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Abstract—High-performance computing (HPC) requires
resilience techniques such as checkpointing in order to tolerate
failures in supercomputers. As the number of nodes and
memory in supercomputers keeps on increasing, the size of
checkpoint data also increases dramatically, sometimes causing
an I/O bottleneck. Differential checkpointing (dCP) aims to
minimize the checkpointing overhead by only writing data
differences. This is typically implemented at the memory
page level, sometimes complemented with hashing algorithms.
However, such a technique is unable to cope with dynamic-size
datasets. In this work, we present a novel dCP implementation
with a new file format that allows fragmentation of protected
datasets in order to support dynamic sizes. We identify dirty
data blocks using hash algorithms. In order to evaluate the dCP
performance, we ported the HPC applications xPic, LULESH
2.0 and Heat2D and analyze them regarding their potential of
reducing I/O with dCP and how this data reduction influences
the checkpoint performance. In our experiments, we achieve
reductions of up to 62% of the checkpoint time.

Index Terms—Fault Tolerance, Differential Checkpointing,
Incremental Checkpointing, Multilevel Checkpointing

I. INTRODUCTION

High-performance computing (HPC) is a major tool
for scientific research and fast industrial development.
Supercomputers have observed an exponential increase in size
and performance over the last couple of decades. Exascale
computing (i.e., 1018 floating point operations per second) is
the next frontier and it promises to bring orders of magnitude
more computing power into the hands of scientists. However,
the exponential increase in computational power also comes
with a certain number of challenges; for instance, power
consumption and resilience are among the most pressing issues
that need to be addressed to reach such extreme computing
scales. Indeed, the increasing number of components in
large-scale systems makes the machine more prone to failures,
reducing the mean time between failures (MTBF). At the
same time, the amount of data used in large HPC simulations
is increasing exponentially. Failures in supercomputers are
usually handled through checkpoint and restart, by storing
the state of the computation in reliable storage, so that the
application can restart from the last saved state upon a failure.
Unfortunately, the reduction in the MTBF forces users to
checkpoint at a higher frequency to reduce the amount of
re-computation to be done in case of failure. Simultaneously,
the checkpoint takes more time as the amount of data to save
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increases. This leads to a steep reduction in system efficiency.
In order to maintain high productivity in supercomputers and
large data centers, it is important to reduce as much as possible
the amount of data to be checkpointed to reliable storage.

Differential checkpointing has been proposed in order to
avoid re-writing checkpoint data that is identical between two
consecutive checkpoints (i.e., no change of data). Previous
research works have attempted to implement such a technique
by tracking dirty memory pages in the system and only
updating those within the checkpoint (CP) files. While this
method works, it is not always efficient as many applications
do re-write the exact same content (e.g., zero) into the same
memory cells. From the OS perspective, these memory pages
have changed as they are dirty, but in reality the content has not
changed. Hashing the memory pages to detect real changes has
also been proposed. Unfortunately, this technique also fails to
detect unmodified datasets with dynamic sizes (e.g., particles
moving between domains) or datasets relocated in memory.

In this paper we have implemented a hash-based strategy in
which we partition the application datasets (not the memory
pages) in blocks and keep track of the changes of each
block by comparing the corresponding hashes. In addition,
we introduce a new file format that is capable of recognizing
changes in data blocks and simultaneously dynamically adapt
to changes in the size of the protected structure. We evaluate
the collision robustness of multiple hash algorithms and show
that MD5 and CRC32 are viable solutions for differential
checkpointing. We integrate our implementation into the
multilevel checkpointing library FTI and evaluate it with three
HPC applications. In our measurements, we obtain up to 62%
reduction in checkpointing time in comparison to traditional
checkpointing. Furthermore, we propose a theoretical model
that predicts performance gains that could be obtained with
our dCP technique.

The rest of this paper is organized as follows. Section II
introduces the terminology of this paper. Section III discusses
related work. Section IV introduces our implementation of
dCP. Section V explores the robustness of different hashing
algorithms. Section VI presents our analytical model to predict
performance gains. The results of our large-scale evaluation
are presented in Section VII. Section VIII discusses the strong
points and limitations of this proposed technique and finally,
Section IX concludes this paper.

II. TERMINOLOGY

The term incremental checkpointing is used in the literature
to denote two different processes. To avoid confusion we
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would like to clarify what we refer to when we use the terms
incremental and differential checkpointing.

a) Definition of Incremental Checkpointing: We refer to
incremental checkpointing as to be the incremental completion
of a CP file. This technique serves primarily to avoid overhead
caused by oversaturated network channels. It may be used
within applications that provide datasets, that define the current
program state, at different times. Thus, instead of writing the
whole CP data at once, it is incrementally written during some
period of time, which reduces the stress on the network.

b) Definition of Differential Checkpointing: We refer to
differential checkpointing as to be the differential update of a
CP file. That is, the data blocks in the previous CP file that by
the time of a subsequent CP differ to the corresponding data
block of the current application state, will be replaced by the
up-to-date data block. The rest of the blocks (i.e., those that
did not change) will not be updated.

III. RELATED WORK

Differential updates of data-states, data-dependencies or
workflows exist in several disciplines of HPC. Depending
on the case, there are various methods that allow detection
and logging of differences in data-structures and workflows.
An interesting example for such a logging mechanism
and the differential update of CP data in data streaming
applications is well described within the web documentation
of Apache Flink [1]. The update mechanism is based on
a so-called log-structured-merge. The data storage is based
on a key-value pair. In order to update the CP files, the
first and fast in-memory storage layer collects the updated
keys inside a memtable. After a certain amount of data has
been accumulated inside the memtable, the data is flushed
to a stable storage. The flushed memtables are now called
sorted-string-tables (sstables). At a certain point, the various
sstables will be merged into one sstable. This is performed
asynchronously to the streaming application execution by a
dedicated process. The merge consolidates redundant keys
from different sstables.

