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Abstract. In this study, a method for modeling incompressible, immiscible two phase
fluid flows influenced by an external electrical field in the context of incompressible
smoothed particle hydrodynamics in two dimensions has been described. Continuum
surface force model is employed while leaky dielectric model is used to incorporate the
effects of electrical field on fluid flow. The proposed method is employed to numerically
simulate buoyancy driven rising motion of a single droplet in quiescent fluid influenced
by an electrical field.

1 Introduction

The motion of a droplet under the effect of gravitational force where two fluids of
different properties have interfacial contact surfaces is one of the most common features
observed in many engineering and natural processes and have been a subject of interest
for modeling in many computational fluid dynamics (CFD) studies. Analytical solutions
are available for simplified cases of buoyancy driven flow while a vast number of numerical
studies employing different methods have been conducted on different test cases [1, 2].
Controlling the dynamics of the lighter fluid interface is of special interest and introducing
an electric field provides a mechanism to influence the body force otherwise dominated by
gravity. In such cases, use of electrical forces may potentially benefit convective transport
and mixing in many technical applications [3].

In this study, a two dimensional incompressible smoothed particle hydrodynamics
(ISPH) scheme based on the projection method proposed by Cummins and Rudmann
[4] is developed to simulate buoyancy driven flows under the influence of an electrical
field. Surface tension forces are taken into consideration using Continuum Surface Force
(CSF) model [5] while a leaky dielectric model is opted to include forces exerted due to
the presence of electric field [6]. In order to asses the capability of the proposed method,
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rising of a droplet under the effect of gravity and an electrical field in a quiescent fluid has
been studied for different electrical Bond numbers. Results obtained show that electrical
field has considerable effect on the evolution of bubble while rising.

2 Mathematical Formulation

Equations governing an incompressible flow may be written as

∇ · u = 0, (1)

ρ
Du

Dt
= −∇p+∇ · τ + f(b) + f(s) + f(e), (2)

where u is the velocity vector, p is pressure, ρ is density, t is time, δ is Dirac delta function
and D/Dt = ∂/∂t+ uk∂/∂xk represents the material time derivative. Here, τ and f(b) are
viscous stress tensor and body forces exerted on the flow, respectively. While body force
is taken to be ρg, where g is gravitational acceleration, viscous stress tensor is defined as

τ = µ
(
∇u+ (∇u)T

)
, (3)

where µ denotes viscosity and superscript T represents the transpose operation. For the
sake of computational simplicity and efficiency, local surface tension force is expressed
as an equivalent volumetric force according to the CSF method originally proposed by
Brackbill et al. [5],

f(s) = σκn̂δ. (4)

Here, surface tension coefficient, σ, is taken to be constant while κ represents interface
curvature, −∇ · n̂, where n̂ is unit surface normal vector. To be able to distinguish
between different phases, a color function ĉ is defined such that it assumes a value of
zero for one phase and unity for the other. Interface curvature, unit normals and surface
tension forces related to each phase are computed using its corresponding color function
and will be discussed further in the following paragraphs.

Following the same mindset (as of surface tension forces) for electrical forces, electric
stress is calculated by taking the divergence of the Maxwell stress tensor [6]. Taking the
incompressibility of the flow into account, volumetric electric force may be written as

f(e) = −1

2
E · E∇ε+ qE. (5)

Here, E, ε and q represent electric field, permittivity and volume charge density near inter-
face. Disregarding any time-varying magnetic field and assuming that the flow conforms
to leaky dielectric conditions, i.e. electric relaxation time is much shorter than viscous
timescale, an electric potential ϕ may be defined as

∇ · (γ∇ϕ) = 0, (6)
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where γ is the electrical conductivity. Upon solving for ϕ, E and q are defined as

E = −∇ϕ, (7)

q = ∇ · (εE) . (8)

Interactions between SPH particles are facilitated through an interpolation function
W (rij, h) where rij is the magnitude of distance vector rij = ri − rj between particle
of interest i and its neighboring particles j while h is the smoothing length. Defining
ψi =

∑
j Wij, One may smooth out the color function as ci =

∑
j ĉWij/ψi which may

serve to smoothen the sharp gradients in properties that may potentially destabilize the
numerical method using a weighted averaging scheme over all phases, fi =

