Direct Computation of Instability
Points with Inequality Constraints
Using the Finite Element Method

H. Tschope
E. Ofate
P. Wriggers

Monograph CIMNE N-61, July 2001



Direct Computation of Instability
Points with Inequality Constraints
Using the Finite Element Method

H. Tschope
E. Onate
P. Wriggers

Monograph CIMNE N°-61, July 2001

International Center for Numerical Methods in Engineering
Gran Capitan s/n, 08034 Barcelona, Spain



INTERNATIONAL CENTER FOR NUMERICAL METHODS IN ENGINEERING
Edificio G1, Campus Morte UPC

Gran Capitén s/in

08034 Barcelona, Spali

Primera adicldn Julio 2001

DIRECT COMPUTATION OF INSTABILITY POINTS WITH INEQUALITY CONSTRAINTS
USING THE FINITE ELEMENT METHOD

pManagralia CIMNE MG1
@ Los autores

ISBN: B4-89925-81-X

Dopésita logal: B-34516-2001



Contents

1 Introduction
VT MSGIvBIRGHR ¢ c L S e e s na b s and s Mo gmulh dda o T b L o
1.2 Structureof the thesis . . . v o v i i v in b i v o e s s ias v

2 Clontinuum mechanics

2.1 Kimematies ... 0 i v na s ivsaa e i N R RER EiERENEERS
2.1.1  Bodies and Motion . ., . . . A ERF AN EERGE RSN
21,2 Clomvective coordinabes . . . . . . o o 0 e e e e e e
2.01.8 Analysigafigtoaan 00V e Dl a s e w Ve n ey w
2.1.4  Transformation relations . . . . . B E S g SR s

22 Streas tensors ... L. e

23 Conservation Jaws . . . . . 000 e e e e e e e e
231 Conservation of mass . . . . . 0 v o 0 0 e s e e e e e
2.3.2 Conservation of momentum . . .. .. 0L o000 o
233 Conservation of GDEVEY . . . v v v 0 0 0w e e
234 Entropy law . . . . . . L e e e e e e

2.4 Boundary conditions

3 Constitutive relations

3.1 Thermodynamics of deformation . . . . . . . 0 o 0 00000 0o
32 Blastie daformiption « s i in cioaa wiasia S Eas Sl iiaa aedd
3.2 ‘StVenantmaterial . oo a e e e v e e h e e e e e s
3.3 Deformation with internal dissipation . . .. ... ..o 00000
i A Y AR A R R I B I R A
332 Asimpledamagemodel . . . .0 o oo i o

4 The Finite Element Method

4.1  Weak form of the balance of momentum . . . . . .. .. . ... ... ...
4.2 Variational formulation . . « o i v v vi v e w e e e e e e
4.3 Finite Element Method . . . . . . . . . . . o
4.4 Newton-Raphson Method . .« o 0 00 oo it v i e e v
4.5 Computation of the equilibriuvm path . . . .. .. . ... ... ... .. ..
6 Contact
0:f Mormalegmbaohk iciiom cidac Wi VeS8 W idus ady
52 Contacb Predeure . ... o v osmis wpssms s s s n s v g a0 ip et
5.3 Incorporation of the contact constraints . . . . . . .. ... ... ......

6.4  Solution methods for constrained optimization problems . . . .. . .. ..

27
27
29
29
32
32

39
39
42
43
4



iv CONTENTS
541 The Lagrange multiplier method . . . . ... . .. ... . ... . 45
9.4.2  Penalty and Barrier methods . . . . . ... ... ... TR 45
543 Augmented Lagrange . . . . . . L e e e e e 47
544 Othermethods . ... 00 o i o e e 48

5.5 Linearization of the contact contributions . . . , .. ... .. ... ..... 48
8.6 Contact discretization , ., ., ., ., ., ., . e e e 50
5:6.1 Contact elements . . . . . .. 0 e e 4]

56,2 Node-to-segment contact and the penalty method . . . .. . . ... bl

6 Computation of critical points 55
6.1 Stability theory . . . . .. v o TEEEEE X 5
6.2 Definition of singular points . . . ... .. ... ... L 57
6.2.1  Bifureation points . . ., . ... L 59
G:d2 Tdmitpoloty o s Joiahn e Ere bl ae s dnansn G0

63 Contral mathods . - . . . v v v i iia s s e e B i Gl
6.4 The Critical Displacement Method . . . ... .. .. ............ 64
6.4.1  Derivation of the secant stiffness matrix . . ., ... . .. .. ... 64
6.4.2 Prediction of the critical values . . . .. . .. ... ... ... ... 68

6.5 The extended system . . . . . ... 69
6.5,1  [Ligenvalue problem as constrainl . . . . . .. .. ... ...., .. 70
6.5.2 Determinant as coustraint . . . . . .. L ... 72
6.5.3 Bealary formulated eigenvalue problem as constraint . . . . . . . . . 73

66 Branchswitehing ... ..o v v ang s e e o 74
7 Computation of critical points with constraints 75
7.1 Extended system combined with damage . . . . ... ... ... .. ..., 75
7.2 The CDM including damage . . . . .. ... ... ... . 76
7.3 One step prediction with the extended system .. . . . .. ., . 76
7.4 Displacement boundary conditions as constraint . . . .. ... ..., ... 78
741 Arclength with displacement boundary conditions . . . . ., ., .. 79
74.2  Extended system with displacement boundary conditions . . . , . . 80

7.5 Extended system with contact . . . .. ... ..., NE LR e b 81
8 Examples 83
8.1 Comparison of CDM and extended system . . . ... ... ... ....,, 83
8.1.1 Simpletrussstructure . . ... L0 v ., B4
8.1.2 DBridge-trussstrucbure . . ... ... v v a gy i e 92
8.1.3 3Dstar-shaped dome . . . . . . . ... ..., 97
8.1.4 3D pin-jointed trussdome . . . ... 0L e 101
815 Clamped shallowarch . .. .. ... . 0 v i il 105
81.6 Hinged cireulararch . . . . o0 v v i o e s 112
8.1.7 Cylindrieal shell . .0 . 0 . 0 . 116
8.1.8  Conclusion of the compavison . . . .. .. ... .. .........118

8.2 Extended system withcontact . . . . .. ... ... L 121
821 Archwithobstacles . .. ... ... .. . ... ... ... . .... 121

822 Block pressingonarch . ... . L. 129



CONTENTS v
823 Twoarches . . . L . 133
824 Embedded deep areh . . . . . oo 136
8.2.5 Deep arch withobstacles . . . . . ... 0 . 0 L. 139
8.26 Large deformationofaring .. ... ... ... o 00 141
9 Conclusion 143
A Constrained optimization problems 147
B Inverse Tteration 149
Bibliography 151



vi

CONTENTS




Chapter 1

Introduction

1.1 Motivation

In structural mechanics buckling phenomena often have serious consequences as they
mean a loss of stability or a shape change of the whale structure. Typical examples for
these phenomena are the buckling of rods, plates, beams, arches and shell structures, Fur-
ther examples for phenomena that are connected with a stability loss are diffuse necking
bifurcation problems or the formation of shear bands in elastic-plastic solids, With the
weight optimization of mechanical components, an important issue in e.g. aeronautics,
structures become thinner and thus more susceptible to buckling,

Since the buckling of a structure is a dynamie process, a proper deseription of such
phenomena has to aceount for dynamie effects. Nevertheless as long as the load on a
structure is lesser than the critical load, ie. the load where buckling takes place, the
load-deformation relation in most cases can be sufficiently described quasi-staticly. To
safely dimension a structure in a static mechanical problem for example, dynamic effects
can be neglected, since the objective here is a mere detection of the eritical loads,

Critical points can be grouped in limit load points and bifurcation points. At bifur-
cation points the mechanical structure does not necessarily buckle in contrary to limit
load points. A bifurcation of the load-deflection path simply indicates that two or more
different solutions for the problem exist. The behavior of a structure at those points is
determined by material or geometrical imperfections,

The history of stability theory for mechanical problems dates back to the 18th cen-
tury and the early worls of [Euler, 1774}, who studied the buckling of heams. A lot, of
experimental and theoretical investigation has been dedicated to the buckling of plates
and shells at the beginning of the 20th century, see |Lorenz, 1908}, [Timoshenko, 1910],
[Zoelly, 1915]. An important step was the concept proposed by [Koiter, 1945], which
allows the caleulation of the post-buckling behavior of elastic structures by performing a
series expansion of the displacement state in the vicinity of a bifurcation point.

When numerical methods such as the Pinite Element Method (FEM) were developed
more complex mechanical problems could be solved. With the introduction of arclength
methods, by [Wemper, 1971}, [Riks, 1972] in engineering and [Keller, 1977, [Rheinboldt,
1981] in mathematics, even the computation of complex non-lincar load-deflection paths
became feasible, The load parameter was considered as an additional degree of freedom
and a control equation was added and solved simultaneously with the governing equa-
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tions, Further contributions and enhancements to these arclength methods were made
by eg. [Crisfield, 1981] and [Ramm, 1981] who introduced improvements on the control
equations of the method. The use of a quadratic predictor for the arclength method was
demonstrated in [Wagner, 1991a]. Detection of eritical points however was made with in-
dicator functions that had to be computed accompanyingly to incremental-iterative path
computation methods. The value of those functions indicates whether a evitical point
has been passed during path computation. Examples of these are the determinant of the
tangent atiffness matrix or the number of negative disgonal elements,

The next step was to compute critical points instead of only localizing them, This can
be accomplished by interpolating or extrapolating an indicator function Lo pet estimates
of the critical values. A different approach is made in the limit load analysis that bases on
the idea of a tangent. stiffness matrix split and the formulation of an eigenvalue problem
for the eritical load.

