corollaries of our
main theorems. Thus, we partially answer Mahaney’s question by presenting a partial
subsumption of the round robin tournament method by a self-reducibility method.

The subsumption presented here is not complete, since not all the result of [13]
are obtained. Moreover, the round robin technique (playing all advices against each
other) is not used in the proofs. This issue is discussed more in depth in [4], where the
technique is applied not only to games but to arbitrary self-reducible sets.

In order to present in a more precise way the contributions of this paper, let us
present compactly the results of [13]. (Some definitions are provided below.)

1. Theorem.

a/ If NP C P/poly then the polynomial time hierarchy collapses to £y N II5.
b/ If PSPACE C P/poly then PSPACE = X, N1I,.

¢/ If EXPTIME C PSPACE /poly then EXPTIME = PSPACE # P.

d/ If EXPTIME C P/poly then EXPTIME = £, N II;, which implies P # NP.
e/ f NLOG C DLOG/log then NLOG = DLOG.

f/ For every k, if P C DSPACE(log* n)/log then P C DSPACE(log® n).

g/ f NP C P/log then P = NP.

h/ If PSPACE C P/log then PSPACE = P.

Considering self-reducible sets, a general property which allows one to prove such
kind of results was isolated in (2], where parts a/ and b/ of theorem 1 were obtained
from more general principles. Other results were deduced as well from the same princi-
ples. However, as indicated above, under the standard definition self-reducible sets are
always in PSPACE, while every set in P is trivially self-reducible. The relationships to

2

logarithmic advice were not clear either. Therefore, other parts of theorem 1 could not
be obtained.

We define here a self-reducibility property which holds for certain EXPTIME-
complete sets, and prove an analogous general theorem about those sets from which we
derive parts ¢/ and d/ as corollaries, together with other results. We should point out
that this theorem subsumes the proof in {2], so that all the parts of theorem 1 refering
to polynomial advice follow uniformly from the same fact. This definition is presented
in section 2, together with several properties, and the theorem is proved in section 3.

Then we present a definition of logspace self-reducibility appropriate to work
with classes possibly smaller than polynomial time, which is done in section 4, where
we prove some properties. This concept of self-reducibility is based on oracle machines
which are restricted to query only certain words depending on the input. The definition
is highly technical, but its intuitive explanation is (we hope) quite clear. We show in
section 5 that this definition has also a general property analogous to those of the just
mentioned references, from which we obtain as corollaries parts e/ and f/ of theorem 1.

In section 6 we use the same technique to obtain a new result, comparing uniform
P with nonuniform NLOG. Here the closure under complements of nondeterministic
space classes [12, 21] plays a crucial role. Section 7 is devoted to obtaining new results,
of very similar flavor, for the classes LZOG(CFL) and LOG(DCFL) of sets reducible in
logarithmic space to context-free languages, resp. deterministic context-free languages.
We close the paper with a short section of conclusions.

All our sets consist of words over the alphabet I' = {0,1}. Larger alphabets
will be assumed when necessary. We denote by A the empty word. The set of all
words is denoted I'*, and the length of a word z is denoted |z|. We assume a fixed
easily computable pairing function denoted by angular brackets (,). The reader is
assumed to be familiar with the standard complexity classes DLOG, NLOG, P, NP,
PSPACE, the polynomial time hierarchy, and the like; for definitions see [3]. There is
no generally agreed notation for exponential time classes; we denote by E the class of
sets decided in time 2°(™, and by EXPTIME the class of sets decided in time 2"" for
some k. EXPTIME coincides with APSPACE (alternating polynomial space). See [7]
for complexity classes defined by alternating machines, which will be used in sections
2 and 3. SAT denotes the well-known NP-complete problem of deciding the satisfiability
of boolean formulas, and QBF the PSPACE-complete problem of deciding the truth of
quantified boolean formulas. See [3] for undefined notions.

The notation C/F for nonuniform classes is used as in [13]; see also [3]. Thus
C/F denotes the class of sets decidable by machines as specified by C with the help of
an advice function from F'. Formally:

2. Definition. Let C be a complexity class and F a family of functions from IN into I'*.
Then C/F denotes the class of all sets A such that for some B € C and h € F' it holds
that

Vz (z€ A < (z,h(|z])) € B)

We will use classes such as DLOG, P, PSPACE, and the classes of the polynomial
time hierarchy in place of C, and the functions bounded in length by polynomials or by

3

logarithms in place of F. More precisely, the class poly contains all functions A from IN
into I'* such that |h(n)| is bounded by a polynomial in n, and the class log contains all
functions h from IN into I'* such that |A(n)| is bounded by c-logn for some constant c.

2. Polynomial time self-reducibility structures

In this section self-reducibility structures defined by polynomial time machines are con-
sidered. The notion studied in [2], defined below, is denoted here ldg-self-reducibility,
which stands for “length-decreasing queries”. We recall next two facts from the men-
tioned reference, regarding the complexity classes that bound the region where 1dg-self-
reducible sets may exist, which are P and PSPACE. Then we define wdq-self-reducibility,
which stands for “word-decreasing queries”, and prove analogous facts for this structure.
The fact that the region is broader allows us to present a diagonalization result that
shows that not all the sets in that region possess this self-reducibility structure; the anal-
ogous statement for ldg-self-reducibility is currently open, even under the assumption

P #£ PSPACE.

3. Definition. A set A is polynomial time Idg-self-reducible if and only if there is a
polynomial time deterministic oracle Turing machine M such that A = L(M, A), and
on each input of length n every word queried to the oracle has length less than n.

Essentially, this concept corresponds to the definition of self-reducibility proposed
in [18], the difference consisting in that the condition on the queries is expressed there
by requiring that the machine only asks queries smaller than the input in a (fixed)
partial order satisfying some natural conditions, namely:

a/ If r is smaller than y then |z| < p(|y|) for some polynomial p.

b/ It is decidable in polynomial time whether z is smaller than y.

¢/ Every decreasing chain is bounded in length by a polynomial of the length of its
maximum element.

Our definition captures the main self-reducible sets (such as some NP-complete,
co- NP-complete, and PSPACE-complete sets). The more general definition, in turn,
is invariant under polynomial time isomorphism, and is required in some particular
applications of the concept.

The following properties of the ldg-self-reducible sets are known (see [2]):

4. Proposition.
a/ Every set in P is ldg-self-reducible.
b/ If A is ldg-self-reducible then A € PSPACE.
¢/ If M witnesses the self-reducibility of both A and B then A = B.

