
920

Parallel Computing

III International Conference on Particle-based Methods – Fundamentals and Applications
PARTICLES 2013

M. Bischoff, E. Oñate, D.R.J. Owen, E. Ramm & P. Wriggers (Eds)

PARALLEL IMPLEMENTATION OF THE NON-SMOOTH
CONTACT DYNAMICS METHOD FOR LARGE PARTICLE

SYSTEMS

Matthias Balzer1, Jan Kleinert1 and Martin Obermayr1

1 Fraunhofer Institute for Industrial Mathematics (ITWM)
67663 Kaiserslautern, Germany

{balzer,kleinert,obermayr}@itwm.fraunhofer.de, http://www.itwm.fraunhofer.de

Key words: Granular Material, NSCD, HPC, Parallel Implementation

Abstract. In numerous industrial applications there is the need to realistically model
granular material. For instance, simulating the interaction of vehicles and tools with soil
is of great importance for the design of earth moving machinery. The Discrete Element
Method (DEM) has been successfully applied to this task [1, 2]. Large scale problems
require a lot of computational resources. Hence, for the application in the industrial
engineering process, the computational effort is an issue.

In DEM parallelization is straight forward, since each contact between adjacent parti-
cles is resolved locally without regard of the other contacts. However, modelling a contact
as a stiff spring imposes strong limitations on the time step size to maintain a stable simu-
lation. The Non–Smooth Contact Dynamics Method (NSCD), on the other hand, models
contacts globally as a set of inequality constraints on a system of perfectly rigid bodies [3].
At the end of every time step, all inequality constraints must be satisfied simultaneously,
which can be achieved by solving a complementarity problem. This leads to a numeri-
cally stable method that is robust with respect to much larger time steps in comparison
to DEM. Since a global problem must be solved, parallelization now strongly depends on
the numerical solver that is used for the complementarity problem.

We present our first massively parallel implementation of NSCD based on the projected
Gauß-Jacobi (PGJ) iterative scheme presented in [4]. Focusing on one-sided asynchronous
communication patterns with double buffering for data exchange, global synchronizations
can be avoided. Only weak synchronization due to data dependencies of neighboring
domains remains. The implementation is based on the Global address space Programming
Interface (GPI), supplemented by the Multi Core Threading Package (MCTP) [5] on the
processor level. This allows to efficiently overlap calculation and communication between
processors.

1

Parallel implementation of the non-smooth contact dynamics method for large particle systems

921

Matthias Balzer, Jan Kleinert and Martin Obermayr

1 INTRODUCTION

Realistic modelling of granular material is of great interest in numerous industrial ap-
plications. Hence, time consuming calculations of large scale systems demand for efficient
parallelization of the underlying model. This becomes more and more relevant with an
increasing number of cores available on today’s compute architectures. Thus, reducing
data dependencies in the algorithms is an issue.

In this work we investigate the Non–Smooth Contact Dynamics Method (NSCD). The
method constitutes a set of inequality constraints on a system of perfectly rigid bodies,
which has to be solved at every time step [3]. Formulating this task as a cone com-
plementarity problem a solution can be found by applying the projected Gauß-Jacobi
(PGJ) iterative solver [4]. The application of NSCD on a granular material simulation
has shown, that system forces can be predicted in agreement with the Discrete Element
Method (DEM). On the other hand, since NSCD is robust with respect to much larger
time steps, calculations can be done faster with a reduced number of iterations within the
solver, if only the material flow is of concern [6].

We have implemented a parallel version of NSCD with one-sided asynchronous com-
munication patterns. Our first test cases show good scaling behavior on a shared memory
system. In addition, the extension to distributed memory architectures allows for large
scale simulations. Here, work on the dynamic load balancing is under progress.

The paper is organized as follows: In the next section we introduce NSCD as the under-
lying model of our implementation. Subsequently, the implementation of the algorithm is
described. We discuss details of the domain decomposition and communication concept,
starting with the multi-threaded case for the shared memory system. Parallelization for
the distributed memory environment is built on top. Finally, we discuss the impact of
data dependencies on a simple model calculation.