Another important work to mention is the differential
(de-)serialization in SOAP implemented by Nayef
Abu-Ghazaleh et al. [2]–[4]. SOAP (simple object access
protocol) is a messaging protocol adequate for server
communications. It can be used to negotiate between different
application layer protocols that encode the messages into
the XML format (e.g. HTTP, RPC or SMTP). SOAP is
a promising candidate to negotiate between independent
transfer protocols in high-performance parallel and distributed
computing (HPCD) environments [5]. A bottleneck of the
messaging workflow is the (de-)serializing of messages.
Serializing refers to the conversion of in-memory data to
ASCII text messages encoded in the XML format prior to
the sending of a message and de-serialization refers to the
reverse process after a message has been received. Nayef
Abu-Ghazaleh et al. present a mechanism that uses checksums
in order to identify redundant information in consecutive
messages prior to the de-serialization. The similarities may
be inside the message contents or within the encoding
XML structure. Using this information, it is possible to skip
de-serialization of unchanged message sequences.

Besides the two framework-specific examples from
above and other specific implementations, non-specific
implementations of dCP, e.g. as linkable libraries, exist at
kernel level (compare C. Wang et. al [6] or R. Gioiosa et.
al. [7]), i.e. transparent for the application developer and in
form of compiler plugins that analyze C/R capabilities inside
the application during compile time (see G. Bronevetsky et.
al. [8]). However, kernel-level checkpointing is not always
efficient and not much exist for HPC applications at user-level.

The library libckpt [9] can be operated almost transparently
(i.e. without modifying the application code), but, it also
provides API functions that enable the user to determine
the CP behavior. The API permits to specify the CP data
(i.e. explicitly exclude or include certain memory regions)
or the CP location (i.e. where inside the application flow)
and location of the CP files (i.e. path on the file system).
In order to detect data updates between consecutive CPs,
libckpt employs the UNIX page protection mechanism. The
library has knowledge about the process virtual address space.
All memory pages that correspond to the process address
space are set to read only via a call to mprotect with
the PROT_READ | PROT_EXEC flags specified. After this,
every store operation to one of the protected pages will rise
a segmentation fault signal (SIGSEGV). This signal is caught
by libckpt and appropriately handled. The address of the page
is then marked dirty and will be written to disk during the next
CP. Every differential CP (Plank denotes this as incremental
CP [9]) represents an extra file on the file system. However, the
user may specify a parameter in order to restrict to a maximum
number of files. When this amount is reached, the files are
being merged into one. This strategy has two major drawbacks.
First, by protecting the whole address space of the application,
one incorporates data that is not necessarily needed for a
successful restart. That means that one may expect CP files
to be much larger than necessary, hence a higher checkpoint
overhead. Second, many applications update continuously all
the datasets, which does not imply that the value after the
update differs from the one before (e.g., zeros in a domain).
In this case, the page protection mechanism will not lead to a
significant reduction of data in the dCP files missing the goal
of such a feature.

Kurt B. Ferreira et al. [10], [11] developed the library
libhashckpt on top of libckpt. Before the dirty memory pages
are written to disk, the hashes of this pages are compared to
the hashes that were generated by the time of the former CP.
Only if the hashes differ, the page will be incorporated in the
dCP update. The version of libckpt that is provided at [12] is
restricted to 32-bit kernels and thus cannot be used on almost
any cluster/supercomputer. Also, we were not able to acquire
the library libhashckpt by any means in order to compare it
with our implementation. Libhashckpt is the closest work to
our proposal; nonetheless there are multiple differences. First,
libhashckpt is based on classic PFS-based checkpoint-restart
and not implemented in a multilevel checkpointing library
with asynchronous checkpointing, which involves a number
of differences (see Section IV). Second, libhashckpt produces
a file for every checkpoint update, having to deal with a high
number of files, which applies high stress on the metadata
servers. Third, libhashckpt does not adapt well for applications
with dynamic dataset sizes. Indeed, when datasets change in



size they might be moved to other memory locations or force
other datasets to shift in the memory space, this will look like a
completely different dataset from the memory page perspective
but in reality they are just the same datasets that have either
been displaced or changed in size. This will force a complete
rewrite of the full checkpoint data, missing once again the goal
of differential checkpointing.

This paper addresses all those issues, making this proposal
the only general purpose multilevel checkpointing library that
implements a version of differential checkpointing that adapts
to datasets with dynamic sizes through a user-level interface
and that scales for large HPC applications.

IV. DCP IMPLEMENTATION IN FTI

In section III we saw several examples of logging
mechanisms that may detect and track differences in
application states. The mechanisms can be divided into two
categories: tracking dirty pages (i.e. pages that was accessed
by a store operation) and tracking actual changes of data
by checksum comparison. Apache Flink and libckpt apply
the first category. SOAP and libhashckpt implement both
strategies. Although the hash based strategy has an advantage
over the dirty page approach, applying hashes over memory
pages still has the disadvantage of lacking the application
perspective, offering only a black box perspective over the
data. Application-level interfaces allow us to see datasets on
their own, and detect real changes, reagrdless of whether they
move to another memory region.

FTI is an application-level checkpointing library, with an
API that provides flexibility and allows user to flag datasets
that need to be protected. In addition, FTI is a multi-level CP
library that offers 4 levels of increasing reliability and FTI
implements a dedicated process that performs post-processing
work for the more reliable CP levels asynchronously to
the application processes. In our implementation, the virtual
address space of the datasets will be partitioned into blocks
of size b. We create hashes of these blocks and keep
them in memory. The hashes are created from the dataset
representation in memory immediately after a successful CP
and before the application continues its normal execution so
that the hashes in memory belong to the state of the dataset
that is stored in the CP files. The hashes are also applied before
an asynchronous work (e.g., RS encoding) is done. FTI also
creates hashes in order to ensure CP file consistency upon
restart, but these two types of hashes are unrelated.