Part (a) is immediate since a machine which never queries any oracle satisfies the
condition. Part (b) can be proved by solving the queries recursively, and keeping track
of the recursion in a polynomially high stack. To prove (c), argue inductively as follows:
since on the empty word no queries are possible, A € A &= A € B. If 4 equals B
up to length n — 1, then all the queries on inputs of length n are answered in the same
way in both computations of M under respectively A and B, and therefore A equals
B also at length n. This argument can be seen also in (2], and will appear repeatedly
throughout this paper.

As mentioned above, it is open whether there exists a set in PSPACE which is
not self-reducible, even assuming P # PSPACE. Thus, it may be the case that part (b)
is actually an equivalence.

The first new polynomial time self-reducibility structure we will study is defined
as follows.

5. Definition. A set A is polynomial time wdgq-self-reducible if and only if there is a
polynomial time deterministic oracle Turing machine such that A = L(M, A), and on
each input z of length n every word queried to the oracle either has length less than n,
or has length n and is lexicographically smaller than z.

Observe that this definition allows exponentially long decreasing chains to exist,
but keeps the running time of the self-reducing machine polynomially bounded. Of
course, every ldg-self-reducibility structure is a wdg-self-reducibility structure. Parts
(a) and (c) of proposition 4 hold for this definition. Part (b) has to be adjusted:

6. Proposition. If A is wdg-self-reducible then A € E.

Proof. This argument is due to Jacobo Toran. We show inductively that given the
set A N TS"1 the set A NI['S™ can be constructed in time 2°™. Then the theorem
follows since |z| many iterations of the construction starting at length 0 allow to decide
membership of z in linear exponential time.

To construct A NI'S" assume that we have in the set variable B initially the set
ANT="=1 Then, for each word w of length n, simulate the self-reducing machine with
oracle B and, if it is accepted, add it to B. By the uniqueness of the set defined by a
self-reducing machine, w is added to B if and only if it is in 4. After checking all the
2" words, each in polynomial time, we have the whole of ANT<" in the set variable B,
and we can use it either to go on with the construction, or just to decide membership
of a word of length n.]

The polynomial time bound on the self-reducing machine could be relaxed to a
linear exponential time bound and the result would still hold. Another observation that
follow from this theorem is that the ldq-self-reducible sets are in E; from proposition 4,
b/, it only follows that they are in EXPTIME, which is weaker.

It appears that wdq-self-reducibility corresponds to E much in the same way as
ldg-self-reducibility corresponds to PSPACE. It is well-known that P # E, since the
gap between P and F is large enough to allow the time hierarchy theorem to apply. In
the next result we show that the same fact yields room for a diagonalization over the
wdq-self-reducible sets, proving that the converse of proposition 6 does not hold.

7. Theorem. There is a set in E which is not wdg-self-reducible.

Proof. Consider the set A defined by the following stage construction. At stage n,
membership to A of the n'® word of £* (denoted w, in the construction) is decided,
ensuring that some k'" polynomial time clocked machine M} is not a self-reducing
machine for A. We denote px a polynomial of the form n° + ¢, for some ¢, clocking the
running time of M. The list L contains the indices of machines that are still candidates
to reduce A to itself, and the index k is the smallest index that never entered L up to
the moment.

Stage 0:
set L to 0.
Stage n:
if pk(n) < 2™ then add k to the list L and increment k;
search for the smallest index : € L such that the machine M;,
on input w,, and using the current segment of A as oracle,
queries only words smaller than wg,; _
if such 7 is found, then add w, to A if and only if M;
rejects it with oracle A, and drop : from L.

Now assume that M; is a candidate for being a wdqg-self-reducing machine for A,
so that every query to the oracle set A is smaller than the input. At every stage after 3
enters L, some smaller candidate is taken care of if one exists, and after finitely many
stages precisely index ¢ has to be selected. When this happens, A is defined in a way
that ensures that M; does not define a self-reduction for A.

The set A can be decided as follows: on input w = w,, perform the first n = 2/I
stages, each of which requires cycling through at most n = 2/*| machines, running each
of them on a word of length at most |w| for at most 2/l steps by the condition imposed
on the indices that enter L. Thus 2°(time is.enough. "

It is interesting to note that this result connects the open converse of proposi-
tion 4(b) with the open problem of whether E C PSPACE.

8. Corollary. If every set in PSPACE is ldg-self-reducible then E ¢ PSPACE.

Proof. The set constructed in the previous theorem is not wdg-self-reducible, and there-
fore it is not ldg-self-reducible. If every set in PSPACE is ldg-self-reducible then this
set witnesses that E ¢ PSPACE. .

To end this section, we show how to relate wdg-self-reducibility to computations
of alternating Turing machines, obtaining wdg-self-reducible sets in the deterministic

time classes below EXPTIME.

9. Definition. Let f be a time-constructible function majorized by some polynomial.
We denote K the following set:

Ky ={(m,0", M,I) | M is an alternating machine, I is a configuration of M, and M

starting at I accepts in alternating time m and alternating space f(n)}

We assume as a technical detail that the tupling encodes the number m in the most
significant bits of the tuple, so that words coding (m, 0™, M, I) are always smaller than

words coding (m',0™, M’,I') when m < m'. The set K exhibits a self-reducibility
structure:

10. Lemma. Under the hypothesis of the previous definition, Ky is wdq-self-reducible,
and is m-complete for the class ASPACE(f).

Proof. The self-reducibility structure is inherited from the alternating computations
corresponding to the machine M; it can be described as follows: on input (m,0", M, I),

6

if I is a final accepting configuration then accept; if I is nonaccepting and m = 0 then
reject; and if I is not final, and m is not 0, compute the two branching configurations Iy,
I, of M reachable from I, query the oracle about (m—1,0", M, Iy} and (m—1,0", M, I},
and accept according to the answers and to the state (existential or universal) of I.
Encoding m into the most significative digits of (m,0", M, I) ensures that both queries
are smaller than the input in the lexicographic order.

The membership to ASPACE(f) is straightforward, since an alternating machine
can just set itself up in configuration I and simulate M. Completeness follows from the
following reduction: if M is an alternating f-space machine, and I(z) denotes the
initial configuration of M on input z of length n, then z is accepted by M if and only
if (27(") 0™, M, I(z)) is in K. The tuple can be written down in polynomial time since
f is majorized by some polynomial. @

To indicate the use we will make of this result, assume that such a function f
grows faster than logn, and let F' be a family of functions such that 2/ € O(F) and
F c 0(2°"). Then, by the results of [7], it can be shown that K is complete for
DTIME(F), which yields a wdq-self-reducible complete set for this class. The properties
of wdg-self-reducible sets we want to exploit are presented in the next section.