2 MODEL

The basis of NSCD is a model of perfectly rigid bodies for the particles and unilateral
contacts for their interaction. Unilaterality means that only repulsive reaction forces at the
contact are valid. The contact force separates particles if they would penetrate otherwise,
but it cannot exert an attractive cohesive or adhesive force. This is formulated using
a complementarity condition: Either two soil particles are in contact, then a repulsive
reaction force is required that keeps them from penetrating, or the particles are separated
and no reaction force is needed. If φ is the signed distance between two particles, and
λ̃n the reaction force in normal direction of the contact, the complementarity condition
amounts to

0 ≤ φ ⊥ λ̃n ≥ 0, (1)

i. e. one of the two non–negative values is zero whenever the other is non–zero. So far,
only the frictionless case is considered.

2

922

Matthias Balzer, Jan Kleinert and Martin Obermayr

The Coulomb Friction model states, that the tangential reaction force λ̃t ∈ R2 at a
contact of two particles is restricted by a multitude of the normal reaction force λ̃n from
Eqn. (1). In other words, the total reaction force λ̃ ∈ R3 is restricted to the Coulomb
Friction Cone

C =

{[
λn

λt

]
∈ R× R2 | ‖λt‖ ≤ µλn

}
. (2)

The frictional coefficient µ usally takes a value between zero and one. DeSaxcé and
Feng derived in [7], that the Coulomb Friction model can be cast into a complementarity
condition

C∗ � ũ ⊥ λ̃ ∈ C (3)

where

ũ =

[
φ+ µ‖vt,rel‖

vt,rel

]
∈ R3

and

C∗ =
{
u ∈ R3

∣∣ uTλ ≥ 0 for all λ ∈ C
}

is the dual cone of C. Here, vt,rel denotes the relative tangential velocity at the contact
point. Whenever the frictional coefficient and the relative velocity at contact are small, a

reasonable approximation is given by using u =
[
φ vT

t,rel

]T ≈ ũ, refer to [8] for details
regarding this approximation.

Let there be m particles and let M ∈ R6m×6m be the mass matrix of the system. Let
q ∈ R6m denote the generalized coordinates of the particles, v ∈ R6m the translational
and angular velocities and let fext ∈ R6m be external forces acting on the particles. Due
to the perfect rigidity of the particles, the velocity of the particles may be discontinuous,
and thus accelerations dv

dt
do not exist in a classical sense [9]. Nevertheless, the motion of

all particles can be described by a measure differential equation

M dv = fext dt. (4)

In a numerical simulation, the task is to find the configuration of the system at time
tj+1, given its configuration at time tj. Let h = tj+1 − tj denote the time step size and
vj+1 an approximation of v(tj+1). Let there be n potentially active contacts at time tj,
i. e. contacts with distances φk(q(tj)), k = 1, ..., n smaller than a certain threshold. The
equations of motion (4) in discrete time, coupled with the complementarity conditions

3

923

Matthias Balzer, Jan Kleinert and Martin Obermayr

C∗
k � uk ⊥ λ̃k ∈ Ck for k = 1, ..., n, are

M (vj+1 − v(tj)) = hfext(tj) +
n∑

j=1

∇uT
j λj,

C∗
k � uk(q(tj+1)) =

[
1
h
φk(q(tj+1))
vk,t,rel(tj+1)

]
,

Ck � λk,

0 = uT
kλk for all k = 1, ..., n.

The new unknowns λk =
∫ tj+1

tj
dλ̃k are integrals of a force over time with physical unit of

momentum.
For the contact with index k, let Dk =

[
Dkn Dkt

]
∈ R6m×3 be the constraint

Jacobian as described in [4, 10]. Here, Dkn = ∇φk(q) ∈ R6m and Dkt ∈ R6m×2. We can
write

uk(q(tj+1)) = DT
k vj+1 +

1
h
φk(q(tj))

0
0

+O(h2)

and thus ∇uk ≈ DT
k . The new velocity v(tj+1) can be approximated by solving the

non-linear Cone Complementarity Problem (CCP)

vj+1 =v(tj) + hM−1fext(tj) +
n∑

j=1

M−1Djλj

C∗
k �uk = DT

k vj+1 +

1
h
φk(q(tj))

0
0

 (5)

Ck �λk

0 =λT
kuk for all k = 1, ..., n.

Finally, implicit Euler integration1 is used to obtain the new positions of the particles,

qj+1 = q(tj) + hvj+1 ≈ q(tj+1).

A popular iterative scheme to solve problems of this kind is the projected Gauß–Jacobi
method (PGJ) [3, 4]. Given an estimate (v

(i)
j+1,λ

(i)) of a solution (vj+1,λ) to Eqn. (5),

1In practice, implicit Euler time integration is sufficient for large systems with many non-smooth
events. As a consequence, all collisions will be perfectly inelastic.