With the extension of the set of equations by a condition for eritical points the direct
computation of a eritical point becomes faesible. In the mathematical literature these
methods can be found in [Abbott, 1978], [Seydel, 1979], [Moore and Spence, 1980}, [Werner
and Spence, 1984] to name only a few. The extended system was applied to engineering
problems for the first time in [Wriggers et al., 1988]. Enhancements on the algorithm were
proposed in [Wriggers and Simo, 1990]. [Reitinger, 1994] implemented the method in the
optimization process of structures. Another method of interest is the critical displacement,
method (CDM) which was developed in recent years by [Ofate and Matias, 1996]. Here,
the secant stiffness matrix is used to make a prediction of the eritical displacements first.
Then, in a second step the eritical load is computed.

For the post-buckling behavior at bifurcation points it is characteristic that a second
or more different paths can be traced, For this purpose [Decker and Keller, 1980] solves
the bifurcation equation directly, so that with the access of the consistent tangents in the
bifurcation point a branch switching is possible. [Wagner and Wriggers, 1988] proposed
a path switching by perturbating the solution in the equilibrium state and provoke a
transition to secondary paths, that can be traced with arclength methods.

Although generally the computation of eritical point is feasible, some problems remain
to be solved. The critical displacement method and the extended system proved to give
good results, however both are not perfect and have certain disadvantages. The CDM
as an indirect method only predicts the eritical values, but gives good results even at
greater distances from the critical point.The extended system as direct method computes
the critical points directly but does not converge in all cases and is dependent on the
initial values. Moreover all techmques have mainly been tested for model type problems.

The objective of this thesis is to apply the computation methods for eritical points
to more complex mechanical problems involving inequality constraints. Prier to this
extension to a new class of problems appropriate methods among the existing ones for
the critical point detection are chosen. Therefore the CDM and the extended system as
the most, promising techniques will be compared and evaluated. A one step prediction of
the critical load based on the extended system will be developed that enables a better
evaluation. The possibilifies of a combination of both methods will be examined, A
conceivable combination is Lo use the prediction of a CDM computation as starting value
for the extended system and enhance the convergence of the latter.

In a second step critical point detection methods are extended to problems that involve
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inequality constraints, In this context constitutive damage models and contact problems
are studied. Damage models account for the loss of stiffness caused by the growth of
eracks and micro-cavities in a material. The list of publication on this subject starts with
[Kachanov, 1958] and contains important works of [Lemaitre, 1971], [Chaboche, 1974]
and [Gurson, 1977]. Inequality constraints are used in damage models to account for
the damage progression of a material. A violation of the constraints results in damage
progression, Among the existing damage models a rather simple damage model will be
chogen for the tests with the eritical point eomputation techniques.

Numerical contact mechanics, as the other topic, is a field of research that eame up
in the past 20 years. The restriction that bodies in contact problems are not allowed to
penetrate the adjacent surface leads to inequality eonstraints, that have to be incorporated
in the global set of equations. Important works are the publications of [Hallquist, 1979),
[Curnier, 1984, [Laursen and Simo, 1993], [Wriggers and Miche, 1992] and [Wriggers
and Miche, 1994]. The CDM and the extended system will be applied to a selection of
mechanical damage and contact problems to demonstrate the eritical point computation
for inequality constraint problems.

1.2  Structure of the thesis

[n chapter 2 the continuum mechanical bases are summarized, Starting with the kine-
matics of a deformation process, strain measures are defined. A description of stress
measures follows. Large deformations are taken into account. The chapter ends with the
mechanical conservation laws.

Chapter 3 discusses constitutive relations. The St.Venant constitutive law is derived
as a hyperelastic material. This model is extended in the following by a simple damage
model, which involves inequality constraints.

In chapter 4 the bases of the previous chapters, conservation laws | constitutive laws
and boundary conditions are combined to a mechanical boundary problem. Starting with
the weak form of the conservation law of linear momentum the problem is formulated
and the Finite Element Method with the Newton—Raphson method ag solution technique
i introdnced. Load-deflection path computation with arclength methods concludes this
chapter,

Chapter 5 is dedicated to contact, The master-slave concept. for contact detection is
adopted. The non-penetration rule for adjacent bodies leads to inequality constraints,
The integration of which in the FEM formulation of the previous chapter gives a con-
strained optimization problem, for which solution methods are presented, The contact
ferms that have to be added to the global set of equations are presented.

With chapters 2 to 5 the type of mechanical problems to he studied in this thesis is
described mathematically, The chapters 6 and 7 focus on the topic of eritical points.

In chapter 6 the issue of stable and unstable equilibrium is discussed, which leads to
the definition of eritical points, Criferia and methods for detection and computation of
these points are presented.

The extensions of critical point detection methods are the subject of chapter 7, Dam-
age and contact ag inequality constraints are discussed. Besides this a simple method for
the introduction of displacement boundary conditions is given. The one step prediction of
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the eritical load is presented basing on ideas of both the CDM and the extended system

Numerical examples in chapter 8 are nsed to examine the divect computation of eritical
points with the extensions to inequality constraints. The CDM and the extended system
ave evaluated for this lype of problems, The first part of this chapter is a comparison
of both methods with the objective of a possible combination, Here damage is also
considered. In the second part of the chapter some examples with contact are shown,

Chapter 9 contains a short summary of the thesis. Conclusions from the examples are
drawn and a perspective for further developments is given. In appendix A the mathemat-
ical terma of constrained optimization problems are given. The inverse iteration method
which is needed in the CDM can be found in appendix B.



Chapter 2

Continuum mechanics

In this chapter the basics of continuum mechanics are summarized, that are Necessary
for a derivation of the Finite Element Method and the following topics. More detailed
imtroductions into continuum mechanics can be found in almost all books covering this
subject, as e.g. [Truesdell and Noll, 1965], [Becker and Biirger, 1975], [Marsden and
Hughes, 1983] and [Ogden, 1984]. The underlying mathematical theory of tensor and
vector caleulus is explained in e.g. in [de Boer, 1982] or [Klingbeil, 1989],

The mathematical framework for the deformation process is given in the first part of
this chapter. Due to the nature of the instability problems considered in this thesis, large
deformations of the bodies will be taken into account, Then strain and stross Measures
are defined, which will be combined in constitutive models in chapter 3. For a complete
description of a continuum mechanieal problem material independent conservation laws
as well as boundary conditions are necessary.

2.1 Kinematics

2.1.1 Bodies and Motion

As a reference frame the Euclidean vector space I8 is chosen with the Cartesian coordinate
system spanned by the base vectors e, ey, e5. With the origin (2 every point in this space
has a unique vector representation and can be written as

3
x = E;x:' e = uz'g with xe B, el

V=]
In the last notation for x the Einstein summation convention, with a summation over a
double occuring index, has been applied, which will be used in this thesis,
A material body or continuum, is now defined as a continuous compact sét of points M,
which is mapped into the Euclidean vector space. The region in I2* oceupied by the
continuum is denoted by B, its boundary or surface 95,

x = a'g = p(M,1) (2.1)

The topologic mapping (M, t) is bijective and continuous at all times ¢ and for all points
ol M.

<
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Figure 2.1: Kinematic relations

A reference configuration we = (M, 1) at a certain time £y is chosen as a point of
departure. Conveniently £, is a time, where the body 15 in an undeformed, unloaded and
stress-free state named initial configuration By in which the coordinates of all points of
B3, are given by:

X = Xe = pMty) with Xel? (2.2)

The situation is illustrated in figure 2.1. The current configuration B represents the state
of the body at a time { = 4; with the coordinates x. Now the following mapping x can
be defined as
X = x(M,t) = (M, t)op™ (M. ty). (2.3)
Replacing the points M by their representation in the initial configuration equation (2.3)
can be rewritten as
x(X, ) = x(X,1).
The displacement vector u can be introduced as the difference of the initial and the eurrent
coordinates:
n=x-X (2.4)

In this thesis the Lagrangian or material description will be used, where the reference
configuration is assumed to be the undeformed initial one.
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2.1.2  Convective coordinates
Considering a body given by a parameterization with thoe variables £, its convective co-
ordinates can be expressed by
x = x(£,1) = ai(&,1) e with 4,7 = 1,23,
A natural base is constructed differentiating x with respect to the parameters &,
| OxE) _ 00(6u),
o aE\I 8'51 J

The resulting covariant base vectors g; of the parameterization are denoted by a subseript
index. The dual base, a second set of base vectors consisting of the contravariant base
vectors (denoted by a superseript index), are related with the covariant ones by

1 fori=j

g =&, with § =
S g,  wabog {0 for i #

being the Kronecker delta. The scalar product of two base vector leads to the useful co-
and contravariant metric coefficients iy and 4" respectively.

By o= Bi& , g7 =g g

For the reference configuration with the representation X the co- and contravariant base

vectors Gy, GY and the metrie coefficients Gij, G can be calenlated in a similar manner.
[ coordinates systems with orthonormal base vectors the difference between co- and

contrayariant vanishes, so that for Cartesian coordinates e, = ef and & e = Bj.