We do not adopt the method of creating new files for every
dCP update. Instead, we take advantage of the existing FTI
head feature [13], that is, we may assign work that is related
to FTI processes (e.g., RS-encoding, flushing CP files from
local storage to the PFS) to a dedicated process that can
operate asynchronously to the application flow. In order to
update the CP file safely, we create a copy of the file using
the head process and update the copy. The former CP file is
kept during the update in order to roll back to it when an error
occurs during the update. After successful completion of the
CP the old CP file will be removed. This procedure prevents
the corruption of the CP data in the case of a failure during
the update process and minimizes the number of files on the
PFS which in turn reduces the stress on the metadata server.

A. Dealing with Dynamic Sizes of Datasets
In order to implement an efficient and scalable dCP

mechanism, the FTI protected datasets need to be arranged
in immutable blocks in the CP files. For protected datasets
with steady sizes, this is accomplished naturally. However,
FTI supports datasets with dynamic sizes. Thus, to maintain
immutable positions inside the checkpoint file we need to
allow fragmentation of the datasets and in order to read the
files upon the restart, we need to store the dataset-file mapping.

In the current release, FTI stores metadata that is needed
for the restart in separate files. These files are getting parsed
using the Iniparser library [14]. We could potentially extend
this practice in order to keep track of the data-file mapping.
However, FTI writes one metadata file for each group of
processes (consult [13] or [15] for details about the FTI
library). In order to minimize the overhead, we decided to
develop a file format for FTI, FTI-FF, that includes the
metadata for the owning process within the file structure. The
general file structure is shown in figure 1 (For a comprehensive
description please visit [16]).

Fig. 1: FTI-FF structure: The File Meta Data contains information that is used
by FTI for other purposes than differential checkpointing (e.g., RS-encoding).
The Chunk Meta Data holds the file-mapping metadata for the dataset chunks
stored in the current block (i.e., chunk-size, container-size, id)

FTI-FF Structure: The file structure is generated
dynamically. By the time of the first successful CP,
every dataset has created a virtual container with the current
size of the dataset. The container is located at an immutable
position in the CP file next to the corresponding metadata
block. When a dataset increases its size in one of the
successive CPs, hence exceeds the size of the first virtual
container belonging to this dataset, another virtual container is
created with the excess as its size. The new virtual container
is appended at the end of the file, tailing the corresponding
metadata block. This mechanism repeats every time a dataset
exceeds the total size of the existing virtual containers. Once
created, a container never changes its size. The total size of
all the virtual containers belonging to the same dataset will
be seen as contiguous and will be filled linearly. This may
lead to sparse files when the data size shrinks.

B. Updating the CP Files
The prime directive we have to meet when implementing

any dCP approach is that we must not update the data in
the existing CP files directly. This is due to the danger of
corrupting the file if an error occurs during the update.



In FTI we meet this goal by creating a copy of the CP
file after the successful creation. The duplication is performed
by a dedicated process asynchronously to the application run
so that the application processes can continue the execution
as if they would without dCP functionality. During the next
CP, the processes may now update the copy directly. After
the successful completion, the former file can be deleted. If
the dedicated process cannot create the copy, the application
processes will be notified and a complete CP will be created.

C. Tracking the differences

We mentioned earlier that the memory regions of the
datasets will be partitioned into blocks of size b and that the
content of the blocks is represented by hashes. If two hashes
that correspond to the same block differ, we assume that the
contents differ (dirty blocks) and if the hashes coincide, we
assume that the contents are identical (clean blocks). We have
to distinguish between blocks that are old (valid), i.e. present
in the CP file, and blocks that are new (invalid), i.e. not present
in the CP file (for instance, by the time of the first CP, all
blocks are invalid). Invalid blocks will be added to the CP file
without hash comparison.

In order to decide which data needs to be updated in the
CP files, we apply the following set of rules:
(I) mark new blocks as invalid.

(II) identify dirty blocks during the dCP update.
(III) update the CP file with dirty or invalid blocks.
(IV) crate/update hashes for invalid/dirty blocks.

I: When datasets are exposed to FTI, the corresponding
blocks are marked invalid to ensure that new datasets will
be included in the CP file. The same applies when datasets
increase their size and new data blocks are exposed to FTI.
However, the hashes for the blocks will not be created yet.

II: During the dCP update, the processes request
contiguous dirty regions by calling the function
FTI_ReceiveDcpChunk(). A dirty region is the
accumulation of adjacent dirty blocks. The function takes a
pointer to the origin of the dataset and a size argument and
compares sequentially the hashes of blocks with size b (user
defined granularity). The function returns 1 and updates the
pointer with the base address of a dirty region and sets the
size of the region. 0 is returned if no dirty region was found.
Invalid blocks cannot be compared in that sense since they
do not have a representation inside the CP file. Hence, invalid
blocks will be included in dirty regions ad-hoc.

III: FTI_ReceiveDcpChunk() is called inside a
while loop and the CP copy is updated with the dirty regions
returned by the function. The loop continues until the function
returns 0, signaling that the dataset is now again up-to-date in
the CP file. At the first CP, all blocks will be written.

IV: After the successful completion of the dCP update,
the hashes that correspond to dirty or invalid blocks will
eventually be updated (or created for invalid blocks) so that the
hashes represent the actual state of the datasets in the current
CP file1. Clearly, we keep the hashes of blocks that are neither
dirty nor invalid untouched.

1One could think it would be more efficient to update the hash array during
II, however, this would violate the prime directive since we cannot assure that
the dCP update will be indeed successful.