4

924

Matthias Balzer, Jan Kleinert and Martin Obermayr

an improved estimate (v
(i+1)
j+1 ,λ(i+1)) is constructed via

λ
(i+1)
k = PCk

λ(i)

k − ωηk

DT

k v
(i)
j+1 +

1
h
φk(q(tj))

0
0

 (6)

v
(i+1)
j+1 = v(tj) + hM−1fext(tj) +

n∑
j=1

M−1Djλ
(i+1)
j (7)

where PCk denotes a projection onto the friction cone Ck, ηk is a scalar approximation

of
(
DT

k M
−1Dk

)−1
and ω is a relaxation parameter that controls the convergence rate.

Eqn. (6) only depends on the velocity v
(i)
j+1 of the two particles involved in the k–th

contact and the momentum λ
(i)
k from the previous iteration. After Eqn. (6) has been

evaluated for all contacts independently, the complementarity conditions

C∗
k � uk(v

(i)
j+1) ⊥ λ

(i)
k ∈ Ck

are satisfied locally for all k = 1, ..., n. Then the velocities are updated according to
Eqn. (7). This update can cause violations of complementarity conditions, and the entire
process has to be repeated until the violations are smaller than a predefined threshold or
a maximum number of iterations is exceeded.

3 IMPLEMENTATION

As described in the previous section, in NSCD a non-linear system of equations has to
be solved at every time step. Subsequently, with the updated particles’ velocities the new
particle positions are calculated using an implicit Euler step.

As input data for the PGJ iterative solver all active contacts, i. e. pairs of particles
that are likely to collide within the next time step, need to be identified. The distance
between particles as well as the contact normal has to be calculated. This is currently
done using the collision detection provided by the Bullet Physics Library [11]. To account
for the dynamics within the time step, particles are artificially enlarged before collision
detection. Thus, all possible collisions of a particle within a fixed range (corresponding
to a maximum particle velocity) are guaranteed to be detected.

In the following, we first describe the thread parallel implementation of the PGJ solver
on a shared memory system (e. g. compute node). The extension to a distributed memory
system (e. g. compute cluster) is built on top.

3.1 Multi-threading

By construction of the PGJ iterative solver, all contacts can be processed in parallel
within one iteration step (Eqn. (6)). However, care has to be taken at the velocity update
(Eqn. (7)) of the corresponding particles to preclude concurrent read-modify-write access

5

925

Matthias Balzer, Jan Kleinert and Martin Obermayr

partition 0 partition 1

Figure 1: Data access pattern at a partition boundary. Particles are uniquely assigned to a partition
(indicated by color). Active contacts are shown as lines connecting the particles, write access is marked
by an arrow.

on the particle data. During the iteration, two arrays for the particle velocities are used
(double buffering). At each iteration step, the arrays provide the previous state of a
particle’s velocity (which is read only), and its current value (which is modified by all
respective contacts). After the completion of the current iteration step, i. e. all active
contacts are processed, the role of previous and current velocities is inverted.

Decomposing the simulation volume into smaller partitions, a particle can be uniquely
assigned to a certain partition according to its position. Thus, all contacts including
only particles of a given domain can be processed by a single thread without further
restrictions. Contacts at the boundaries, connecting neighboring partitions, need to be
treated differently. To circumvent explicit synchronization primitives these contacts are
processed twice, once for each partition. Here, only the corresponding particle velocities
of the processed partition are updated (see Fig. 1).This guaranties exclusive write access
to the particle data by each partition.

Though double buffering of the velocities allows for concurrent read and write access
on the particle data at the partition boundaries, the iteration scheme of the PGJ solver
implies dependencies between neighboring partitions. To procede with the PGJ iteration
from a completed step i to the next step i + 1, all read velocities need to be given at
iteration step i. In other words, two neighboring partitions can not differ by more than
one iteration step (weak synchronization). Hence, the current iteration step (or more
generally: time stamp) needs to be known for each partition.

For optimal dynamic load balancing the number of partitions needs to exceed the
number of simultaneous threads. This reduces idle time due to the aforementioned de-
pendencies at the cost of an increased number of boundary contacts to be processed.