2.1.3 Analysis of strain

Basing on the terms of the previous sections, several strain measures can be introduced,
Using the mapping x of the initial into the current configuration the deformation grar
dient F is defined as the partial derivative of the mapping x with respect to the initial
coordinates X:

ol
dx dx i oY o iz
F=gx =ax ~Mtx = & W R (25)

iy i

ol ol

This deformation gradient F can be thought of as a mapping of an infinitesimal line
element dX in the initial configuration into its corresponding line clement dx of the
current configuration,

dx = FdX (2.6)

The deformation gradient is not symmetric in general (F £ FT) . If the inverse F-!
exists, 1t 15
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g%

A necessary and sufficient condition for the existence of -1 is, that the Jucobi determinant
is not equal to zero J = detF £ 0, This requirement is fulfilled by the bijectivity of ¥.
The continnity of x even assures the stronger restriction that J = 0.

The deformation gradient F is a two field tensor of second order. Rewriting it in base
vector notation with Cartesian coordinates vields:

Flo= (2.7)

F = m:&-‘uj-- e, ® E; (2.8)

The measure of the square of a line element in the current configuration ds = dx dx =
dX C dX leads to the definition of the right Cauchy Green strain tensor

C=TF'TF (2.9)

Doing the same for a line element in the initial configuration 45 = dX dX = dx b~ 'dx
defines the left Cauchy-Green strain tensor:

b = FF’ (2.10)

The definition of the Green-Lagrange strain tensor B originates from the concapt of the
difference of the squares of line elements in initial and current state ds— dS = X 2B dX:

—1 17"'_ r
E = Q(PI' 1) (2.11)

E is symmetric (E = E") and refers Lo the current configuration, Its equivalent for the
initial configuration is the Fuler- Almansi strain tensor e?:

el = %(I—F”"F") (2.12)

For the Finite Element formulation used in this thesis, the form (2.13) of the Green-
Lagrange strain tensor E in terms of the displacements u is more convenient, Linear and
nonlinear contributions can be identified easily, The notation ¥ = (I = Grad u) for (2.5)
yields the following form:

B = é({_}‘md u 4 Grad"u+ Grad"n Grad u) (2.13)

lingay nonlinenr

A differential operator "Grad” with capital letter depicts the gradient with respect to the
initial configuration, i.e. Grad(-) = %&!, whereas " grad” depicts the gradient with respeet
to the current configuration, i.e. grad(:) = %}xl Neglecting the nonlinear part of equation
(2.13) leads to the deformation Lensor € of the geometrically linear theory, which accounts

only for small deformations,
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2.1.4 Transformation relations

Since vector and tensor valued variables can refer 16 several conligurations, eg. the
initial or current configuration, transformation relations have to be specified. Transport
theorems provide the functional relation between line, surface and volume elements in
hoth configurations,

For line alements equation (2.6) with dx = FdX holds, The relation between a vector
area element in the current configuration da and the area vector in the initial confliguration
dA iz stated in Nanson's formula:

da = JFTdA (2.14)

Therein da is the product of the outward normal vector n of the surface with In| = 1 and
the absolute area da = nda. Applying this the absolute values of the arens are connected
via the relation

da = jdA  with j = |[JFTN|. (2.15)

The transformation of volume elements is simply a multi plication with the Jacobi deiey-
minant:

dv = JdV (2.16)

The importance of the requirement that J = 0 is fulfilled becomes obvious here, since
otherwise negative volume elements would oceur,

More abouf transformation relations can be found in [Marsden and Hughes, 1983] and
[Wriggers, 1988].

2.2 Stress tensors

To determine the inner forces of a mechanically loaded continuum, stress as a local measure
will be given. Assuming a body B and a surface in the interior of B creuted by cutting the
body in two parts, on both surfaces the stress vector ¢ can be constructed. It is defined
in éach point ay the limit of the quotient of force vector of and area Al representing the
foree per unit area acting on the surface:
. f df
t = lim 2 = 2
ar=0 AL ila
According to the Cauchy-theorem t can be written as Lhe product of the Cauchy stress
tensor o with the outward normal vector n:

t(x,t,n) = o(x,t) n(x,t) (2.17)

In an orthonormal coordinate system the first index in & indicates the direction of the
siress component and the second the direction of the surface normal, As a congequence of
the conservation of angular momentum it can be shown, that o is symmetric (o = 7).

Inserting the definition of the stress vector t into equation (2.17), Nanson's formula
(2.14) can be nsed to derive the 1. Piola Kirchhoff stress tensor P,
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df = onda = ada = o JFTHA = P dA

P=dpR7 (2.18)

P is a two field tensor and it is non-symmetric (P # P"), To overcome this disadvantage
the symmetric 2, Piola-K irchhaff stresa tensor 8 ia defined:

S =F'P = JFlop" (2.19)

2.3 Conservation laws

In this paragraph the fundamental physical conservation laws will be summarized . These
have to be fulfilled by every material bady and have axiomatic character. Those laws are
applicable to every part of the body and are valid loeally and glabally,

2.3.1 Conservation of mass

The mass density p = p(x) is defined as the mass per volume p = @, The mass conser-
vation law states, that the mass remaing constant through time. Rewriting the mass m
of a material body B in integral form

m = fp dv, (2.20)

iy

for the mass in initial and current configuration this means, that

mo(Bo,t) = /'p.;. AV = / pdy = / pddV = m(B,1) (2.21)

By bl iy

The requirement m = const. implies the time derivative 4m = 0 to be equal to zero:

%m = r;—ifp dy = /(ﬁ+prﬁw X) dv = 0 (2.22)

& i

since the volume of integration B can be chosen arbitrarily, the integrand has to be equal
to zero. Then the local form of the mass conservation law is:

ptpdivx =0 | o —pdet F = (2.23)

Due to the mapping y in section 2.1, which is bijective and continuous, the conservation
ol mass is fulfilled automatically.
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2.3.2 Conservation of momentum

Writing p for the linear momentum of a body B and f for the sum of the forces the
congervilbion of inear momentum means:

p(B,t) = £(B,1)
Applying the physical definition of the linear momentum of a rigid body p = mx to a
deformable one, the mass has to be split into the integralg of the previous section and the

conservation law obtains the form of the right side of equation (2.24), For the forces on
the left side it can distinguished between body or volume forees b and surface loads t.

g}f{m dy = fpl-) du + /!":du (2.24)

Fij i a8

The formulation of the surface loads t as in equation (2,17) permits the application of the
Gauss theorem for the transformation of a surface integral into a volume integral. The
last integral in equation (2.24) then transforms to

/ on o = fdiu o ndv,
o B
Then the local form of equation (2.24) has the following form:

px = div oo + pb (2.25)

For the body By in the initial configuration the Cauchy stress tensor o transforms into
the L.Piola-Kirchhoff tensor P . The capital letter for the divergence denotes the differ-
entiation with respect to the initial coordinates X.

m% = DwP + mhby (2.26)

Similar to the definition of the linear momentiun the angular momentum L and the torques
M combine to the axiom of the conservation of augulnr momentum:,

L(B.t) = M(B,1) (2.27)
The angular momentum in physics for a rigid body being equal to the outer product of the
radius vector and the linear momentum (L = (x — x,) % p) has in continuum mechanics
an integral form. On the right hand side of equation (2.28) again the split into torques
due to volume and surface forees is done.

%f‘x —Xg) ¥ px dv = /(K - Xp) % /l[‘l dv 4 /(x ~x) % t da (2.28)

4 i it
Together with the Boltzmann-theorem, that excludes distributed surface or volnme torques,

the symmetry of the Cauchy stress tensor o can be obtained from the conservation of
angular momentum after some mathematical operations.
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2.3.3 Conservation of energy

The total energy of a body is the sum of kinetic energy K and internal energy U/,

E(B,1) = UB.1)+ K(B.1) f pedv + ]pxx du (2.20)
1] B

¢ 18 the internal energy per unit mass (specific energy), consisting of mechanical, potential
and specific thermal energy, The rate at which work is done on the body by the surface
loads t on @8 and the volume forces b is the mechanical power 1.

W = / t-xda + /pﬁ v Xy (2.30)
ot B

The two contributions for the thermal power € are the heat flux per time g through the
boundary and the specific heat conduction r by radiation.

Q == / q-n f8a+/ pr dy (2.31)
s B

Inserting those integrals in the first law of thermodynamics and applying the Gauss the-
orem leads to

i

= [ pe du = f.:r:I—lra’.uéf.'.ht.]-lv,u-rch.g1
B

ons
which yields for the local form of the conservation law of energy

pe = o d—divg -+ pr. (2.32)

For the initial configuration the following form ean be obtained after a transformation.
pot = 81K = Div Q+ pyr (2.33)
The heat flux per time through the boundary in the initial configuration is Q= Ji'q

according o the transformation rules.