3. Polynomial advice classes

This section is devoted to obtain results from the definition of wdg-self-reducibility
regarding the interconnection between uniform and nonuniform complexity classes, in
particular those defined by polynomially long advices. Our aim is to find a framework
in which parts a/, b/, ¢/, and d/ of theorem 1 appear as natural consequences of more
general facts about self-reducible sets. In particular, we want to show that the results
about EXPTIME do not depend on this particular class, but on the fact that wdqg-self-
reducible complete sets exist for the class. We show that the same properties hold for
other deterministic time classes.
In [2], the following result is shown:

11. Theorem. If A € I;/poly and A is ldg-self-reducible, then ¥;(4) is included in
2,‘+2. In pa.rticula.r, A € Z.‘+2.

This property allows one to prove parts a/ and b/ of theorem 1 using the ldq-
self-reducibility of SAT and QBF, as well as some other results regarding the collapse
of the relativized polynomial time hierarchy:

12. Corollary.
a/ If NP C P/poly then PH = %,.
b/ If PSPACE C P/poly then PSPACE = T,.

Both statements follow from theorem 11 by taking SAT and QBF respectively
for A, and using the facts that if 33 = 3; then PH = %,, and that X2 is closed under
m-reducibility.

The key point now is that theorem 11 carries over to wdg-self-reducible sets.
Moreover, membership in PSPA CE/poly is a meaningful condition for wdqg-self-reducible
sets, and we can extend the result to this nonuniform class.

7

13. Theorem.
a/ If A € ¥;/poly and A is wdg-self-reducible then ¥2(A) is included in Zi42. In
particular, 4 € Xi4q.
b/ If A€ PSPACE /poly and A is wdqg-self-reducible then A € PSPACE.

Proof. a/ Membership to A can be expressed as follows: z is in A if and only if there
is a polynomially long advice string y which is correct for A up to length [z|, such that
(z,y) € B, where B is a T; predicate. The fact that y is correct for 4 up to length n
means the following:

Vz(lz| <n) (€4 <= (z,y) € B)

This correctness assertion can be expressed as a predicate Corr(y,n) with just
an universal quantifier, using the self-reducing machine M of A as follows. Let M’ be
the machine that on input (z,y) simulates M on input 2z, and when M queries about w
it queries about (w,y). Then y is correct if and only if

Vz (|z} <n) ({z,y) € B <> (z,y) € L(M', B)}

This equivalence follows from the unicity of the self-reducible set defined by M (propo-
sition 4(c)), since the last assertion says that the set of words z of length up to n such
that (z,y) € B is coherent with the self-reducing machine M for A.

Now let D be any set in Lz(A4), so that

z €D < JuVou(z,u,v) € L(M", A)

where both quantifiers are polynomially bounded and M" is a deterministic polynomial
time machine. Transform it into M that on input (z,u,v,y) acts as M" on (z,u,v),
but queries (w,y) when M" queries w. Thus, if y is a correct advice up to a certain
polynomial p(|z|) the answers are consistent with A and M"' accepts {(z,u,v,y) with
oracle B if and only if M" accepts (z,u,v) with oracle A. Now,

z € D <= Fudy (Corr(y,p(|z|)) A Vo(z,u,v,y) € L{(M",B))

which is a ;42 predicate since B is L;.

b/ It is very similar. Now membership to A can be expressed as: z is in A if and
only if there is a polynomially long advice string y which is correct for A up to length
|z|, such that (z,y) € B, where B is now in PSPACE. The fact that y is correct for A
up to length n can be tested in PSPACE by the same universal predicate as before using
M' and the PSPACE algorithm for solving the queries to B. Cycling through all the
polynomially long advices until finding a correct one and using it to decide membership
to A yields a polynomial space decision procedure for A. o

Using this result, we will get results from the existence of wdg-self-reducible sets
in deterministic time classes proved in lemma 10. In particular, the following theorem
allows us to apply theorem 13 to many classes below EXPTIME.

8

14. Theorem. Let f be as in lemma 10, and assume that f grows faster than logn. Let
F be a family of functions such that 2f € O(F) and F C O(Efom). Then: '

a/ DTIME(F) C T;/poly implies DTIME(F) C Tito.

b/ DTIME(F) C PSPACE /poly implies DTIME(F) C PSPACE.

Proof. As indicated above, under these hypothesis the set K ¢ 1s complete for
DTIME(F). Therefore, it must belong to the nonuniform class in the left hand side of
each implication. Since it is wdg-self-reducible, by theorem 13 it belongs to the uniform
class in the right hand side of each implication. The statements follow from the closure
of the uniform classes under polynomial time reductions. i

We can state now as a corollary parts ¢/ and d/ of theorem 1:

15. Corollary.
If EXPTIME C P /poly then EXPTIME C ¥, N II,.
If EXPTIME C PSPACE /poly then EXPTIME C PSPACE.

Proof. Take f(n) = n. Since all hypothesis of theorem 14 hold for F = {2"“}, both
inclusions follow from it. . u

Note that right to left inclusions in the right hand sides are immediate, and there-
fore the corresponding inclusions are actually equalities. Also note that corollary 12,
proven in (2] using the same principle for ldg-self-reducibility, can be seen also as a con-
sequence of theorem 14, since ldg-self-reducibility implies wdg-self-reducibility. Thus,
parts a/ to d/ of theorem 1 follow uniformly from theorem 14.

We can present now other classes to which theorem 14 applies. An immediate
case is E. Indeed, all the classes appearing in the previous corollary are closed under
polynomial time m-reducibility, and EXPTIME is the closure of E under the same
reducibility. Thus, E C P/poly implies EXPTIME C P/poly, and the corollary holds
for E as well as for EXPTIME.

More classes for which we get such results are presented in the following corollary.
The proof amounts to setting f to either log? n or log n - log log n.

16. Corollary. Let F be any of the following classes, where k is fixed:
{nc-log" n l c> 0}’ {nlog° n I c> 0}, {nc-logn I c> 0}, {nc-loglogn l c> 0}

Then:
If DTIME(F) C P/poly then DTIME(F) C £, N1I,.
If DTIME(F) C PSPACE /poly then DTIME(F) C PSPACE.