6

926

Matthias Balzer, Jan Kleinert and Martin Obermayr

rank 0 rank 1 rank 2

region region region

le
ft

bo
un

da
ry

right boundary

le
ft

ha
lo inner

right halo

inner

right halo
le

ft
bo

un
da

ry
right boundary

le
ft

ha
lo

le
ft

bo
un

da
ry

right boundary

le
ft

ha
lo inner

right halo

Figure 2: Domain decomposition with boundary exchange. Domains are labeled by the rank of the
respective compute resource. Each domain (local volume) is extended by the boundaries of its neighbors
(halo). A domain is further divided into partitions (indicated by the dashed lines), including the boundary
partition(s).

3.2 Distributed memory architectures

So far, only a shared memory system has been considered in the multi-threaded case.
On a compute cluster we additionally have to deal with distributed memory and expensive
access of remote data. The parallelization scheme basically remains the same, using
domain decomposition and double buffering of particle data. The essential extension is
the implementation of a so called halo to speed up access on remote data. This will be
described in the following.

Alike the multi-threaded case, a domain decomposition of the simulation volume is im-
plemented, with one domain (local volume) created for each compute resource.2 Particles
are distributed to the compute resources accordingly. We denote the volume assigned to a
compute resource domain to distiguish from the partitions created for the multi-threading
environment. Once again, inner contacts and boundary contacts (here connecting neigh-
boring domains) are discriminated. Consistently, the boundary contacts are processed
twice, updating local particles only. While in the shared memory environment all particle
data is stored only once, limited access times of remote memory on a compute cluster
render this storage scheme impracticle for the boundary contacts.

To overcome these limitations each domain is extended by the boundaries of its neigh-
bors (halo), see Fig. 2. The halo provides the necessary data of remote particles to
process the domain boundary. Double buffering of the halo data (identical to the dou-
ble buffering of velocities in the multi-threaded case) allows for one-sided asynchronous
communication between compute resources. In other words, the boundary data is sent to
neighboring resources without synchronization of the communication process via remote

2The term compute resource indicates a single socket or a compute node.

7

927

Matthias Balzer, Jan Kleinert and Martin Obermayr

Boundary exchange

Collision detection

Reassigning particles to partitions

Euler step

Initialization of PGJ iteration

Gauss−Jacobi iteration step

time step

iteration step

Redistribution of particles

Boundary exchange

Figure 3: Program flow. Blue boxes indicate pure data management, red boxes contain the actual
NSCD algorithm. Tasks involving data exchange with remote compute resources are higlighted in red.

direct memory access (RDMA). The weak synchronization, introduced through the time
stamp of each domain, guarantees correct non-conflicting read and write access of the
halo data. Furthermore, since the communication is done by the interconnect hardware
without involving the CPU, computation and communication can be overlapped. We used
the Global Address Space Interface (GPI) in combination with the Multi-Core Threading
Package (MCTP) for our purposes [5].

Implementing a two-dimensional decomposition of the simulation volume on the cluster
level, the boundary data can be arranged in such a way allowing for zero-copy communi-
cation. Calculating boundary contacts first, boundary data can be sent while processing
the inner contacts. Thus, in the optimal case the communication is completed before the
computation has finished.

3.3 Program flow

The combined domain decomposition for the cluster, including the additional partitions
of each domain for the multi-threaded environment is already illustrated in Fig. 2. The
boundary of each domain is defined as a separate partition.

The complete program flow on a compute cluster can be summarized as follows (Fig. 3):
At the beginning of a time step, particles are reassigned to the domains, i. e. some particles
are moved to different compute resources. Second, each domain is divided further into
partitions for the multi-threading environment. A boundary partition is introduced for
the data exchange between neighboring domains (halo). With the received halo data of all

8

928

Matthias Balzer, Jan Kleinert and Martin Obermayr

16 24 32 40 48
partitions

1

1.02

1.04

1.06

1.08

no
rm

al
iz

ed
 ti

m
e

0 2 4 6 8 10 12
threads

0

2

4

6

8

10

12

sp
ee

du
p

Figure 4: (left) The solid red line shows the normalized runtime for 12 cores depending on the number
of partitions, the dashed green line represents the normalized calculation time. (right) Speedup for the
shared memory system, see text for details.

neighboring domains, the collision detection is done. Following, the PGJ iterative solver
is initialized with the identified active contacts. Then the PGJ iteration is repeated up
to a maximum iteration number, involving exchange of the boundary data after every
iteration step of the solver. Finally, the particle positions are updated with the Euler step
and the next time step starts with redistribution of the particles.