The process is visualized in figure 2. The figure is
divided in three sections separated by a dashed line. The
left section corresponds to I and is implemented in function
FTI_Protect. The function is used in FTI to register
datasets in order to include them into the CP files. FTI creates
metadata related to the dataset within this function. After the
first call to FTI_Protect, all blocks of the corresponding
datasets are marked invalid. After a subsequent call in order to
increase the size of a dataset, blocks in the memory region that
exceed the former size are new to FTI and thus consequently
marked invalid as well. This ensures that new blocks are
automatically included in the CP files. The middle section
of the figure corresponds to II and III and the third section
corresponds to IV. Hash creation (if invalid) or the update (if
dirty), only happens in the third section after the successful
completion of the dCP update (which corresponds to a full CP
at the first call).

Fig. 2: dCP detection and update scheme. Processes left to the blue circle
happen before and processes to the right after the dCP update. The circle
indicates the dirty region request loop

The relevant metadata for the dCP mechanism is kept inside
an array of the structure struct FTIT_HashBlock. The
array has N elements, where N is the next greater integer of
the dataset size divided by the block size (or this very value
if the dataset size is a multiple of the block size). Every array
element corresponds to one block of the partitioned dataset.
The structure has three members: A boolean that indicates if
the hash is valid, a boolean that indicates if the hash is dirty
and the hash digest (either a 32-bit unsigned integer for CRC32
or a 128-bit unsigned char buffer for MD5).

V. CHOICE OF THE HASH ALGORITHM

Depending on the size of the protected datasets, the hash
arrays might get significantly large. For instance, the MD5
digest length is 128 bits (16 bytes). Assuming a hash-block
size of 128 bytes and 1GB of protected data per rank, we
have to reserve 128MB of RAM for the hash metadata. In
order to reduce this size, we can either increase the block
size or decrease the digest size. The former may decrease
the dCP performance due to the coarser resolution (i.e., more
dirty block updates) and the latter may increase the risk for
inconsistent CP files due to higher collision rates of the hash
algorithm (i.e., when a collision occurs the block is considered
clean despite the fact that the data in the block has changed).



In order to provide a small digest size, we tested
three 32-bit hash algorithms (digest size 32 bits) upon
performance and reliability. Adler32, Fletcher32 and CRC32.
For completeness, we included also MD5 (digest size 128
bits) in the tests although it is considered to be reliable
and fast for data integrity checks (despite its flaws in the
cryptographic area [17]). The Adler32 and CRC32 checksums
were calculated using the zlib data compression library [18],
Fletcher32 was implemented using the recommendations
in [19] and for MD5 we used the OpenSSL library [20].

Fletcher32 and Adler32 are both significantly faster than
CRC32. However, both also have poor collision resistant
characteristics for block sizes that are relevant in our case, as
we will see below. To obtain a statement about the reliability
of the checksums we performed a simple collision test. We
focussed on the so-called avalanche effect [21], since in real
applications it is very possible that elements of the datasets
change only very little. The test follows algorithm 1.

Algorithm 1 Count hash collisions of modified buffers
repeat

for all b do
populate Cb with Nb random u64 integers;
create hashes hCb

of Cb;
for all p do

for i=1, Nb do
Db,i = Cb,i ⊕ p;
Create hash hDb,i

of Db,i;
if hDb,i

== hCb,i
then

cb,p + +; . cb,p := Collision Counter
end if

end for
end for

end for
until N iterations

Cb and Db are buffers that contain random integers, b =
{2i | 7 ≤ i ≤ 15} denotes the hash block sizes and p denotes
the patterns that are used to modify the elements of Cb. For Nb
we have b mod (Nb×64) == 0. The elements of p correspond
to bit flips of the last 1 (p0 =0x1), 2 (p1 =0x3), 4 (p2 =
0xff), 8 (p3 =0xfff) and 16 (p4 =0xffff) bits and to an
arbitrary modification (p5 is an arbitrary pattern) to simulate
a random change.

Fletcher32 is commonly implemented with M = 2n or
M = 2n − 1 (M is the modulo value for the checksum.
Consider [19] for implementation details). The case M =
2n − 1 leads to identical checksums for buffers that differ
only in one or more groups of two consecutive bytes that are
all 0x00 in one and all 0xff in the other buffer. For us, this
is reason enough to disqualify the algorithm for its usage in
dCP. Nevertheless, we included it in our measurements.

The results of the collision test are listed in table I. Adler32
and Fletcher32 exhibit a significant amount of collisions. Most
of the collisions for Adler32 occurred for 1-bit or 2-bit flips
and decrease for increasing block sizes. The collisions for
Fletcher32 are homogeneously distributed for all modifications
and block sizes. We estimate the collision rate of both
algorithms, Adler32 and Fletcher32, as being too high in order
to provide a sufficient level of reliability. MD5 and CRC32, on

TABLE I: Collision rates (i.e. the probability of collision per iteration)
achieved by application of algorithm 1. We did not detect any collision for
CRC32 or MD5 and the collision rates for Fletcher32 mod(65535) were almost
identical to Fletcher mod(65536). Thus, we do not list the results here. For
all cases, the number of iterations have been within 160-180 million.

p0 p1 p2 p3 p4 p5

b ADLER32

128 6.84e-3 1.42e-3 8.56e-5 3.68e-7 6.13e-9 1.23e-8
256 1.70e-3 3.46e-4 2.12e-5 8.59e-8 1.23e-8 1.23e-8
512 4.24e-4 8.69e-5 5.39e-6 1.84e-8 0 6.13e-9
1024 1.06e-4 2.21e-5 5.39e-6 1.84e-8 0 6.13e-9
2048 2.56e-5 5.21e-6 2.58e-7 0 6.13e-9 0
4096 6.23e-6 1.37e-6 9.20e-8 0 6.13e-9 0
8192 1.56e-6 2.70e-7 1.84e-8 6.13e-9 0 0
16384 3.56e-7 4.91e-8 4.29e-8 6.13e-9 0 0
32768 1.41e-7 7.98e-8 1.84e-8 0 0 0