∑3
α=1 f

α
i c

α
i

where f may represent density, viscosity, conductivity or permittivity, where applicable.
It is also utilized to evaluate δ ≃ |∇c|, κ = −∇ · n̂ and n̂ = ∇c/|∇c| in (4). However,
a constraint has to be enforced to keep possible erroneous normals, as pointed out by
Morris [7]. In this study, only gradient values excessing a certain threshold, |∇ci| ≃ β/h,
are used in surface tension force calculations. A β value of 0.08 has been found to provide
accurate results without removing too much detail.

A predictor-correcter scheme is employed to advance the governing equations of flow
in time using a first-order Euler approach with variable timestep according to Courant-
Friedrichs-Lewy condition, ∆t = CCFLh/umax, where umax is the largest particle velocity
magnitude and CCFL is taken to be equal to 0.25. In predictor step all the variables are
advanced to their intermediate form using following relations,

r∗i = r
(n)
i + u

(n)
i ∆t+ δr

(n)
i , (9)

u∗
i = u

(n)
i +

(
∇ · τ i + f(b)i + f(s)i + f(e)i

)(n)
∆t, (10)

ψ∗
i = ψ

(n)
i −∆tψ

(n)
i (∇ · u∗

i ) , (11)

where starred variables represent intermediate values and superscript (n) denotes values
at the nth time step. Artificial particle displacement vector in (9), δri, is defined as stated
in [8] where a constant value of 0.06 is used.

Using intermediate values, pressure at the next time step is found by solving the Poisson
equation which is then followed by corrections in position and velocity of the particles,
completing the temporal transition.

∇ ·
(

1

ρ∗i
∇p

(n+1)
i

)
=

∇ · u∗
i

∆t
, (12)

u
(n+1)
i = u∗

i −
1

ρi
∇p

(n+1)
i ∆t, (13)

r
(n+1)
i = r

(n)
i +

1

2

(
u
(n)
i + u

(n+1)
i

)
∆t+ δr

(n)
i . (14)
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However, in order to be able to handle larger density ratios between different phases of
the flow, an alternative form of RHS of (13) is considered by substituting ∇p/ρ with its
equivalent form, ∇(p/ρ)− p∇(1/ρ).

Boundary conditions are enforced through MBT method described in [9] while first
derivative and Laplace operator are approximated through following expressions

∂fm
i

∂xk
i

akli =
∑
j

1

ψj

(
fm
j − fm

i

) ∂Wij

∂xl
i

, (15)

∂2fm
i

∂xk
i ∂x

k
i

aml
i = 8

∑
j

1

ψj

(
fm
i − fm

j

) rmij
r2ij

∂Wij

∂xl
i

. (16)

Here, akli =
∑

j

rkij
ψj

∂Wij

∂xl
i
is a corrective second rank tensor that eliminates particle inconsis-

tencies. Left hand side of (12) is discretized as

∂2fm
i

∂xk
i ∂x

k
i

(
2 + akki

)
= 8

∑
j

1

ψj

(
fm
i − fm

j

) rkij
r2ij

∂Wij

∂xk
i

. (17)

3 Simulation Results

In this section, the results for numerical simulation of a single droplet rising in a qui-
escent background fluid under buoyancy effects subject to an electrical field is presented.
This study combines previously validated studies that were conducted separately on buoy-
ancy driven droplet rising [8] and droplet deformation due to suspension in an external
electrical field [10]. Computational domain is consisted of a 6 × 10 rectangle discretized
with 120 × 200 particles placed in uniform spacing. The initial droplet is placed two
radius R lengths above bottom boundary and allowed to rise in vertical direction. Non
dimensional parameters controlling the evolution are

Re =
ρbσR

µ2
b

, (18)

Bog =
ρbgR

2

σ
, (19)

Boe =
εbE

2
infR

σ
, (20)

along with ratios of droplet properties to outer fluid properties where subscripts d and b
indicate droplet and background fluid, respectively. Simulations are conducted for Re =
200, Bog = 4, ρd/ρb = µd/µb = εd/εb = 0.2 and γd/γb = 2 while Boe is varied from 0 to 4
with unit increments.