To end, we show how to obtain the consequence P # NP as in theorem 1, part d/,
from weaker hypothesis.

17. Corollary. Let £(n) be a slowly growing, unbounded function such that (logn)-e(n)
1s time-constructible, and such that DTIME(n*(™)) # P (such functions can be obtained
as in the time hierarchy theorem). If DTIME(n*(™) is included in P/poly, then P # NP.

Proof. By theorem 14, under these hypothesis, DTIME(n*(") is included in 9. There-
fore P # T, which implies P # NP. u

Note that z(n) is assumed to be as small as desired, given that DTIME(n*(") £
P. Hence, the hypothesis “DTIME(n(™) is included in P/poly” can be read as “a

polynomially long advice saves computation time”. The corollary shows that if this is
the case, then P # NP.

4. Logspace self-reducibility

Some technical concepts are required for setting up a concept of self-reducibility in
logarithmic space. We are going to present the appropriate model of oracle Turing
machine, which is based on a property similar to a characterization given in [19] of
certain nondeterministic oracle machines. The property that identifies our model is
that all the queries are small variations of the input; more precisely, every.query is
equal to the input in all but the logn last symbols, where n is the length of the input.

Let us motivate this machine model, by explaining why more natural definitions
present important drawbacks. If we look for a definition of logspace self-reducibility,
determinism and log work space are clearly out of discussion; but the way of bounding
the oracle tape raises some problems, as can be expected by those readers aware of the
discussions regarding these issues. .

Indeed, a logspace self-reducing machine in which the oracle tape obeys the space
bound does not furnish any structure in the accepted set, since a set defined by such a
self-reduction procedure is already in DLOG. To see this, consider a machine that sim-
ulates the self-reducing machine, and when a query is made pushes the configuration
onto a stack and starts solving the query; when a final state is reached with nonempty
stack, it pops the stack and continues with oracle answer in accordance with the final
state, and when a final state is reached with empty stack it stops in the corresponding
state. The space required for the stack decreases very fast, since each query is logarith-
mically smaller than the previous one and thus the computations on a query are made
in a logarithmically smaller space. If the space for the outermost computations is log n,
then the space needed for the remaining part of the stack is less than (loglogn)?, which
is asymptotically smaller than logn. Thus a constant factor compression of tape yields
a DLOG decision algorithm.

On the other hand, if the oracle tape is not bounded then PSPA CE-complete sets
can be obtained. This is easy to see from the self-reducibility structure of QBF, in which
the queries are constructed scanning and copying the input, substituting a constant for
one of the variables; to identify which one, its index can be stored in logarithmic space.

The reason behind this problem is that the actual amount of resources used by
the self-reduction procedure is in some sense less important than the mathematical
structure enforcing its finiteness. Let us informally speak of the “depth” of a preorder
on I'* as the maximum length of its descending chains, as a function of the size of the
maximum word in the chain; and of the “size” of a preorder as the number of elements
smaller than a given one, as a function of the size of this one. Then, as the QBF example
shows, logarithmic work space self-reducibility is enough for reaching PSPA CE-complete
sets, provided that the query condition gives a “polynomial depth” of the recursion.
Comparing with the wdg-self-reducibility, we see that while a polynomial depth preorder
corresponds to polynomial space, an “exponential size” recursion tree yields somehow
E-complete sets, and therefore it is natural to suggest that a “polynomial size” preorder

10

be used for the sets in P. However, as the first example shows, plainly bounding the
length of the queries by a logarithm is not enough. The reason is that in this case the
polynomially many elements that can be queried on each input of length n are just the
words of length at most logn: the same set for all the exponentially many words of
that length! A more flexible structure is needed, in which it should be possible that the
recursion tree depends substantially on the input. Thus the model to consider next is
the model described above, in which queries are equal to the input in all but the logn
last symbols.

Another view of this model, which will become clearer after the examples pre-
sented in propositions 25 and 27, is the following: the input consists of two parts, a
main data structure and a fixed number of elements of it. given in some sense by lcga-
rithmic length pointers; then the queries consist of the same main data structure, which
is invariant in the whole self-reduction tree, and some other pointers coded in the log-
arithmically long varying section. Still another very informal view, which we use just
to motivate the name, is that the machine can be thought of as somebody that is given
a standard sentence, learnt by heart, which allows him to start speaking, leaving his
natural silent state, in order to ask afterwards for a very small piece of information.
Thus we call them shy machines. The following notation will be useful for the formal

definition.

18. Notation. Let r and w be words such that |w| = log |z|. We denote sub(z,w) the
word resulting from substituting the word w for the last log |z| symbols of z.

Notice that sub(x,w) is a word of the same length as z, and that they can be
compared according to the lexicographic criterion.

19. Definition. A shy machine is a logspace oracle Turing machine, with no bound on
the oracle tape, such that on input z every query is of the form sub(z,w) for some w
of length log |z|.

A point that should be observed is that on input sub(z,w) the queries made by
M are themselves again of the form sub(z,v), since sub(sub(z, w),v) = sub(z,v).

We define next logarithmic space self-reducibility in terms of shy machines. The
self-reducibility structure is enforced to be well-founded via a restriction analogous to
that of the “word decreasing queries” self-reducibility proposed in previous sections, in
the sense that we use a lexicographical comparison in the condition on the queries.

20. Definition. A set A is self-reducible in logarithmic space (logspace self-reducible for
short) if and only if there is a logarithmic space shy machine M such that 4 = L(M,A),
and on every input ¢ every word queried by M is lexicographically smaller than z.

The following properties correspond to proposition 4 for the new definition. They
locate logspace self-reducible sets, and state the uniqueness of the self-reducible set
defined by a given shy machine M, respectively.

21. Proposition.
a/ Every set in DLOG is logspace self-reducible.
b/ Every logspace self-reducible set is in P.

11

Proof. Part a/ is immediate, since a logspace machine that does not query is a shy
machine and observes whichever condition is required on the queries. To see part b/,
a polynomial time algorithm for deciding membership of z is obtained by simulating
the self-reducing machine in lexicographic order on all the polynomially many words
sub(z,u), recording all the answers for later use; in this way, all the answers to queries
have been answered before they are needed. When z itself is reached we know the
answer and can stop. Observe the similarity of this “dynamic programming” argument
with the proof of proposition 6. u

The unicity of the self-reduced set can be shown separately for each length:

22. Proposition. Let M be a shy machine which always queries words smaller than the
input in the lexicographical order, and let A = L(M, A). Let B be a set of words, all of
them of length n, such that for every word z of length n, z is in B if and only if z is in
L(M, B). Then B is precisely the subset of all the words of length n in A.