FLETCHER32 - MOD(65536)

128 1.54e-5 1.47e-5 1.52e-5 1.52e-5 1.50e-5 1.54e-5
256 1.53e-5 1.55e-5 1.53e-5 1.54e-5 1.56e-5 1.54e-5
512 1.48e-5 1.56e-5 1.53e-5 1.52e-5 1.53e-5 1.52e-5
1024 1.48e-5 1.55e-5 1.51e-5 1.53e-5 1.58e-5 1.56e-5
2048 1.49e-5 1.51e-5 1.49e-5 1.49e-5 1.50e-5 1.56e-5
4096 1.57e-5 1.53e-5 1.57e-5 1.53e-5 1.51e-5 1.50e-5
8192 1.55e-5 1.51e-5 1.49e-5 1.54e-5 1.47e-5 1.54e-5
16384 1.51e-5 1.55e-5 1.52e-5 1.54e-5 1.55e-5 1.52e-5
32768 1.56e-5 1.59e-5 1.48e-5 1.57e-5 1.53e-5 1.52e-5

the other hand, did not show any collisions. The test we have
performed is not appropriate to deliver a solid cryptographic
statement about the reliability of CRC32 and MD5, however,
it is enough to disqualify Adler32 and Fletcher32 for our
purpose. Based on literature about CRC32 and MD5 (CRC32
is used in zlib and other cases to provide data integrity [18],
[22], [23]) and based on our results we are quite confident
about its application for dCP.

VI. WHEN IS DIFFERENTIAL CHECKPOINTING
BENEFICIAL?

In order to estimate the threshold at which differential
checkpointing becomes beneficial, we construct a cost function
from the reduction in CP overhead:

∆Ts = |Ndtw −Nttw| = (Nt −Nd) tw, (1)

and from the additional generated overhead (i.e. the time to
determine the differences):

∆To = (Nt +Nd) th. (2)

tw is the duration to write a block of data with block-size
b, th the duration of hashing the block, Nd is the number of
blocks that differ and Nt is the total number of blocks. The
saving in equation 1 corresponds to the absolute value of the
time difference between writing all blocks (Nttw) and writing
only the dirty blocks (Ndtw). The overhead in equation 2
corresponds to the time to hash the data blocks. Equation 2
involves both values, Nt and Nd, since, we cannot commit the
new hashes for data-blocks that differ prior to the successful



completion of the CP, hence we compute these twice2. After
normalizing to the total number of blocks Nt we get:

τ = (th − tw) + nd (tw + th), nd = Nd/Nt. (3)

Where τ := ∆T/Nt = (∆To−∆Ts)/Nt. Equation 3 can be
considered a cost function that turns into a reduced overhead
(speedup) for τ < 0 and to additional overhead for τ > 0. We
can infer, that the maximal overhead accounts to 2Ntth when
nd = 1. This corresponds to a maximal relative overhead of
2th/tw (i.e., relative to the time without dCP).

We may define the threshold, η, at τ = 0 as:

η := nd

∣∣∣∣
b,τ=0

=
tw − th
tw + th

≈ 1− ρ
1 + ρ

, ρ =
th
tw
. (4)

Let us keep in mind that τ depends on the block size b as
well. η corresponds to the threshold ratio of updated CP data
(i.e. dirty) to the total amount of CP data below which we
can expect a speedup. Equation 4 is defined for η ∈ [0, 1] and
behaves monotonic in that regime. The lower the value for ρ
the closer η gets to 1, which would correspond to a threshold
of nd = 1 =̂ 100% dirty (i.e. no overhead).

We can give an estimation of η by comparing the time that
it takes to write and that it takes to hash a block of data.
Thus, we measure the time, tw, to write a block of size b to
disk, where we consider the write to be a collective operation.
We do so by measuring the total time, Tw, to write a buffer
of size n ∗ b and computing tw = Tw/n. Tw is the time for
a collective write (i.e. all processes must have finished I/O).
And also we measure the time, th, that it takes to compute the
hash for a block of size b. In contrast to tw, th is computed
by th =

∑
th,i/n, where th,i is the time to hash the ith block,

thus th is the average value of all th,i. This reflects in contrast
to Tw a local (non-collective) operation.

Since the hash creation is local to the ranks we may expect
a perfect scaling behavior for th. For tw instead, we have
to consider network bottlenecks that can slow down the I/O
processes towards a larger scale. Thus, we expect an increasing
speedup for increasing total problem sizes.

Figure 3 shows the results for the measurements we
performed for 768 and 2400 processes. In both cases, the
total buffer size was 1GB per process which leads to the total
problem sizes of 0.75 TB and 2.3 TB respectively.

Note that η is the threshold w.r.t the dirty blocks. In figure 3
we show 1 − η, which corresponds to the threshold w.r.t the
clean blocks. We can see that the threshold indeed decreases
for a growing problem size. We observe a better performance
of MD5 towards CRC32 in all cases. The performance of
MD5 depends slightly on the hash-block size. This dependency
is less strong at a larger scale. This also applies for the
performance difference between CRC32 and MD5. The results
show that for b = 32KB and MD5, the threshold is at merely
5% clean data share (i.e. 5% less to write).

VII. EVALUATION

In section VI we have seen that even when applications
update 95% of the checkpoint data (i.e. we save only

2We may avoid the redundancy here if we store the hashes for the dirty
blocks in a separate array, which would lead to a higher memory footprint.