Figure 1 provides the position of center of mass of the droplet versus time (t∗ = tσR/µb)
for all test cases for the duration of simulation. It is observable that electrical field
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Figure 1: Position of droplet center of mass versus time for all cases.
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Figure 2: Time snapshots of droplet evolution (0.5 level contour of color function); (a) Boe = 0, (b)
Boe = 4.

augments the rising motion of the droplet. Figure 2 provides time snapshots of droplet
rising for cases with Boe numbers of 0 and 4. As it is seen, the presence of electric
field affects the shape of the droplet in a profound manner. When no electric field is
present, the droplet evolves through a series of profiles under the influence of buoyancy
and surface tension forces. This results in a mushroom shaped final profile which has a
wide frontal area, resulting in large drag force thus hindering the vertical motion of the
droplet. However, when influenced by the electrical forces, a teardrop shape is obtained
(t∗ = 8 in fig. 2-c) which greatly reduces drag, resulting in a faster rise which is then
followed by a break up at later times. It is notable that even at the later times compared
to the case with no electrical field, the reduced frontal area augments the rising action of
the droplet within background fluid.

These effects may be further examined if relative effect of surface tension and electrical
field are compared. In order to facilitate this matter, figs. 3 and 4 provide detailed force
plots of cases Boe = 0 and Boe = 4. In these figures, forces are scaled with the largest
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magnitude among both surface tension and electrical forces and relative magnitude is
shown by filled contour plots while arrows provide the direction toward which the force
is applied. When no electrical field is present, the droplet is only affected by surface
tension and buoyancy forces. As droplet starts its vertical motion, surface tension tends
to conserve the shape of the droplet in its circular form. This trend continues at later
simulation times when a cavity starts to form underneath the droplet. The deformation
is opposed by surface tension forces directed away from the droplet. At final stages of
simulation, surface tension becomes concentrated at surface regions of high curvature
which start to form at the corners. It is worth to note that along with the change in
surface tension force direction, this leads to break off at higher Bog numbers which were
previously studied [8]. When the same droplet is placed within the electrical field, it
will experience a completely different force make up. Unlike surface tension force which
always acts normal to the interface, electrical force is comprised of two parts, polarization
stresses and interactions between electric charges and electric field, first and second term
on the right hand side of equation 5. Polarization stresses act normal to the surface while
interaction between electric charges and electric field brings up forces acting along the
electric field itself. Combination of these two components brings about a complex force
which tends to lengthen the droplet in vertical direction, reducing its frontal area. Darker
colored contours in fig. 4 a-d comply with this observation. A break up at later times of
simulation results in the droplet curving inside (fig. 4 e-f).

4 Conclusion

In this study, a two dimensional ISPH method for modeling incompressible, immiscible
two phase fluid flows influenced by an external electric field has been developed. Surface
tension force is exerted by implementing CSF method while leaky dielectric model is used
to incorporate forces on the interface due to the presence of an electrical field. Combining
previously studied cases of buoyancy driven droplet rising and droplet deformation under
electrical forces, a case of buoyancy driven droplet rising affected by presence of an external
electrical field has been studied numerically. Results show that the presence of an electrical
field has profound effect on the shapes assumed by the droplet during its course. Set of
parameters used during this study augmented rising velocity as the electrical field became
stronger by reducing the frontal area and providing a more slender intermediate shape.
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Figure 3: Force distribution for case Boe = 0; All forces are normalized with respect to maximum of
both types; Arrows provide direction while contours show magnitude; At times (a) t∗ = 0.1, (b) t∗ = 4,
(c) t∗ = 8, (d) t∗ = 12, (e) t∗ = 16, (f) t∗ = 20.
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Figure 4: Force distribution for case Boe = 4; (left side) Electrical forces, (right side) Surface tension
forces; All forces are normalized with respect to maximum of both types; Arrows provide direction while
contours show magnitude; At times (a) t∗ = 0.1, (b) t∗ = 4, (c) t∗ = 8, (d) t∗ = 12, (e) t∗ = 16, (f)
t∗ = 20.
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