2.3.4 Entropy law

Denoting the entropy change of body B by S and the inner and outer entropy production
by 5y and 5, respectively, the mathematical form of the entropy law ig

S(B,1) = S,(B,t) + Si(B,1) (2.34)

Introducing the entropy per unit mass or specific entropy 5 = g(x,t) and the specific
internal entrapy production 7, yields for the entropy terms

S(B,1) = f;m dv Si(B,t) = /;Jrf} dv = 0. (2.35)
B i
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The outer entropy production is caused by absorption of heat and is proportional to the
thermal energy Q. It is equal to the quotient of the rate of thermal energy @ and the
absolute temperature © > 0. With @ from equation (2.31), the outer entropy production
g, i3

Se(B, 1) = /{g dy ~ /%qvn dv, (2.36)
8 (i1

According to the second law of thermodynamics 8, > 0, with the equality sign holding
only for reversible processes. For irreversible processes S, is greater than zero. With this
relation the Clausins—Duhem inequality can be obtained from equations (2.36) and (2.35):

‘;—i pr) dv = / ’Z—; dv — j éq-ndu (2.37)
[ B

i

With partial integration and the conservation law of energy (2.32) the local form of the
Clausius Duhem inequality is then

p(@:j—é]-l—a‘:d-éq-gmd@l_‘-:D. (2.38)

For the initial configuration the local form of (2.37) can be deduced by transformation of
(2.38).

p(@h =é)+8: B~ éQ Grad® = () (2.39)

The Helmholtz free energy W, which is equal to the mechanieal power W in an reversible,
isothermal (& = const.) process, is defined as
V=e-n0 (2.40)

Using this definition the local forms of the Clausius Duhem inequality can be rewritten
as

I
=

—p(0 4 78) + o d - '—é)-q cgrad @

po(W 4 1@) +8 B~ E{)_Q Grad® = 0

2.4 Boundary conditions

For a complete definition of a mechanical problem initial and boundary conditions are
necessary. Since in the following chapters the type of problems considered in this thesis
will be restricted to isothermal, static or quasi-statie problems, only boundary conditions
are treated in more detail here,

Two kind of boundary conditions are known as the "classical” boundary conditions, dis-
placement and stress boundary conditions, A third type, the contact boundary conditions
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Figure 2.2: Doundary conditions

will be presented in chapter 5. On the surface of & body 88, that is subjected to bound-
ary conditions, different zones are identified, where either displacement or stress boundary
conglitions are imposed, see figure 2.2, )

On the Newmann-boundary 9By, < 0By the stress vector T is prescribed. Neumann
boundary conditions are mostly specified with respect to the initial configuration and
have the form

PN =T on 0By, (2.41)
N is the outward directed unit vector normal to the surface and P the 1. Piola-Kirchhoff
stress tensor. For the current configuration the Neumann-boundary conditions reads:
on =t on 8B, (2.42)
According to section 2.1.4 the stress vectors in both configurations ave related by

T o= gt (2.43)
On the Dirichlet boundary 88y, C 9By, 9B, € a8 displacement. values i are prescribed,

nwo= 0 (2.44)

Here no distinetion between the configurations is necessary for Dirichlet boundary condi-
Lions,
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Constitutive relations

Besides kinematic relations and stress tensors, individual material properties are needed
to connect the strain and stress measures. Constitutive relations provide a funetional
connection between the independent variables of a continuum x(B.t) and O(85,1) and
dependent ones as e.g. stresses & and heat flux q. With the following general principles
of material theory the stress-strain relations can be restricted:

 The principle of determinism distinguishes between the dependant and indepen-
dent variables. For a simple material the local history of F, @ and VO suffices to
determine the history of the thermo-kinetic process.

® The prinewple of equipresence only permits the same set of variables for all consti-
tutive relations, as long as no further restrictions are imposed.

¢ The axiom of the material objectivity states, that the material response is indepen-
dent of the observer,

s The principle of material symmetry postulates that the material response of bod-
ies in the reference configuration with an inner symmetry remains unaffected by
symmetry transformations.

» Through the principle of local impact the material functions are depending pointwise
on the independent variables .

® The principle of consistency means, that constitutive relations have to be compliant
with the conservation laws.

Applying those principles individually to a material its characteristic set of independent
variables can be determined.

In the first section of this chapter the thermodynamical bases of the material Uhe-
ory are given. The difference between elastic deformation and deformation with internal
dissipation is shown and the thermodynamic equations are specialized for each type in-
dividually in the next sections. As a general simplification only isothermal deformation
processes are considered.

In the elastic gection the hyperelastic St. Venant material law is derived. The focus
of the dissipative deformation section is set on damage as dissipative effect. After a ghort
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deseription of damage, a simple damage model is presented, which is based on the St.
Venant material law. This model was chosen because of its simplicity. It was considered
as sufficient for the aim of this thesis to test the use of eritical point computation methods
for problems with inequality constraints.

3.1 Thermodynamics of deformation

Aceording to the fundamental hypothesis of thermodynamics at any instant of a thermo-
dynamic process the thermodynamic state is completely defined by a set of state variables.
A convenient assumption for the deformation process of a continuum is that this set of
state variables consists of the deformation gradient F, the temperature ©, the temperature
gradient VO and a set of k internal variables ex associated with dissipative mechanisms.

Asa consequence the free encrgy is a function of the state variables W = W(F, ©, VO, a),
so Lhat its rate of change is given by

R 7| L s NV av
tewm Tt (Ve (Vé) 4 ba (3:1)

A av
with ok 0 = z i

due to the evolution of the internal variables. With equation (3.1) the Clausius-Duhem
inequality (2,41) can be rewritten as follows:

r OUY vy - L .. o . 1
(ch"' - pj,j—F) F—p (a; | dﬁ) 0 —pa(‘Te) (VO) = ppg G -5a- VO 20 (32)

Since this inequality must hold for any thermo-kinetical process without restrictions the
state variables can assume any values. This leads to the well known requirements for the
free energy W
N T aw ay
e M= s meeme o
" aF / 96 ' ave)

In (3.3) the second equation implies, that the free energy ¥ works as a thermodynamic
patential for the entropy 7). The third equation states, that the free energy is independent
of the temperature gradient VO, The remaining terms of the Clansius-Duhem inequality
form the scalar valued dissipation function Dy, = D s (e, VO). It consist of internal
and thermal dissipation terms, '

0 (3.5)

an 1

Ddiu = flig=—nx d‘: i - - i VC'} '_.:i G (3,4)
icia { GH !
nderig LerEa

Concerning the constitutive behavior of materials this permits to distinguish between
elastic constitutive relations and constitutive relations with internal dissipation.
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3.2 Elastic deformation

The ideal elastie deformation of a continuum is a reversible process without internal
dissipation. This implies that a body B consisting of a material obeying an elastic material
law returns to its mitial form By when the loads are released completely, Moreover its
material properties remain unchanged. For modest deformations this idealization holds
for most of the materials.

Since no internal dissipation oceurs, no internal variables are needed in the elastic de-
formation model. Equation (3.2) then simplifies to a form with the independent variables
F, © and V@ only.

po A0y . & A .
(ch —p jl") F— (?H FJC‘}) © - (V@) — (V@) - Iq -V >0 (3.5)

[ the dissipation funetion (3.4) only the thermal term remains. It expresses the dissipa-
tion due fo heat conduction.

Diss = ~5a-96 2 0 (3:6)

In this thesis a restriction to isothermal processes will be made (@ = 0), thus only the
first equation of (3.3) is left.

ol

= oo 37)
Temperature does no longer bﬁluug to the set of independent variables, so that ¥ =
U(er) only. This step leads from thermoelasticily to hyperelasticity. Bquation (3.7) is the
fundamental potential relation for hyperelasticity or Green ﬂ[u.uﬁcﬁy_ It states, that all
hyperelagtic material laws can be deduced from a potential ¥, the Helmholtz free energy.
Introducing the deformation energy W (F) = poW(F) as a measure of the specific potential
energy of a reference volume element yields

T
= :}I""—E}FIF”-F : (3'8)
Since the deformation energy is a potential, the stress field is conservative and the defor-
mation energy does not depend on the deformation path,
Specializing those material laws further for isotropic materials, the prineiples of mate-
vial objectivity and symmetry impose further restrictions, see [Ogden, 1984]. The stress
tensor & is then written as a function of the left Cauchy-Green strain tensor b.

2 W (b
T = -u——( )b (3.9)
Transforming this back to the initial configuration a similar equation for the second Piola-
Kirchhoff stress tensor P is obtained with W depending on the right Cauchy-Creen strain
tensor € or the Green-Lagrange strain tensor E.
awi(c) awW (E)
= 2 — '
2 ac or i)
Further limitations for the deformation energy can be derived regarding the limit cases:
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e For the initial undeformed configuration the deformation energy has to be zero.
(W(E = 0) = 0)

e W has to be positive if deformation takes pace (W > 0 for F # 0)

» W goes to infinity, if the body is compressed to a point or stretched to mfinity
(limy e W = 400, limyo W = +00)

3.2.1 St.Venant material

The 5t Venant malerial model is a rather simple hyperelastic material law for compressible
solids. Tor a St,Venant malerial the linear relation (3.11) between the second Piola-
Kirchhoff stress tensor 8 and the Green-Lagrange strain tensor B is assumed.

S(E) = Altr E)I + 2uB (3.11)

The parameters A and p are material specific elastic constants, named the Lamé constants,
They are related to the Young's modulus £ and Poisson's ratio v by the equiations

_ (27 +2p) e A (3.12)

Ak T T 20+

For the first Piola-Kirchhoff and the Cauchy stress tensor P and o respectively the
corresponding relations are obtained by transformation.