Proof. On the smallest word of length n, M cannot query the oracle. Therefore it
cannot show a difference between L(M, A) and L(M, B), and it is either both in A and
B or outside both of them. Now, for any word w of length n, suppose that 4 and B
coincide on all smaller words of that length. Then the behavior of M on w is identical
for both oracles, and w must be either accepted, and therefore belong to both A and B,
~or rejected, and therefore belong to neither of them. Thus, inductively, A and B cannot
differ at length n. Again, observe the similarity of this argument with proposition 4(c).
We will use this inductive argument in the forthcoming sections. "

Observe that the argument for each length is independent of the other lengths
due to the fact that shy machines always query words of the same length as their input,
but the consequence is the unicity of the full self-reduced set of the machine:

23. Corollary. If M is a shy machine which always queries words smaller than the input
in the lexicographical order, A = L(M, A), and B = L(M, B), then A = B.

We show next that logspace self-reducible sets exist; our examples are quite nat-
ural encodings of complete sets for certain complexity classes.

24. Definition. Let AGAP (standing for Acyclic Graph Accesibility Problem) be the set
of all words of the form G#s#t where G encodes an acyclic graph, s and t are nodes
of G, and there is a path in G leading from s to t. We require further that the nodes
are labeled according to a topological sort in such a way that the label of each node is
a number of length log |G#s#t|.

Note that the requirement of G being an encoding of a graph topologically sorted
only means that the numbering of the nodes is such that the source of each edge has
a number smaller than its target: this can be tested easily in logspace and implies
acyclicity, so AGAP is in NLOG. Using standard techniques, it is not difficult to see
that AGAP is complete for NLOG under logspace reductions. (In order to obtain an
acyclic graph, start from a NLOG machine that counts the number of steps performed
during its computation: this guarantees absence of loops.)

12

25. Proposition. AGAP is logspace self-reducible.

Proof. On input G#s#t, if s is a predecessor of ¢ in G then accept, otherwise query the
oracle about all the words G#s#t’' where t' is a predecessor of ¢t in G. If the alphabet
is appropriately chosen, the queries have the required form for a shy machine, and the
topological sort implies that the queries are smaller than the input. Clearly logspace
suffices. 5

Our next example is a particular encoding of the circuit value problem.

26. Definition. Let CVP (standing for Circuit Value Problem) be the set of all words
of the form u#C#g, where u is a binary string, C' is an encoding of a fan-in 2 boolean
circuit with |u| inputs, and g is a gate of C, which we designate as output gate, and
which takes value 1 on input u. We require that each gate is labeled by a number of
length log [u#C#y¢|, and that the label of each gate is greater than the labels of its two
input gates.

It can be seen that CVP is complete for P under logspace reductions [15]. Our
requirements about the encoding are irrelevant for the proof. We have the following

property.
27. Proposition. CVP is logspace self-reducible.

Proof. It is similar to the previous one, but the self-reducibility is no longer disjunctive.
On input u#C#g, if ¢ is an input gate then check the corresponding symbol of u;
otherwise, let g; and g, be the gates that are inputs to g, query the oracle about
u#CH# g1 and u#C#g2 to obtain their respective values, and apply to the answers the
boolean function corresponding to gate g. For an appropriate alphabet the queries have
the form needed by a shy machine, and the requirement on the numbering guarantees
that they are lexicographically smaller. .

The self-reducibility of these sets will be used in the-next sections. Other logspace
self-reducible sets are presented in section 7.

5. Deterministic logspace with advice

In this section we show a property of logspace self-reducible sets which yields as particu-
lar cases parts e/ and f/ of theorem 1. It is very similar to the properties of self-reducible
sets presented in previous sections. This property is stated as follows:

28. Theorem. Let A be a logspace self-reducibleset. If A € DLOG/log then A € DLOG.

Proof. We show how to decide A in deterministic logarithmic space. The algorithm just
cycles over all possible advices of the appropriate length, searching for a correct one,
and when found it uses the DLOG algorithm with this advice. The self-reducibility
structure is used to check the correctness of each possible advice.

More formally, let 4 = L(M, A) where M is a shy machine which witnesses the
logspace self-reducibility of 4. Further, let M’ be a logspace machine and let 2 be such
that

Vz (z € A < (z,h(|z])) € L(M"))

13

given by the fact that A belongs to DLOG/log. Without loss of generality we assume
that the alphabet is large enough so that |h(n)| = logn. We say that an advice w of
length logn is correct for x where |z| = n if and only if

Vu (sub(z,u) € A & (sub(z,u),w) € L(M"))

where u ranges over the words of length log|z|; i.e. if w can be used without harm
instead of the actual value of k in order to decide z and the words that M could query
on z. Consider now the following algorithm.

input z;

for each word w of length log|z| do
check (using the subroutine below) that w is a correct advice for z;
if it is then exit the for loop;

accept if and only if (z,w) € L(M').

By the definition of correctness, this program decides A provided that the sub-
routine works properly, since at least the value h(|z|) will be found (and possibly some
other correct one). The correctness of the candidate advice can be tested as follows.

for each word u of length log|z| do
gimulate M on input sub(z,u);
whenever M queries about sub(z,v), answer YES if and only if
(sub(z,v),w) € L(M');
check that M accepts sub(zr,u) if and only if (sub(zx,u),w) € L(M');
if so, return YES, else return NO.

The correctness of this subroutine is argued by the same argument used in the
proof of proposition 22. u

Now we can derive easily part e/ of theorem 1 as announced. Just apply theorem

28 to the set AGAP, which was shown in the previous section to be logspace self-reducible
and NLOG-complete.

29. Corollary. If NLOG C DLOG/log then NLOG = DLOG.
Similarly, theorem 28 can be applied to CVP, yielding the following.
30. Corollary. If P C DLOG/log then P = DLOG.

It is easy to see that if in theorem 28 the class DSPACE(log® n) is substituted
for DLOG (keeping the advice logarithmically bounded) the proof carries through. This
yields as a corollary part f/ of theorem 1.