4 RESULTS

As a first test for the multi-threading environment we set up a simulation of 2 · 104
spheres confined in a box (length = 88, width = 22). The radii are randomly distributed
between 0.25 and 0.5. Particles are densely packed and uniformly spread over the simu-
lation volume. Runtimes are meassured for 10 time steps with each 2000 iterations. The
test is done on a compute node with 2× 6 cores (Intel Xeon X5660).

The influence of the volume decomposition is meassured running 12 threads using
different numbers of partitions. Results are illustrated in Fig. 4 (left). The solid red curve
shows the runtime Trun of the job and the dashed green curve the total calculation time
Tcalc, each normalized by their respective minimum values. Data dependencies can be
reduced at the cost of increased computational effort, i. e. increased number of partitions
causing additional contacts at boundaries. This tradeoff reveals an optimal number of
partitons of about twice the number of threads in this example. In the following, we will
take this as guideline for the speedup meassurement.

Fig. 4 (right) shows the speedup results for our test case. The ideal (linear) speedup
is shown as dashed line. The number of contacts is increased by about 6% at most, the
cumulated runtime Trun ×Nthreads by about 5%.

9

929

Matthias Balzer, Jan Kleinert and Martin Obermayr

Multiple calculation of boundary contacts can be avoided, if neighboring partitions are
globally excluded from calculation until the respective partition is processed. While this
scheme works well for a large simulation data per thread ratio, data dependencies finally
become dominating with an increased number of cores.

5 CONCLUSIONS

We presented our first implementation of NSCD focussing on double buffering and
asynchronous communication. For the multi-threaded case we demonstrated with a test
model the influence of data dependencies on the speedup with good scaling behavior on
a compute node with 2× 6 cores. The extension to distributed memory architectures has
been implemented and allows for simulations of essentially larger systems. Here, work on
the dynamic load balancing is currently under progress.

REFERENCES

[1] M. Obermayr, C. Vrettos, J. Kleinert, and P. Eberhard A discrete element method
for assessing reaction forces in excavation tools. Proceedings of the Congress on Nu-
merical Methods in Engineering - CNM 2013, Bilbao, Spain, June 2013.

[2] D.A.Horner, J.F. Peters, and A. Carrillo Large scale discrete element modeling
of vehicle-soil interaction. Journal of engineering mechanics, 127 (10), 1027-1032,
(2001).

[3] V. Acary and B. Brogliato Numerical Methods for Nonsmooth Dynamical Systems.
Applications in Mechanics and Electronics, Springer, 2008

[4] A. Tasora and M. Anitescu A matrix-free cone complementarity approach for solving
large-scale, nonsmooth, rigid body dynamics. Computer Methods in Applied Mechan-
ics and Engineering, 200(5-8):439 C 453, 2011

[5] R. Machado and C. Lojewski The Fraunhofer virtual machine: a communication li-
brary and runtime system based on the RDMA model. Computer Science – Research
and Development, vol. 23, pp. 125-132, 2009; Fraunhofer ITWM GPI – Global Ad-
dress Space Programming Interface. http://www.gpi-site.com

[6] J. Kleinert , M. Obermayr, and M. Balzer Modeling of Large Scale Granular Systems
using the Discrete Element Method and the Non–Smooth Contact Dynamics Method:
A Comparison. To be published as contribution for the ECCOMAS Multibody Dy-
namics 2013 Conference Proceedings

[7] G. De Saxcé and Z.Q. Feng The bipotential method: a constructive approach to design
the complete contact law with friction and improved numerical algorithms. Mathemat-
ical and Computer Modelling, 28(4):225–245, 1998.

10

930

Matthias Balzer, Jan Kleinert and Martin Obermayr

[8] M. Anitescu Optimization-based simulation of nonsmooth rigid multibody dynamics.
Mathematical Programming, 105(1):113–143, April 2005.

[9] D. E. Stewart Rigid-body dynamics with friction and impact. SIAM Review, 42(1):pp.
3–39, 2000.

[10] M. Anitescu, J. F. Cremer, and F. A. Potra Formulating 3D Contact Dynamics
Problems. Technical report, The University of Iowa, Iowa, 1995.

[11] Bullet Physics Library, www.bulletphysics.org

11