PE) = AWEF + uFE (3.13)
o(B) = % [\ (r B) FF™ + 2 FEFT) (3.14)
Although the relation between 8 and B is linear, § depends nonlinearly on the displace-

ments u which can be seen by replacing B with its definition (2.13). The deformation
energy of a St.Venant material is given by

Wey = Way(E) =

B2 | 2

(trEY* + ptrE?, (3:15)
ar

Wev = Wov(B) = | E: (DgyE). (3.16)

Dy i the fourth order elasticity tensor according to the definition

Dy = Al@I+2ul, (3.17)

The 5t.Venant material model is generally described as a model for large displacements
and large rotations but small strains, It can be shown, that the components of the second
Piola-Kirchhoff stress and the Green-Lagrange strain tensor do not change under rigid
bady rotations or displacements, see e.g. [Bathe, 1996]. Thus only straining of a material
will yield an increase in the components of the stress tensor. The major disadvantage
the 5t.Venant material suffers from becomes obvious, when the limil cases mentioned in
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the previous section are considerved, Supposing a compression to a point the St.Venant
material yields for the Cauchy stresses o0 = 0. With this restriction the material law is
not suited for the deseription of finite strains.

Hooke’s law of linear elasticity

For the limit case of small displacements the St.Venant material model can be reduced
to Hooke's law for linear elasticity. For small displacements the derivatives with respect
to the initial and the current coordinate system are set to be equal f,f’ﬂ(-) == ;f’;{-). As
a consequence this yields S = P = . Neglecting further the nonlinear terms of the
Green-Lagrange strain tensor E in (2.13) leads to the infinitesimal strain tensor e =
H(Grad u+ Grad™u). Hooke's law (3.18) can then be deduced from equation (3.11).

o = Atre)I + 2ue (3.18)

Conveniently the constitutive relation & = De is written using the vector natations

T B
T3y 22
i and 3
712 2¢13
Tay 2ea3
13 2613

for the stress and strain tensors, where the symmetry characteristics of both tensors have
been used to shorten the vectors. The constitutive tensor Dgy can then be written as a
symmetric second order tensor:

L—v W v o0 0 0
I 1 = 7 0 0 0
= L v v l=v 0 0 0
Pav = (1+w){1 -2 0 0 0 0 (3.19)
0 0 0 0 5= 0
0 0 0 0 0 s

For two dimensional problems the special cases of plain stress and plain strain can be
defined,

Plain stress

The plain stress state is characterized by the fact, that the stresses in the third (out of
plane) divection vanish (o3 = o33 = 733 = 0). This approximation is valid for solids with
a small extension in the ont of plane direction, as e.g. model membranes or the in-plane
action of beams and plates. The constitutive tensor D, for this type of problem is

i L » 0

: v 10 . (3.20)

By = 7y
Tt g 1
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‘The missing strains in the out of plane direction can be caleulated with the following
ecjuations.
7

| — i

(ﬁn +1‘.25} (321)

ty = dgg = 0 €39 = =

Plain strain

For slices (Of unit L‘]liekness) {'.1[ solids that are treated as 2D problems, the plane strain
state is used. Here the strains in the out of plane direction are zero (63 = €3 = ¢33 = 0).
The constitutive fensor Dy, is then

B - @ 0
7 N p— 7 l=w 0 . 3.22
oo (l + f*")(l - 2“'] (] D L'-'-;“H ( )

The stresses in the out of plane direction can be obtained with the formulas

gy = o3 = 0 Oyy = ¥ (ag -+ o9). (3.23)

3.3 Deformation with internal dissipation

Deformation with internal digsipation is connected with a set of internal variables which
account. for the irreversible changes taking place in the interior of a body during the
deformation process. The fundamental equations of thermodynamics are assumed to he
valid for irreversible processes too, so that the equations ol section 3.1 hold. As in the
case of elastic deformations in this thesis the deformation processes are supposed to be
isothermal (& = 0), consequently equation (3.7) remains as the only one of (3.3). With
the restriction of a constant temperature the dissipation function (3.4) reduces to

B = 4 gn::%u > 0, (3.24)

with Lthe conjugated thermodynamie forces p%. To distinguish between dissipative and
the non-dissipative range of a material, a function f is defined with

file,e) < 0. (3.25)

For [ < 0 the material response is non-dissipative or elastic. The term "elastic” is
used here in the sense of "reversible elastic”, meaning not only that a continunm returns
to its initial undeformed state, when the loads are removed, but also that no internal
degradation took place. If the equality sign holds in equation (3.25) (f = 0), f deseribes
a hyperplane in stress space indicating the limit of the elastic region. If (3.25) is violated
the material law becomes dissipative and degradation ocours. The internal variables o
evolve according to the evolution laws that indicate the rate of change & until restriction
(3.25) 1s valid again. Because of its properties f can be seen as an inequality constraint,
which always has ta be fulfilled in a deformation process.

For the dissipative case that corresponds to a violation of constraint (3.25) the rate of
change of the internal variables & are given by equations of evolution or flux equations.
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More information about dissipative deformation in general can be found in the books
of [Lemaitre and Chaboche, 1990] and [Lubliner, 1990).

3.3.1 Damage

The physical effects that are known ag internal damage are the presence and evolution of
cracks and cavities al the microscopic level. This might lead to a complete loss of load
carrying capability of a material. From the continnum-mechanical point of view damage
can be seen as a loss of stiffness of a material. The characterization of internal damage
depends crucially on the specific type of material consideved. Generally the degradation
of materials can be divided into three classes, brittle, ductile and fatigue damage. The
difference between the first two types is that for brittle damage plastic deformations are
negligible, whereas for ductile damage large plastic deformations oceur. Fatigue damage is
the degradation in time of materials that ave repeatedly submitted to loading-unloading
processes on cyclic loading conditions for example fatigue failures can be observed. In
this thesis only so called elastic damage models will be treated. After removing the loads
a body is assumed to return to its initial state without lasting plastic deformations, The
effect of damage will only be noticeable in a different response to a subsequent loading of
the material.

To represent damage mathematically, several approaches have been proposed, see e.p.
the overview article of [de Souza Neto et al,, 1998] or the textbooks of [Lemaitre, 1984]
and [Lemaitre, 1996]. For the most general case of anisotropic damage [Chaboche, 1084]
proposed a fourth order damage tensor, [Murakami and Ohno, 1981] a tensor of second
order. Here only isotropic damage will be considered, so that damage is represented by a
Singlu sealar damage variable o

0 undamaged
l completely damaged

de0;1] r£={

The damage parameter d is introduced as a measure of stiffness loss of a material. It

ranges from 0 to 1, d = 0 for an undamaged virgin material and d = 1 for a completely
damaged material. For the physical definition of the damage parameter a situation ac-
cording to figure 3.1 is considered.
Assuming an arbitrary plane (defined by the normal vector n) in the interior of body B,
created by cutting the body in two halves, a representative velume element (RVE) on
the micro-meso scale as shown by the magnified cube on the right side in figure 3.1 is
taken. dAy is the overall intersection area of the plane and the RVE, §4p the are covered
by the surface intersections of microcracks and microcavities in 4y Then the damage
parameter d is defined as the quotient of those two variables:

A,

Considering now a simple one-dimensional homogenous stress state, the definition of
damage as the effective surface density of mierodefects results:

d =

(3.26)
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mammSEE S,
a= Tag

Figure 3.1: Micro-meso definition of damage

In terms of Young's modulus for the virgin material By and the damaged material By d
can be defined as the right hand side of equation (3.26). In the case of isotropic damage the
scalar d is inserted in the constitutive equations assuming, that it holds for all directions
in space,

Since the defects are open in such a way, that no microforces are acting on the surfaces
of the microcracks and microcavities, it is convenient to introduce an eflective Cauchy
stress tensor related to the usual Canchy stress tensor by

o
o= —, 3.27
= (32)
This definition corresponds to the ohservation that the defects do not contribute to the
load carrying area of a body. To avoid a micromechanical analysis for each type of defect
the hypothesis of strain equivalence is postulated, It states that:

“The deformation behavior of the damaged material iy vepresented by the constitiutive
laws of the virgin material with the true stress replaced by the effective stress.”

This means that generally a material is assumed to behave elastically as deseribed by laws
of section 3.2 and damage cffects are imposed on these laws.

To distinguish between elastic behavior and damage effects, a damage eriterion f is
considered:

flewd) < 0 (3.28)

If the criterion is violated, the damage parameter d increases. Its rate of change d is glven
by an evolution law.
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3.3.2 A simple damage model

In this thesis a rather simple damage model will be used, which ariginally was developed
for conerete, see [Oliver et al., 1990] and [Onate, 1994], In the articles [Oliver, 1995
and [Oliver and Pulido, 1999] it was used to model strong discontinuities in materials,
The model is based on a simple isotropic elastic St.Venant material law of section 3.2.1.
Plastic deformations are excluded.

unloading

(1-d) D,

>

€, £
Figure 3.2: Constitutive plot for the gimple damage model in D

For the one dimensional case the constitutive plot of the simple damage model is depicted
in figure 3.2, 1t is basically a bilinear model. Until the stresses reach the threshold value
oy, the material elasticity is characterized by Dy. For stresses greater than oy internal
damage influences the material stiffness now defined by Dy, The dashed line shows the
unloading path, which is the secant to the point on the loading path obtained just before
the load is decreased, On reloading the dashed path is followed, damage progresses if the
intersection with the original path (solid line) is reached.

To derive the simple damage law the damage or degradation parameter d is inserted
in the deformation energy for the St. Venant material.