31. Corollary. For every k, if P C DSPACE(log* n)/log then P C DSPA CE(log* n).

14

6. Nondeterministic logspace with advice

The results in the previous section indicate that for classes having a complete logspace
self-reducible set, being included in nonuniform logarithmic space amounts to being
included in the corresponding uniform class DLOG; i.e. the advice is in some sense
useless. It is natural to wonder whether a similar result can be obtained under the
hypothesis that P is included in nonuniform nondeterministic logarithmic space: is it
possible again to “get rid of” the advice and show an equality with the corresponding
uniform class?

In this section we prove a theorem that allows one to obtain precisely this result,
thus completing in some sense the “map” of implications between the uniform and
nonuniform classes P, NLOG, and DLOG. The proof is similar to that of theorem 28,
and requires the use of the complement closure theorem [12,21] and of a consequence
of it. More precisely, we need the following property, which is easy to prove using the
results of [12] or [21].

32. Proposition. DLOG(NLOG) = NLOG.

Now we can state the main result of this section.
33. Theorem. Let A be a logspace self-reducible set. If A € NLOG /log then A € NLOG.

Proof. Let A = L(M, A) where M is a shy machine which witnesses the logspace self-
reducibility of A. Further, let M’ be a nondeterministic logspace machine, and let & be
such that

Vz (z € A & (z,h(|z|)) € L(M"))

which exist since A € NLOG/log. Again, we assume that the alphabet is large enough
so that [h(n)| = log n. The notion of correct advice for a given word z is defined exactly
as in the deterministic case:

Corr(z,w): Vu(sub(z,u) € A < (sub(z,u),w) € L(M'"))

We claim that the predicate Corr(r,w) can be tested in nondeterministic log

" space. We will do this by considering the following deterministic logspace oracle ma-
chine M":

input (y,w);
simulate M on y,
on query z, query (z,w).

This machine is designed to use L(M') as oracle. We show our claim by proving
the following equivalence:
(*) Corr(z,w) <
[vu (Jul = log |z]) ({sub(z,u), w) € L(M",L(M")) <= (sub(z,u),w) € L(M'))]
Cycling to test the universal quantifier requires log space; the quantified predicate

is in DLOG(NLOG), and therefore in NLOG by proposition 32. Thus, the predicate
Corr(z,w) can be decided in NLOG. Let us now prove (x).

15

Assume that Corr(z,w) is true. Then, since M is shy, all queries of 4" on
(sub(z,u),w) are of the form (sub(z,v),w) and therefore, by the correctness of w,
correctly answered by L(M'). Thus (sub(z,u),w) € L(M",L(M")) if and only if
sub(z,u) € A, and again by the correctness if and only if (sub(z,u),w) € L(M').

Conversely, if the right hand side of () holds then the set of words sub(z,u) such
that (sub(z,u),w) € L(M') is consistent with the self-reducing machine M. By the
inductive argument of the proof of proposition 22, we obtain that sub(z,u) € A <
(sub(z,u),w) € L(M'), and therefore w is correct for z. This proves the claim that
correctness can be decided in NLOG.

Now it is immediate to prove the theorem: on input z, guess a correct advice w,
check its correctness in NLOG, and use it to decide whether z € A by simulating M’
on (z,w). "

In the same manner as in the preceding section, this theorem can be applied to

CVP:
34. Corollary. If P C NLOG /log then P = NLOG.

Once more, the proof carries through if a class of the form NSPACE(log® n) is
substituted for NLOG (but again keeping the advice logarithmically bounded). We
obtain:

35. Corollary. For every k, if P C NSPA CE(log"® n)/log then P C NSPACE(log" n).

7. Reducibility to context-free languages

An interesting class contained in P is the closure of the class of context-free languages
under logspace m-reducibility, denoted LOG(CFL), which has been recently shown to
be closed under complements [6]. Its analog class for the deterministic context-free
languages is LOG(DCFL). They have been characterized in [20] in terms of multihead
pushdown automata and logspace polynomial time auxiliary pushdown automata. Their
relationship to the logspace complexity classes is obviously related to the open question
of whether context-free languages can be decided in logarithmic space. We show here
that languages in these classes can be captured by certain logspace self-reducible sets,
and therefore results like corollaries 30 and 34 can be obtained for them.

Our results are based on a smart technique presented in (8], which is based in
turn on the decision procedure for context-free languages of [1]. Reference (8] applies
this technique to auxiliary pushdown automata. Although we apply it to pushdown
automata as in [1], we follow the approach of the former since it is closer to our goal: we
want to make apparent the logspace self-reducibility structure underlying the technique.
For the proof of our main theorem in this section we will require the following two
lemmas.

36. Lemma.
a/ There is a pushdown automaton Mj, with no \-transitions, which accepts by
empty store, such that L(M;) is complete for LOG(CFL) under logspace m-
reducibility.

16

b/ There is a deterministic pushdown automaton M, with no A-transitions, which

accepts by empty store, such that L(M2) is complete for LOG(DCFL) under
logspace m-reducibility.

Proof. a/ The hardest context-free language of Greibach [10] does not contain the
empty word, and is complete under homomorphism for the class of context-free lan-
guages that do not contain the empty word; therefore it is logspace m-complete for
LOG(CFL). By a known result of automata theory (see [11], theorem 5.5.1), it is ac-
cepted by empty store by a pushdown automaton with no A-transitions.

b/ In [20], a deterministic context-free language is exhibited that is logspace m-
complete for the class of deterministic context-free languages (lemma 8 and proof of
lemma 9 of [20], see also footnote in page 413). Also, in the same reference, it is
shown (lemma 7) that every deterministic context-free language is logspace m-reducible
to a deterministic context-free language recognized by empty store by a deterministic
pushdown automaton with no A-transitions. Our claim follows from the transitivity of
the logspace m-reducibility. : o

Let AuxPDA,;(log) denote the class consisting of those sets decidable by non-
deterministic logspace auxiliary pushdown automata in polynomial time, and similarly
AuxDPDA ,(log) for deterministic logspace auxiliary pushdown automata.

37. Lemma. The following equalities hold:

LOG(CFL)= AuxPDA ,(log)
LOG(DCFL)= AuxDPDA,(log)

We omit the proof: it is theorem 1 in [20]. Now we present our main theorem
of this section. For closely related material and analogous notation and properties, see
the proof of theorem 1 of (8], part (b) implies (c).