Fig. 3: The bars show the estimated dCP threshold, i.e. the fraction of clean
data we need to make the dCP operation beneficial. The left axis shows the
clean data fraction (1-η), the right axis shows the value of ρ (ratio between
the hash time, th, and I/O time, tw , for block size b) that corresponds to the
respective value of 1−η on the left axis. The experiment has been performed
with 768 and 2400 processes and 1GB per rank.

about 5% of I/O) dCP can already be beneficial for HPC
applications. In order to demonstrate this theoretical result
with empirical evidence, we analyze the behavior of dCP
in FTI while checkpointing three HPC applications at large
scale. We conduct representative experiments that analyze
performance and overhead. All experiments were performed
on MareNostrum4. Each node is composed by [24], [25]:

• 2 Intel Xeon Platinum 8160 CPU (24 cores at 2.10GHz)
• 12 × 8 GB DDR4-2667 DIMMS (96GB/node)
• 100 Gbit/s Intel Omni-Path HFI Silicon 100 Series PCI-E
• 10Gbit Ethernet
• 200 GB SSD local to the nodes
• SUSE Linux Enterprise Server 12 SP2

A. HPC Applications

In this section we introduce the different applications used
during our large scale evaluation.

1) LULESH 2.0: Lulesh [26] is part of the Advanced
Simulation and Computing (ASC) program from the Lawrence
Livermore National Laboratory (LLNL). It simulates a
Sedov blast wave propagation within one material in three
dimensions [27]. The modeling space is discretized into an
unstructured hex mesh. The system state is updated using
stencil operations. The purpose of LULESH is to provide a
proxy application that possesses the characteristics of an HPC
application from this field in order to analyze performance
on various platforms and various programming models. That
makes it very interesting for us as an example since it
represents a broad field of applications.

In order to maximize the checkpoint load, we conducted
measurements that determined the highest value that we can
pass to LULESH without the risk of a memory overflow on
the node. The checkpoint data is serialized, which increases
the memory footprint of the application. With a CP size of



430MB per rank, we use about 80GB of the node memory
(96GB available) and achieve an aggregate CP size of 725GB.

2) xPic: xPic is an alternative implementation of the
physical problem treated in iPic3D [28]. iPic3D and xPic
are part of the application co-design in the DEEP-EST
project [29]. The application models space plasma simulations.
The modeling space is discretized by a rigid mesh. The mesh
is defined in the configuration file. The simulation is always
initialized to the equilibrium state. In each time step, the
particle states and electromagnetic fields are advanced using
the Vlasov equation, which couples the equation of motion to
the Maxwell equations.

xPic takes its runtime parameters from a configuration file.
In order to scale the problem size, we used a combination of
the parameters ntcx (number of cells in x-direction), ntcy
(number of cells in y-direction) and nppc (number of particles
per cell). To control the number of contiguous datasets, we
modified the parameters nblockx (number of blocks in
x-direction), nblocky (number of blocks in y-direction) and
nspec (number of species). We implemented two distinct
mechanisms in order to expose datasets to FTI. In the first
implementation, xPic-c (c for common), we expose every
memory contiguous dataset individually to FTI. Depending on
the configuration of xPic, this may lead to a large number of
protected variables. In the second implementation, xPic-s (s for
serialized), we use BOOSTs libboost_serialization
library [30] to combine the datasets into one contiguous buffer
which is then exposed to FTI.

3) Heat2D: Heat2D is a 2D heat distribution simulation
using a 1D domain decomposition. It simulates the transition
from a non-equilibrium heat distribution to the equilibrium
state. In each time step, the cells of the temperature grid are
updated via a 4-point stencil operation that stores the average
of the 4 neighbor cells temperatures into the center cell.
The ranks exchange adjacent rows of the temperature grids.
The simulation runs until the total value of the temperature
differences reaches a pre-defined minimal value or exceeds a
certain number of iterations. The large majority of memory
used by Heat2D is checkpointed which enabled us to perform
large scale executions with large checkpoitn sizes, for instance
a run with a total problem size of about 2.8TB with 2304
processes on 48 nodes.

B. Variation of the Block Size b
We start by analyzing the impact of the block size over

the effectiveness of dCP. We measured the time of a dCP
update for various block sizes b and compared the results to
an ordinary CP (dCP disabled). All CPs were performed at
the same application state. We performed experiments with
both MD5 and CRC32, the results were very similar for both
hashing algorithms thus we show only the MD5 results for
space constrains. By decreasing the block size, we increase
the granularity. That means that we have a better chance to
get close to the actual percentage of data that did change. This
should result in fewer data to write and therefore we expect
better performance with smaller blocks.

Table II shows the results for the experiment we performed
with the xPic application (see VII-A2 for details). The first
column of the table shows the block size and the third column
shows the percentage of data written compared to the original

TABLE II: Impact of the block size b on the dCP update time for xPic using
MD5. Negative values of τ correspond to a speedup and positive values to
overhead. HASH SIZE lists the respective memory sizes that the hash tables
occupy in memory. The problem size was 1568MB per rank.

b τ dCP
RATE

SHARE
HASH

SHARE
WRITE

HASH
SIZE [MB]

128B 1333% 52.25% 1.51% 97.67% 196
256B 1106% 53.84% 1.53% 97.39% 98
512B 666% 56.25% 2.10% 96.13% 49
1KB 231% 59.15% 4.40% 91.40% 25
2KB 15% 61.42% 12.82% 73.93% 12
4KB -32% 62.25% 21.77% 55.07% 6
8KB -35% 62.41% 22.69% 52.47% 3
16KB -36% 62.48% 22.66% 52.52% 1.5
32KB -36% 62.50% 22.67% 52.07% 0.76

checkpoint size. We notice that as the block size increases,
the amount of data to write increases as well, due to the
lower granularity. However, the overhead (shown in the second
column) is incredibly large for high block granularities (i.e.,
small blocks). To understand this phenomena, we measured
the time spent hashing and the time spent writing data for
each case. We observe that the large majority of checkpointing
time is spent in writing and not hashing. This is caused by
the fragmentation of the updates into small chunks. It has
been shown in the past (e.g. [31]–[33]), that PFSs have poor
performance when small chunk sizes need to be written.