W” — (1 = d) ‘f.["lsv = (1 - d) %’ E; (D,‘,’VE) (‘} {_: d ::_: l) (3'29)

With equation (3,10) the following form yields the relation of the second Piola-Kirchhof
stress tensor and the Green-Lagrange strain tensor:

5= (1-d)Dsy E = (1-4) 58" (3.30)

Besides the constitutive relation a suitable stress norm is needed:
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7y = \/5:(Dg 8) (3.31)

Equation (3.31) can as well be transformed to a strain based law. In strain space this
norii 15 expressed in terms of B

7(E) = \JE:(Dg, B) = \/2We(B) — 5= (1-d)a (3.32)

With the norm (3.32) the damage criterion is definod as

[(@s,q) = d5—q < 0. (3.33)

q here is the hardening variable. Using the relation ¢(+*) = (1 — d)r' and (3.32) this
criterion can be reformulated;

F@sq) = (=-d)7 - (1-d)n

= [(Br) =d-7" <0 with ' = max {7°7)
FE(~oo,t)

7' 8 either the norm (3.31) of the initial threshold value for undamaged material (r9 = &%)
or the maximum stress value in terms of the norin (3.32), that has been reached in the
previous damage history of the material. Condition (3.33) states that damage in the
material is initiated when the norm & (3.32) exceeds the initial damage threshold 79,
For pre-damaged material a damage progression takes place when the constraint (3.33) is
violated.

The evolution law for the threshold value 71 = X with 7% = 70 leads to the Kuln-
Tucker conditions for the damage model:

AzZ0 , f<0, Xf=0 (3.34)

The consistency condition Af = 0 follows from (3.34) . The evolution law for ¢ is then
. dg ol

@ = 57 (3.35)

The damage parameter d depends on the degradation state of the material and has the
following properties:

d = G(r') = 3 (1 = T—D) (3.36)
' L+ H 7t
I is the hardening-softening parameter, a material constant. For the undamaged material
r' = 7% the damage parameter is zero (d = 0) in agreement with the definition.
For the further numerical computations the tangent damage moduli D,,, are of im-
portance. Therefore basing on equation (3.30) the rates of change or incremental form of
the constitutive damage relation are deduced,

é" = ([ = d) D-ﬂ"E = d D-.‘I'VE = Di.mlE {3.3?)

The evolution laws for d and & are
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Stress norm: 7 o= : (DgvE)

IF - f@ ) <0

'T‘ R

1 o
T 1 . S (R
‘ d (") Tr ( 7“)
B8 = (|. - Lf"JD“.'E

ELSE

i ghd ey ; _I:
¢ = g e
5§ = (-d)DgE

70 1

Dti.u 5 ~d SV 7T g
" (1 = d')Dgy G+ ) 79

(DsvE) ® (DsyE)

Table 3.1: Algorithm for the simple damage maodel

For the tangent constitutive damage tensor Dy, which is equal to the consistent Langent
damage tensor, it has to be distinguished between the two cases of elastic behavior (f < 0)
and damage progression,

(1 =d) Dgy for [ <0
(1 - d)Dsy = 1155 #1(DsvE) @ (DgyE)  else

In table 3.1 the simple damage model is summarized in an algorithmic form. A superseript
t for the stress norm @' and the damage parameter d' is introduced to underline, that both
are dependent on the current load state. 71 = 7% in the first pary of the algorithm means,
that no update of the threshold value r* is necessary and its former value is adopted.

Dhm =

(3.98)
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Chapter 4
The Finite Element Method

This chapter is concerned with the numerical solution of mechanical boundary value
problems. The Finite Element Method (FEM) is used as a numerical tool to solve these
boundary value problems.

In this thesis only isothermal, quasi-static mechanical problems are considered, The
parameter ¢ originally meant as the time now takes the role of a parameter deseribing
different steps of the loading history in a quasi-static analysis.

For the application of the FEM the weak form of the governing equations is a pre-
requisite. Generally, two different approaches can be distinguished. If a potential exists,
variational principles are applied to derive the weak form. For the second approach the
waals form is obtained from the conservation laws, namely the conservation law of linear
momentum for the problem type in this thesis. In the first part of this chapter both ap-
proaches are derived and equivalence is demonstrated, By applying the FEM a nonlinear
equation system is obtained, which is solved with a Newlon-Raphson algorithm.

The last part of this chapter is dedicated to the computation of equilibrium paths.
By determining the response of a mechanical structure for different load levels a path in
load—deflection space can be constructed. To overcome the difficultios that arise, when
nonlinear paths have to be traced this way, path following or arclength procedures are
used. Several types of the latter are given here.

For in depth coverage of the subject of this chapter the reader should refer to standard
text books, such as [Crisfield, 19914, [Zienkiewicz and Taylor, 1989], [Bathe, 1996] or
other.

4.1 Weak form of the balance of momentum

In this thesis only isothermal problems will be studied (© = const;® = 0), so that
no coupling between mechanical and thermal variables exists and a purely mechanical
description of the problem is sufficient. Therefore the following derivation will be restricted
to the weak form of the balance of linear momentum (2.26).

Using the restriction to static problems, which implies that x = % = 0, equation (2,26)
can be further specialized to the static form of the balance of momentum:

DivP 4 pby = 0 (4.1)

27
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Applying the Galerkin methoed, equation (4.1) is scalar multiplied by a vector valued test
function du and integrated over the volume B5,.

f (DivP +pob) - 6udV = 0 with du = 0on 85 (4.2)
B
The test functions du can be chosen arbitrarily but are required to be equal to zero on

the boundary. Partial integration of (4.2) under consideration of the Neumann boundary
conditions (2.41) the weak form of the balance of momentum Gy is obtained:

Gg(u,du) = /P:G?‘ftdt)'u dV - /pﬂib’u dv — f T . dudd = 0 (4.3)
g

Hu e

The subseript s is introduced here, to denote the terms originating from the solid. In
chapter b additional terms emanating from contact contributions will be added. With the
following equivalence

P:Gradén = SF" : Graddu = §: % (F* Gradéu + Grad"su F) = 8:68 (4.4)

the first integral can be transformed and the tensors in the product replaced by the
2.Piola—Krichhofl stress tensor 8 and the Green-Lagrange strain tensor E. Equation
(4.3) then turns into

Gs(u,bu) = fs:aE dV = fpuﬁ-ﬁu dV - / Tedudd = 0. (4.5)
Ba iy ﬁ.(lina

OE here is the variation of the Green-Lagrange strain tensor, see (4.4) for a definition,
By applying the same procedure to the current configuration, a reduction of (2.25) to the
static form and integration leads to

f{D?iwcr + pb)« du dy = 0, (4.6)
B
After partial integration and the transformation of the first integral this finally yields

Gig(u, du) = /a‘:ﬁﬂ di — /pEI-JLI du — j i duda = 0, (4.7)
B B Al

with de being the variation of the Euler-Almansi strain tensor given by

de = %(gmdﬁu + gradéu) . (4.8)

Although this equation is formally equal to the virtual work in the linear theory, it has
to be taken into account, that the stress and virtual strain tensors have to be evaluated
in the current configuration.
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4.2 Variational formulation

The second way of deriving the weak form is viable if a potential exist. 1t is of importance
for chapter 6 when eritical points will be defined. The deformation energy W for hypet-
elastic material is by definition a potential for the stored elastic energy of a continuum.
Besides the term for the clastic energy, terms considering the energy of applied body and
surface loads have (o be added. The potential for an isothermal, static problem is then:

Mg = / Wy — /pnf)-u dv - f T udd — Min. (4.9)
&n By Mo

Applying the principle of the minimum of the elastic potential the unknown displacement
function w is required to minimize the potential [1s. The minimum of equation (4.9) can
be computed from the variation of the potential 1.

5ls = / SW dv ~ /puB~zsu v - / Todudd = 0 (4.10)
IIFIJ bn

For the 5¢.Venant material, the potential and its variation yield

ﬂﬂuﬂ'

”.5‘ = /% (E : (DS[FE)) !ﬂf = /'p'[;ﬁ sudl — f T =1l ff.”l (*l“]
Ha

By J'ﬂ‘!uo

P /E:nm.m v - /ﬂqfl-f'iu v — f'i"-au dA =0 (412)
By By My

At this point the equivalence of the weak form (4.12) derived from a potential and the
weak form of the balance of momentum (4.5) is obvions.

4.3 Finite Element Method

The Finite Element method 15 a numerical technique for the solution of partial differential
eqlintions. As a convention from now on the St.Venant material model will be assumed
ag the constitutive model, The introduction of damage in the governing equations later
15 straightforward, since only the scalar (1 = d) term has to be ingerted,

The area of integration By in (4.5) is divided into smaller finite elements Q. Mathe-
matically this reads as:

BY = | | o (4.13)

1, 15 the total nmmber of elements. 1t 1s required that the partition with finite elements is
non—overlapping and without interior gaps. The superseript & here and in the following
denotes the diseretization and approximation of quantities by the FEM.

The weak form (4.5) can now be applied on the elemental level. The individual
elemental contribution are then assembled to the global form,
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Ny
C?i:‘.‘(u”,c‘iu") = U fSiﬁE" dV — fpb-éu" dV — [ t du' da = 0 (4.14)
=1 e it afea
The unknown quantities w as well as its derivatives Vu, the test finctions du and it

derivatives Vou are interpolated in each element by a sum of nodal shape functions N;
and nodal values v,.

Thiy iy
u' = 2: Ny v, Vo' = vi®@VN;
i=j gl
I':i‘ g
sut = 3" N; dv; Viu' = 3 év; @ VN, (4.15)
et g=1

For the examples in this thesis linear and quadratic polynomes are used. The variable Ty
in the summations is the number of nodes per element. Since ispparametric elements are
implemented a similar interpolation is made for the coordinates X.