38. Theorem. Let M be a pda with no A-transitions which accepts by empty store.
There is a set A € LOG(CFL) which is logspace self-reducible, such that L(M) €
DLOG(A). Furthermore, if M is deterministic then 4 € LOG(DCFL).

The proof requires to develop some definitions and notation. Given the pushdown
machine M as in the theorem, a surface configuration of M on input w is a triple
(p,q,Z); p is the position of the input tape head, ¢ is a state of M, and Z is the
top symbol in the pushdown. A pair of surface configurations P, Q is realizable if and
only if there is a partial computation of M on input w starting at a configuration ¢;
corresponding to surface configuration P, ending at a configuration ¢; corresponding to
surface configuration @, and such that the height of the pushdown is the same in ¢; and
in ¢y, and during that computation this height never drops below this threshold. Note
that realizability depends on the input.

We encode pairs of surface configurations on input w as strings of length log [w]
over a large enough alphabet. We assume that this encoding is such that the following
condition holds: if in surface configuration @; the input tape head is scanning a symbol
strictly at the left of the symbol scanned in surface configuration Q2, then the encoding

17

of the pair (P;, Q1) is smaller in the lexicographic ordering than that of (P, Qs) for
every Pj, P;. This is attained by encoding the position of the tape head in component
@ into the most significant digits of (P, Q).

The key to the self-reducibility structure is given by the foilowing definition [S].

39. Definition. Pairs (P, Q1) and (P, Q;) yield pair (P3,Q@3) if and only if P, = P,
and either:

(i) @1 = P; and M goes in one step from Q2 to @3 without changing the pushdown,
or

(ii) M goes in one step from @, to P, pushing a symbol Z, and M goes in one step
from @, to Q3 popping the same symbol Z.

The core of the proof is in our next lemma.

40. Lemma. Starting from all identity pairs (P, P) and iterating the “yield” relation,
exactly the set of all realizable pairs is obtained.

Proof. Identity pairs are clearly realizable, and the definition of the “yield” relation
implies that realizable pairs always yield realizable pairs. Conversely, suppose that the
pair (P, Q) is realizable via a computation P = P, P,...,P, = Q. If t = 1 then
P = @Q and the pair is a base identity pair. Assume that ¢ > 1 and, inductively, that
computations shorter than ¢ can be obtained by the “yield” relation. If the transition
from P;_; to P; does not change the pushdown, since we can assume by induction
hypothesis that (P, Pi—;) has been obtained from the “yield” relation, part (i) yields
(P,Q). The definition of realizability prevents the transition from P,_; to P; from
being a pushing move; thus, assume that the pushdown is popped, and consider the
first pushing move in the partial computation, say from P; to Piy;. Inductively, (P;, P;)
and (P;41, P;_,) are realizable and therefore can be obtained from the “yield” relation.
Applying part (ii) of the definition of “yield” gives (P, Q). u

Of course, in order to decide whether two pairs yield another the input must be
known. An important point in the previous proof is that every realizable pair (excepting
identity pairs, of course) can be obtained by applying the “yield” relation to pairs
having strictly smaller encodings, due to the fact that the pushdown machine M has
no A-transitions.

We are now ready to prove theorem 38.

Proof. (Of theorem 38). The set whose existence is asserted in the statement is the
set A formed by all the words of the form w#(P,Q), such that on input w the pair
(P, Q) is realizable.

A = {w#(P,Q) | on input w the pair (P, Q) is realizable}

We show that the theorem holds. To see that A € LOG(CFL), we argue that
A 1s accepted in linear time by a logspace AuxPDA, which on input w#(P, Q) sets up
itself on configuration P and simulates M, keeping in a counter the height of the stack,
and checking that @ is reached with no extra symbols left on the stack. By lemma 37,
A € LOG(CFL). Moreover, if M is deterministic then the AuxPDA is deterministic
also, and therefore 4 € LOG(DCFL).

18

To see that A is logspace self-reducible, we take advantage of the characterization
given by the “yield” relation. Consider a shy machine that on input w# (P, Q) accepts
if P = @, else searches for smaller pairs that yield w# (P, Q) and queries the oracle to
find whether they are realizable. It is easy to see that the queries have the right form;
its correctness follows from lemma 40.

Finally, L(M) is decidable in logarithmic space with oracle A by checking whether
a realizable pair exists starting at the initial configuration of M and ending at an
accepting configuration. This completes the proof. "

As applications of this theorem, we obtain:

41. Corollary.
(a) f LOG(CFL) C DLOG/log then LOG(CFL) = DLOG.
(b) If LOG(DCFL) C DLOG/log then LOG(DCFL) = DLOG.
(c) If LOG(CFL) C NLOG/log then LOG(CFL) = NLOG.
(d) f LOG(DCFL) C NLOG/log then LOG(DCFL) = NLOG.

Proof. Apply theorem 38 to the pushdown automata described in lemma 36 to ob-
tain logspace self-reducible sets complete respectively for LOG(CFL) and LOG(DCFL).
Then the results follow from theorems 28 and 33. m

As a final remark, notice that this result does not say that if context-free lan-
guages can be decided by nonuniform logspace models then they can be decided by
uniform logspace models: the hypothesis required is that the whole class LOG(CFL)
is included in DLOG/log. The reason why the proof does not work from a weaker hy-
pothesis, like context-free languages being in DL 0G/log, is that this second class is not
closed under logspace reducibility, since each advice is valid for only one length and a
reducibility may map the words of a given length to words of polynomially many differ-
ent lengths. Therefore the membership of context-free languages to DLOG/log does not
guarantee membership to the nonuniform class of the logspace self-reducible complete

set for LOG(CFL).

8. Conclusions

This work was based on the definition of polynomial time self-reducibility, which we
have called here 1dg-self-reducibility since it is characterized by queries that decrease in
length. This definition was useful as a tool to study structural properties of sets between
P and PSPACE. We have developed two new notions of self-reducibility. The first one
is wdg-self-reducibility, where queries are only required to decrease in the lexicographic
ordering, and gives a definition which captures sets in , thus possibly out of PSPACE.
The second one corresponds to logspace self-reducibility, and is refined enough to dis-
criminate among sets in P; this definition required to develop an appropriate model of
oracle machine. We have demonstrated that the most interesting properties of ldq-self-
reducible sets in nonuniform classes hold as well, for appropriate classes, for these two
new forms of self-reducibility.