For xPic, block sizes of less than 4KB degrade performance
and block sizes greater than 4KB improve performance up
to 36%. In addition, we measured the amount of memory
consumed to store the hash tables. Most of the block sizes
have hash tables that represent less than 1% of the memory
used by the process. For block sizes of 16KB the hash tables
take only 0.1% of the memory used by the application. Based
on this analysis, we decided to use block sizes of 16KB during
the following measurements.

C. Spatial and Temporal Differences

After finding the right block size to avoid too coarse hashes
as well as to fine I/O writes, we investigate the amount of
data that is actually being updated between two consecutive
checkpoints for the applications presented in Section VII-A.

The results are depicted in Figure 4. The three sub-figures
are divided into several temporal regions following the y axis
(i.e., dCP taken at iteration 1000, 5000, etc.) and spatial
regions following the x axis (i.e., the process rank which is
representative of a slice of the domain). First, we observe
that LULESH does not change too much data during the first
iterations; and as the time passes (up to iteration 20000) the
number of ranks where data is actually modified increases.
This reflects the shock wave that is simulated by LULESH.
This demonstrates that for applications like LULESH, the
benefits of dCP might vary depending on time and space.

xPic on the other hand, shows a completely different
behavior, the amount of data updated is consistently the same
across all the ranks and regardless of the time in the execution.
This is explained by the fact that xPic is a plasma simulation
in which particles are constantly in movement, even in those
changes are minimal, they are enough to trigger updates as
they will produce a different block hash. There are a few
variables of the application that are read-only and that do not



Fig. 4: Data differences after first checkpoint for different ranks (x axis) and different times for checkpointing (y axis).

change through out the simulation, which is why not a 100%
of the data is updated at every checkpoint.

Looking into Heat2D, we observe a middle ground
between LULESH and xPic. Indeed, Heat2D also increases
the data differences as time evolves, but a much lower
pace than LULESH, giving it a less dynamic look. We
observe that the most affected ranks are organized in strides,
which is consistent with the 1D partitioning mentioned
in Section VII-A3. However, other initial conditions could
translate into a more homogeneous updates across ranks.

D. Overhead reduction on HPC Applications
In this section we evaluate the overhead of dCP in

comparison with classic CP for the three applications.
Table III lists the results of our measurements performed

with LULESH. The first row represents the full CP and the
second a checkpoint with dCP in which only 3% of the data is
updated. We have only two rows since we never had updates
significantly different to 3%. This result indicates that the
propagation of the wave is slow as shown previosly. This great
reduction in checkpoint size with dCP in LULESH translates
into a 62% reduction in the CP time.

TABLE III: Relative overhead of dCP compared with full CP for LULESH.
Negative values correspond to a reduction of the overhead (speedup) and
positive values to an increase in the overhead.

Relative checkpoint overhead compared to full CP (∆T/T0 [%] )

Data diff. (nd) MD5 CRC32 NO dCP

100% -9±12 -5 ± 13 -5 ± 13
3% -62 ± 10 -60 ± 8 -

For xPic, we evaluate the non-serialized as well as the
serialized implementations (xPic-c and xPic-s, see VII-A2)
were each implementation is tested against two distinct
configurations (A and B). For configuration A, the FTI
protected memory consist of many relatively small contiguous
datasets. Configuration B instead has few but rather large
contiguous datasets. Table IV summarizes the relevant runtime
parameters for both configurations.

The results of our evaluation with these configurations is
shown in Table V. First, we observe that the reduction on
checkpoint size is the same for executions with and without
serialization. Another observation is that the application of
dCP for configuration A does not reduce the checkpoint
overhead. The reason for this is that configuration A produces
a large number of small chunks to be written. A more

TABLE IV: Dataset sizes for the various xPic configurations.

CONFIG. A CONFIG. B

xPic-c xPic-s xPic-c xPic-s

SIZE OF DATASETS [MB] 4.22 1360 168 1344.25
# OF DATASETS 320 1 8 1
CP SIZE / RANK [MB] 1350.32 1360.38 1344.55 1344.80
CP SIZE TOTAL [GB] 760 765 882 883

detailed analysis of this phenomena is done in section VIII. In
contrast, we do observe an important overhead reduction for
configuration B. The best performance measured is for xPic-s
(serialized) using MD5 with up to 35% speedup while writing
only 50% of the original checkpoint size.

TABLE V: Relative overhead of dCP compared with full CP for xPic.
Negative values correspond to a reduction of the overhead (speedup) and
positive values to an increase in the overhead.

Relative checkpoint overhead compared to full CP (∆T/T0 [%] )

Data diff. (nd) MD5 CRC32 NO dCP

xPic-c (A) 100% 7 ± 11 6 ± 12 0 ± 9
50% 9 ± 12 11 ± 9 -

xPic-c (B) 100% 9 ± 16 14 ± 11 -3 ± 9
62% -33 ± 6 -28 ± 6 -

xPic-s (A) 100% 7 ± 17 14 ± 9 0 ± 7
50% -4 ± 6 0 ± 6 -

xPic-s (B) 100% 5 ± 5 11 ± 7 -2 ± 6
62% -35 ± 7 -29 ± 6 -

As mentioned in Section VII-C, the data difference in
Heat2D depend significantly on the initial conditions. Heat2D
shows a good reduction of checkpoint size, in the regime of
40% to 100%. Table VI lists the results. We can see that MD5
has clearly performance benefits in comparison to CRC32. We
notice that almost all of the experiments show an significant
reduction on the checkpoint overhead. We observe important
speedups of up to 49% for a 40% dCP update using MD5.