Ty
XE =0 N X (4.16)
J=1
A shorter matrix formulation for the Green-Lagrange strain tensor B and its variation
dF, which are functions of u and du, is given by

E' = B(v)v (4.17)
SE" = B(v) dv. (4.18)

The matrices B and B contain the derivatives of the shape functions VN in an order that
has to be specified according to the element theory applied.

Alter extracting the virtual nodal displacements Lhe weak form (4.14) can be rewritten
as & product of the global vector of the nodal virtual displacements §v and a vector
quantity G |

Gi(vidy) = &7 Gl(v) = | &7 Gh = | Je!  vovemM (4.19)
é=1 i ]

Equation (4.19) has to hold for arbitrary v, with the exception of 2 € 9B where dv = 0
has to be fulfilled. This leads to a system of nonlinear equations
G =R(v) - P =0 (4.20)

G is split. into two terms: R contains the contributions originating from the inner energy
and the term P depicts the contributions of the external load with
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R(v) = [ij BT (v,) : 8(v,) dV (4.21)
c=i“-l,

Plv) = EJ pbdv - /Erm ; (4.22)
=]

i a0

The equations system (4.20) has to be golved for the unknown nodal displacement vector
v. Equation system (4.20) is nonlinear and can not be solved analytically, The Newton-
Raphson method, which will be presented in the following section, is used to solve (4.20)
iteratively, Therefore the derivative of G with respect to the nodal displacements, the
tangent stiffuess matrix Ky 18 needed:
h
I{T -— B_;'.i, ("1.23)

oV

Since G4 can bo assembled from the elemental contributions, alse the tangent stiffness
matrix Ky consists of an assemblation of its elemental parts K%, For problems, where
the loads are displacement independent, the stiffness matrix can be computed by:

'Bﬁ - l__J f [B"'(VaJstB(v.;) + ETQ(V;:JE] dv = U K. (4.24)

qids ln,, =

The matrices G are nol dependent on the displacements and contain only derivatives of
the shape functions. 8 is formed by stresses. If is furthermore convenient to split Ky into
the sum of the three matrices Ky, Ky and K.

Kr = K;, + Ky + K, (4.25)

The B-matrices are split inte linear By and nonlinear parts By,

B =B, + B,,;(V) (4.26)

The linear stiffness matvix K contains the parts of the integral that are not dependent
on the nodal displacements v,

g .
K, = / B/ DB, dV (4.27)
] h"
In the initial displacement matrix Ky the nonlinear terms of the integral (4.24) are as-
sembled.

Ku(v) = |J / (B Dy Bui(vo) -+ By (ve) Dy By + Bl (vo) Dsy Bu(v,)] dV (4.28)

el he
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The initial stress matrix Ky i the second term of the sum in equation (4.24).

K, (v) = f G'8(v)G av (4.29)
o=l o,

To simplify the notation in the following chapters the superseript A for the FE-formulation
of the weak form will be omitted (GE=Gy).

4.4 Newton—Raphson Method

The Newton-Raphson Method can be obtained by performing a Taylor series ezpansion
of G,
G,
Gs(v) = Gs(vo) + 52av + O(av?) (4.30)
The terms of quadratic and higher order in qv are summarized in the rest term O(5v?).
After linearization of (4.30) by neglecting the nonlinear terms, equation (4.30) together
with (4.20) vields the incremental iterative algorithm:

Kp(v') avit! = —Gg(v") (4.31)
Ky is the tangent stiffness matrix defined by equation (4.23). Index i in (4.31) is the
iteration counter,

The complete algorithm is given in table 4.1, Commen initial solution vectors vq often
are either the solution vector of the previous load step v, or the zero vector vy = 0 if
this is the first load step. The Newton-Raphson algorithm converges quadratically in the
vicinity of the solution.

Starting value: vl =y

Tteration loop: t=0,1,... until convergence
Solve for av: Kr(vh) av't™ = — Gi(vh)
Update: vt = i g pvi

Check convergence: |Gs(v**h)|| = TOL

Table 4.1: The Newton-Raphson algorithm

4.5 Computation of the equilibrium path

In order to determine the response of a mechanical structure for different load levels, a
scaling parameter A for the load terms P is introduced in the non-linear equation system
(4.20):



=
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Gg(v) = R(v) - AP = 0 (4.32)

Since P reflects the manner external loads arve applied and remains unaltered by A, only
the size of all loads varies. The relative size of the individual loads with respect to each
other does not change.

To illustrate the structural response graphically, it is convenient Lo plot A against
an assorted displacement degree of freedom, This degree of freedom is chosen such that
it reflects the behavior of the entive structure, Figure 4.1 shows an example of such a
load-displacement or equilibrium path.

AA

v}

Figure 4.1: Example for a non-linear load-displacement, path

In figure 4.1 other possible characteristics of non-linear load-displacement paths are
shown. If the load factor A is increased beyond the point A, the displacement will sud-
denly jump to point D and the path lying in between both points cannot be followed. A is
a limit load point of the equilibrium path, the strueture behaves dynamically. Since this
thesis is restricted to quasi-static analysis the real dynamic behavior cannot be reflected.
Instead, the computation might not converge or jump to point D as indicated by the
dashed path in figure 4.1,

A conceivable remedy for this problem is to compute the problem displacement con-
trolled by prescribing a displacement degree of freedom that is augmented instead of the
load factor A. The limitations of this control type will be ohserved at point I3 in figure
4.1, where the path then jumps to point C.

Hence a combined load displacement control is needed to determine the load- diaplacement,
between A, D and B, C. Therefore, path following or arelength methods have been devel-
oped, [ssential publications on this Lopic are [Wemper, 1971], [Riks, 1972] and [Ricks,
1979]. The idea of the arclength methods is to consider the load parameter A as an ad-
ditional degree of freedom in the system of equations (4.32). To solve for the now N 4+ 1
unknowns, i.e. displacements v and load parameter A, a control equation flv,A) =013
added as an additional constraint to problem (4.32):
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GS[V.A) . ;
() = -

To solve the non-linear system of equations (4.33) with the Newton-Raphson method,
the linearization of Gg and f, i.e. the derivatives Gy = Ky, Gy = P, f,, and [, are

needed:
KK —P] [avitl Gs(v, )
= "4 = = (4:34)
0ol P )

A comma in the subscript is an abbreviation of a derivative with reapect to the parameter
following the comma.

The additional terms in the matrix on the left hand side of (4.34) have the disadvantage
that the tangent stiffness matrix Ky no longer has a band structure, With existing
solution algorithms a direct solution of (4.34) takes a considerably higher computational
effort than the original problem (4.31). This disadvantage can be circumvented by a
partitioning algorithm, which exploits the specific nature of (4.34) more efficiently. A
split of the displacement increment v = Avg + aAavp allows a separation of (4.34) in
two coupled problems. Equation (4.34) then reads:

oave + AN aviH = AP = —R 4+ AP (4.35)
f:[v'r nv}“H +QA"I'| f':vr nv}-lll AA‘.I-'-lf:,\ - f!-{.vi| AI} (_1‘3&:)

Sorting the terms in (4.35) according to the dependency on A, two separate equation
systems yield.. Solving (4.36) for o) the algorithm of table 4.2 can be constructed.

The arclength method is based on a two-step solution strategy. At the beginning of a new
load step the load factor increment A\ ig predicted as shown in table 4.2, The parameter
a# is the constant arclength increment, that has to be supplied by the user and depends
o the problem to be computed. At different positions on the load-displacement path
different signs of the load increment 4 A® have to be chosen. When Ky is positive definite
at the beginning of a load step, the positive value is used. When a limit point is passed
a sign change has to be applied, [Bergan et al., 1978] developed the current stiffness
paramneter as an indicator for the choice of the sign.

kﬂ ‘ P‘?' t
Cp = 7 With B = —H7F (4.37)
" AVp ,Qv’:

The current stiffness parameter ¢, is the quotient of k' at the current load step and the
first one k” = kf|,—p. The superseript ¢ for the displacements av; is added to emphasize
that it is referred to the displacements of the current load step. At limit points the
product in the nominator of k' changes the sign since displacement inerement and load
vector no longer have the same direction,

For the contral equation f(v,A) of the corrector step a variety of expressions have
been proposed in literature. In this thesis the control types of an iteration on a normal
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Pradictor: Kp(v) avh = P
Al = 4 Ad
V{avi)Tavh
[teration loop: t=0,1,... until convergence
Solve for pv: Ky(v) avil' = — G, A)
Kr(v') avif! = P

i i
_ f 2= f,(l.ll .ﬁVG-

Compute incroments: , \i+! T
Jh+Ey avp

i i1
avitl = AvERL L AT vl
Update: yitl = iy AL
Check convergence: |Gg(vi, M| = TOL

Table 4.2: Algorithm for arclength procedure

plane, on a tangent plane and on spherical hyperplanes will be given, The two previously
mentioned types of load and displacement control can be derived as well from a constraint
equation f. Therefore, they can also be viewed as a special type of arclength method. A
good overview on the subject of the arclength method ean be found in [Wagner, 1991b]
or [Crisfield, 1991a].