Thus, our definitions allow one to obtain known and new consequences in the
comparison between uniform and nonuniform classes. Using wdqg-self-reducibility, we
obtain a general property from which all the statements of theorem 1 that correspond

19

to polynomial advice classes follow uniformly; among them, two properties that were de-
rived in [2] from the similar property for 1dq-self-reducible sets. Other new consequences
are obtained for other complexity classes.

Using logspace self-reducibility, we obtain similar but stronger general properties,
so that if a nonuniform model corresponding to deterministic (resp. nondeterministic)
logarithmic space is able of deciding logspace self-reducible sets then the nonuniformity
capability can be “switched off”, and equalities such as P = DLOG or P = NLOG
follow. Similar results compare NLOG to DLOG, LOG(CFL) and LOG(DCFL) to
NLOG and DLOG, and P to DSPACE(log"n) and to NSPA CE(log* n). Therefore,
parts e/ and f/ of theorem 1 are also obtained among other results. Comparing both
definitions, we see that we have two properties similar in spirit. one of them appropriate
to work between P and F and the other one appropriate to work in classes below P.

It is also interesting to compare the three definitions of self-reducibility, and the
complexity classes to which they correspond, from the point of view of the mathemati-
cal structure of the preorder than ensures the well-foundedness of the series of recursive
calls. Bounded space classes such as PSPACE correspond to (polynomially) bounded
depth preorders, while bounded time classes such as P and E correspcnd to (polynomi-
ally resp. exponentially) bounded size preorders, in the sense indicated in section 4. The
most peculiar point is that, for the natural uses of these notions, the resource bounds of
the self-reducing machine seem to be much less relevant than the well-foundedness struc-
ture. The fact that logarithmic work space suffices to self-reduce PSPA CFE-complete sets
is curious, but it can be superseded by the fact that, under appropriate encodings, even
EXPTIME-complete sets such as those of lemma 10 seem to be wdq-self-reducible via
logspace machines. It even could make sense to fix some very strong resource bound to
the self-reducing machines, such as logarithmic work space, and Impose various reason-
able bounds on either the depth, the size, or both, of the preorder corresponding to the
well-foundedness of the recursive structure, to check whether in this way self-reducibility
structures corresponding to each of the natural complexity classes are found. The au-
thor has pursued this line of research for some small steps, finding no really interesting
new results, but possibly a greater development would be worth.

From all the parts of theorem 1, two of them remain that do not follow from
the results reported here. The original proof uses the round-robin tournament method,
that as we have shown is not intrinsically necessary for the other uses it had. The
remaining parts correspond to logarithmic advice and classes in the ldg-self-reducibility
realm. A forthcoming work [4] will show a theorem stating a principle such as those
presented here, and relating ldg-self-reducibility to log advice classes. From it, these
two parts of theorem 1 will follow, again among new results, and it will be argued
that it subsumes the round-robin tournament method, finally answering in the positive
Mahaney’s question.

9. Acknowledgements

The author is grateful to Gerd Wechsung for suggesting part of this research, to Jacobo
Toran for interesting discussions and for suggesting proposition 6, to Birgit Jenner and
Bernd Kirsig for calling his attention to Sudborough’s work [20], to Mario Rodriguez

20

Artalejo for providing him reference [1], and to Josep M. Humet for providing him
reference {10].

10. References

(1] A.A. Aho, J.E. Hopcroft, J.D. Uliman: “Time and tape complexity of pushdown
automaton languages”. Information and Control 13 (1968), 186-206.

(2] J.L. Balcdzar, R.V. Book, U. Schéning: “The polynomial time hierarchy and
sparse oracles”. Journal ACM 33 (1986), 603-617.

(3] J.L. Balcdzar, J. Diaz, J. Gabarré: Structural Complexity I. EATCS Monographs,
vol. 11, Springer-Verlag (1988).

(4] J.L. Balcdzar, U. Schoning. Logarithmic advice classes. Report de recerca LSI-
88-12, Univ. Politecnica de Catalunya.

[5] P. Berman: “Relationship between density and deterministic complexity of NP-
complete languages”. In: Int. Coll. Automata, Languages, and Programming,
Lect. Notes in Comp. Sci. 62 (1978), 63-71.

{6] A. Borodin, S. Cook, P. Dymond, W. Ruzzo, M. Tompa: “Two applications of
complementation via inductive counting”. In: Third Structure in Complexity The-
ory Conference (1988), 116-125.

[7] A. Chandra, D. Kozen, L. Stockmeyer: “Alternation”. Journal ACM 28 (1981),
114-133.

[8] S. Cook: “Characterizations of pushdown machines in terms of time bounded
computers”. Journal ACM 18 (1971), 4-18.

[9] S. Fortune: “A note on sparse complete sets”. SIAM Journal on Computing 8
(1979), 431-433.

[10] S. Greibach: “The hardest context-free language”. SIAM Journal on Computing
2 (1973), 304-310.

[11] M.A. Harrison: Introduction to formal language theory. Addison-Wesley (1978).

[12] N. Immerman: “Nondeterministic space is closed under complement”. In: Third
Structure in Complexity Theory Conference (1988), 112-115.

[13] R. Karp, R. Lipton: “Some connections between nonuniform and uniform com-
plexity classes”. In: Proc. 12® ACM Symposium on Theory of Computing (1980),
302-309.

[14] K. Ko: “On self-reducibility and weak p-selectivity”. J. Comp. Syst. Sci. 26 (1983),
209-221.

[15] R. Ladner: “The Circuit Value Problem is logspace complete for P”. SIGACT
News, January 1975, 18-20.

[16] S. Mahaney: “Sparse complete sets for NP: solution of a conjecture by Berman
and Hartmanis”. J. Comp. Syst. Sci. 25 (1982), 130-143.

[17] S. Mahaney: “Sparse sets and reducibilities”. In: Studies in complexity theory,
R. Book ed., Pitman 1986.

21

[18] A. Meyer, M. Paterson: “With what frequency are apparently intractable prob-
lems difficult?”. M.I.T. Tech. Report TM-126 (1979).

(19] W. Ruzzo, J. Simon, M. Tompa: “Space-bounded hierarchies and probabilistic
computations”. J. Comp. Syst. Sci. 28 (1984), 216-230.

[20] I.H. Sudborough: “On the tape complexity of deterministic context-free lan-
guages”. Journal ACM 25 (1978), 405—414.

[21] R. Szelepcsényi: “The method of forcing for nondeterministic automata”. Bulletin

of the EATCS 33 (1987), 96-99.