Overall, the three applications (although with different
behaviours) show substantial improvements thanks to dCP.
The reduction in checkpointing overhead goes up to 62%, 35%
and 49% for LULESH, xPic and Heat2D respectively.



TABLE VI: Relative overhead of dCP compared with full CP for Heat2D.
Negative values correspond to a reduction of the overhead (speedup) and
positive values to an increase in the overhead.

Relative checkpoint overhead compared to full CP (∆T/T0 [%] )

Data diff. (nd) MD5 CRC32 NO dCP

100% -2 ± 9 1 ± 6 -4 ± 11
99% -5 ± 7 -2 ± 7 -
95% -8 ± 6 -7 ± 7 -
87% -14 ± 6 -12 ± 6 -
79% -19 ± 8 -17 ± 6 -
71% -26 ± 6 -22 ± 6 -
63% -35 ± 5 -30 ± 5 -
56% -40 ± 5 -37 ± 4 -
40% -49 ± 5 -46 ± 7 -

VIII. DISCUSSION

In section VI we presented a theoretical model that may be
used to estimate the speedup we may achieve using dCP. In
this section, we want to check whether the predictions from
the model coincide with the measurements or not.

Let us write down the relative time difference, S, of a dCP
update towards a conventional CP:

S(nd) = ∆T (nd)/T0 :=

{
< 0 : overhead reduction
> 0 : overhead increase

.

T0 denotes the time for a full CP and dCP disabled. Using
equation 3 we may write this as:

S(nd) =
τ

tw
= ρ− 1 + nd(ρ+ 1) , ρ =

th
tw

(5)

We used here that T0 = twNt. We determined tw and th by
a separate measurement and the values we use here are:

b = 16KB (6)
tw = 1.35× 10−3s (7)
th = 3.92× 10−5s [MD5] (8)
→ ρ = 0.029 (9)

For clarity, we will consider only the results for MD5.
Figure 5 shows the measured relative speedups and the

estimation computed by equation 5. The figure shows that in
two cases the estimation is near to accurate and in two cases it
is not as accurate. Heat2D and xPic with configuration B show
both a very good matching to the estimation done with the
theoretical model. LULESH shows the highest speedup with
62%, however, using equation 5 we would expect a speedup
of about 94%. For xPic-s with configuration A, we measured
a 4% speedup but expected about 46%.

Given the disagreement between theoretical prediction and
experimental results for LULESH and xPic with configuration
A, we performed a more detailed analysis. Figure 6 shows
the cumulative density function (CDF) of chunk sizes written
contiguously during a dCP update for all four scenarios. The
figure reveals a correlation between the size of the chunks
and the performance. xPic-s A and LULESH show both less
performance than expected and both write mostly chunks of
relatively small sizes (4MB - 12MB). On the other hand,
we have good performance in xPic B and Heat2D where we
observe relatively large chunk sizes (mostly over 200MB).

Fig. 5: Measured and estimated speedup/overhead of dCP updates. The green
background indicates the region where we have speedup and the red region
indicate overhead. τ/tw = 0 corresponds to the threshold (i.e., the full CP
baseline) The datasets with the label corrected, refer to measurements that
used a buffer to collect small chunks in order to avoid small chunck writes.

Fig. 6: Cumulative distribution function (CDF) for chunk sizes of contiguous
dirty regions during dCP updates.

If the small writes are the explanation for the inaccurate
model predictions, one should be able to meet the estimated
performance by avoiding I/O operations with small chunks.
This can be accomplished by allocating a buffer of sufficient
size and collecting small chunks in this buffer until the
accumulated chunk size exceeds an appropriate I/O size (e.g.,
16MB), to then finally write to a dedicated file. We implement
this technique and redo the experiments.

The results for LULESH and xPic after implementing this
modification are denoted as corrected in figure 6. We can see
that after correction xPic A is in very good agreement with
the model prediction. LULESH also improved but it is still not
as good as the model has predicted. We continue the detailed
analysis of LULESH and we noticed that LULESH has about
2-3% updates in all ranks except in rank 0. Rank 0 has a dCP
share of 80%. A large amount of the data is thus written by
only one rank. It appears, that the model performs less well
if the distribution of the dCP share is highly anti-symmetric.
For all the other cases, we have a very good matching between
model prediction and experimental results, if we avoid small
chunk sizes in I/O operations.



IX. CONCLUSION

In this paper we experimented with the UNIX page
protection mechanism in order to determine data differences,
but this mechanism is not able to differ between assignments
that leave the data invariant and assignments that indeed
change the data, since every access to a memory address
always causes this address to be considered as dirty by
the operating system. Thus, we implemented a hash-based
differential checkpointing mechanism capable to detect real
data changes. We tested 4 hash algorithms upon performance
and reliability and our conclusion is that CRC32 and MD5 are
safe choices to implement dCP.

Another challenge of implementing differential
checkpointing is that some applications have datasets
that change in size during the execution. To overcome
this issue, we developed a new file format (FTI-FF) for
FTI that includes its own metadata and is extensible. Our
results indicate that the dCP performance, for our prototype
implementation, is significantly better in most of the cases.
For some applications, it might depend on the chunk
size of contiguous dirty blocks that are written to the CP
files during the dCP update. Indeed, we observed a better
performance towards larger chunk sizes, and dCP becomes
clearly inefficient for very small chunk sizes. However,
we have demonstrated that this issue can be resolved by a
mechanism that collects small chunks into a large block until
an appropriate accumulated size is reached before writing
to stable storage. We observed a speedup of up to 49% in
Heat2D, 35% in xPic and 62% in LULESH.
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