Load controlled arclength method

Far the simple case of a load controlled problem the control equation f(v, A) reads

FA) = A - ¢ (4.38)

The derivatives of [ are trivial to calculate:
£.=0, fi=1 (4.39)
The increment of the load parameter 4\ in the algorithm 4.2 then simplifies to

AN = =, (4.40)

Displacement controlled arclength method

In the displacement controlled arclength method the displacements of a selected degree
of freedom v, are prescribed by the contral equation

flv) = v — & (d.41)

The derivatives of [ are constant:
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fa=0, £, =el with e ={0,0,0,...,1,...,00,0} (4.42)

e, is vector with only the component corresponding to the degree of freedom @ equal to
ong, whereas all others are zero. The inerement of the load parameter oA in table 4.2 15
then

ﬂj\i-l-'l = w_.....‘,_rl.__lﬁ'.m__ [-‘1.43)
Iteration on a normal plane

The control equation for the iteration on a normal plane has the form

fn ) = (v = v =v™) 4 (A" =AY (A= A7) = 0. (4:44)

The underlying idea is illustrated in figure 4.2. Starting from the point (v, A') of the Jast
converged load step, a predictor step to (v™, A™) is made, [t is now required that the
subsequent corrector step is orthogonal to the predictor step as shown in figure 4.2,

?hm
AH I

}v‘

g

ik |

v vty
Figure 4.2: Arclength with iferation on a normal plane

The index m here denotes an intermediate state in the iteration process. Generally, two
possibilities exist for the choice of m. Setting m = 1 all the following iteration steps
are orthogonal to the first predictor step, the normal plane remaing constant throughout
the iteration process, If m = 4 a continuous update of the normal plane is made and
ecach iteration step is orthogonal to the precedent one, see [Menzel and Schwetlick, 1978],
[Ramm, 1981], With v, A", v™ and A™ as constants, the derivatives of the control
equation for the iteration on a normal plane are;
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00 = (v -V, fh = AR (1.45)

The equation for the load parameter increment is now somewhat more complicated:

d’)‘lﬂ o fi e (vm . vr)‘f‘AvE‘H

(AT = A1) o (v = )T i

(4.16)

Iteration on a tangent plane

The iteration on a tangent plane is rather similar to the iteration on a norimal plane, Here
orthogonality between the tangent vector to the equilibrium path (avpe, 1) is required,
leading to the control equation and its derivatives

J(v,A) = svilv=v") 4 (A—A") = 0. (4.47)
fl"\"r = AV}',I'IT‘ .f.i\ = ] (;1_';18‘]
With these derivatives the load parameter increment is obtained as follows:

i (U S|
_f ""‘"ﬁvlj- “Vﬂ

A = (4.49)

L [lave |

Iteration on spherical hyperplanes

AA

17| EEREEEETN RESNCIERNETS. 1
?‘.l-

Figure 4.3: Arclength with iteration on spherieal hyperplanes
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The basic idea of an iteration on spherical hyperplanes was introduced by Crisfield and is
deseribed in [Crisfield, 1991a). The length of the vector (sv, A7) is set equal to a constant
value a# in the control equation.

f(v,A) = (v- V"i"'(\r ~ V)4 (A=A)? — s =¢c — a8 =10 (4.50)

Figure 4.3 shows the iteration on spherical hyperplanes in a load-displacement dia-
gram. Whereas [Crisfield, 1981] solves this quadratic equation directly, [Schweizerhof
and P> Wriggers, 1986] linearized this control equation consistently:

g » 1
o' = =lv=v)"  fi = -(A-2)

The increment of the load parameter A i then:

. L ds) + (v = v)Tave!
(A= 20 + (v = vi) v
The disadvantage of a slightly lower robustness compared to Crisfield’s algorithm is com-
pensated by an easier implementation. In Crisfield’s method the satisfaction of the cor-
straint is required in every iteration step, see [Schweizerhof and P.Wriggers, 1986] for a
compatrison of both methods and the normal plane iteration type.

Remark: A whole class of cylindrical control equations can be constructed, when
scaling factors are inserted in the sealar products of the displacement and load factor
increments o (4.50). In [Crisfield, 1991a] this method can be found under the name
cylindrical arelength method.

(4.51)



Chapter 5

Contact

I this chapter the formulation of a frictionless, non-thermal contact will be presented.
Large deformations are taken into account, due to the nature of the instability problems
considered in this thesis. The description of contact, presented here follows closely the one
in [Wriggers, 1995] and [Scherf, 1997].

The outline of the chapter is as follows: In the frst section the kinematical formu-
lation of the normal contact with the master-slave concept is given. The requirement
of a non-penetration of the hodies leads to a geometrical constraint. The interpretation
of which as contact pressure is the subject of the following section, With the incorpo-
ration of the constraint in the variational equation the question of solution methods for
constrained optimization problems arises. Here the common methods are presented and
discussed briefly. The linearization of the contact terms suitable for a solution of the
equation system with the Newton-Raphson method then concludes the general part of
the contact representation. The specific diseretization of the contact surface with the
node-to-segment element for a two dimensional contact and the combination with the
penalty method are contained in the last section of this chapter.

5.1 Normal contact

For the modeling of contact the master-slave concept of [Hallquist, 1979] will be used.
[t proved to be suitable for this purpose in recent years, as soveral papers show, see e.g.
[Curnier, 1984], [Wriggers and Miehe, 1992] or [Laursen and Simo, 1993],

Multi-body contact problems can be treated as a combination of several two-bady pair
problems. Figure 5.1 shows an arbitrary contact pair. One of the badies is chosen as
the master BM, the other as the slave B%, This choice can be done arbitrarily, but
commonly the body with a finer surface diseretization is assumed to be the master. To
reduce Lhe computational effort a part of both surfaces is marked as a possible contact
zone. In most of the mechanical problems this can be done in advance ag the general
behavior of the problem can be predicted by means of engineering experience. Denoting
the surfaces as dBY dB¥ and the contact parts by a subseript ¢ the mathematical relation
is OBM  9BM 9BS < OBM. The orientation of the contact surfaces are given by the
ontward divected normal vectors n™ and n®, which will be used in the following to
distinguish between the interior and the exterior of a body. Penetration then oceurs, if a
part of the slave contact surface 9BY is located in the interior of BY, This part of both
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inactive

active
B
B M
)

Figure 5.1: Master-Slave contact

boundaries that penetmtea or touches the other body is referred to as the active part of
the contact surfaces aBM* aph”,
For completion it shall be menhmwrl thal the following relations hold:

B = BYu B 0B = oBM U 9B
aB, = aﬁ:-’ L an ﬂﬂﬂ“ s aB‘f:ﬂ!' L aﬁf'

Zooming into the contact as indicated by the rectangular in figure 5.1 shows the penetra-
tion of a slave node into the master body, see figure 5.2.

Both contact surfaces dB) and @B ave discretized with nodes and interpalation fune-
tions. For a given slave node %% on 9BY the distance function to the parameterized master
surface xM(£,,1) is defined as

d(Eayt) = [|x¥ = xM (&, )| with a=1,2. (5.1)

The adjacent master point xM (£, ,¢) for the slave point x5 can be found minimizing the
digtance function

d (Gart) = %" = xM (&a.t) | — MIN, (5.2)

where £, denote the values of the parameterization for the minimal distance. Tn the
following all vm'lal:h“i with an over-line refer to the adjacent master point for a I-,Wf‘ll
slave node x%, so that W and &, are the normal and tangent vector in ¥ = xM (fﬁ.ﬁ).
Equation (5.2) then yields the necessary condition

x¥ =M (£ 1)

d({m ” = Il — K""F_(Emf) ” xf:f(gn) = 0 (5.3)

r!{n
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Figure 5.2: Contact kinematics

In order to be equal to 0 the first and the second term in (5.3) have to be orthogonal.
Since x':}f (£a), the dervivatives of the master surface with respect to the parameterization
variables £,, are the tangent vectors a}’, the first term must be the normal vector n,
which reads ag n™ - al = . This means that the adjacent master point x™ is the
orthogonal projection of x¥ onto the master surface gBYM. The convective coordinate
system in TV can be caleulated through

B x3,
[EEEIR

Now the local gap function gy can be introduced, which permits to distinguish between
the different contact states:

By = xu(ft) v @ (5.4)

gy = [x* =%M] ' a (5.5)

If gu is positive the bodies are separated, no contact ocenrs in this point, Equality to 0
means that the surfaces are in touch, and a negative value is obtained if penetration takes
place,

=1 Separation
gy ¢ =0 Contact (5:6)
< (0 Penetration

In the geometrical contact formulation it s required that no penetration oceurs, which
results in the kinematical constraint
gn = . (6.7)

A penetration function gy, suitable for the incorporation of constraint (5.7) in the global
system of equation with the penalty method is then
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~----= focus point

__center of
curvature

Figure 5,.3: Unigueness of the projection

lan| for gy <0

B
0 olae ( 3)

9% =
Complications of the master-slave concept are to be expected, when the pro jection of the
slave node into the master surface is not unique. Tn [Curnier et al., 1994] some criteria
are developed regarding the transformation of the slave surface into line elements on the
master sutface. The results are illustrated in figure 5.3, The projection is not unique, if
the slave node is a center of curvature of the master surface or a focus point, which means
an intersection point of equally long normal vectors.

Remark: The formulation given above leads to a purely geometrical constraint, The
requirement of non-penetration has to be seen as an idealization, because even ex periments
prove, that in a microscopic scale tiny penetrations oceur. In the numerical simulation
tiny penetrations are inevitable, if e.g. a penalty formulation is nsed to add the contact
constraints,

5.2 Contact pressure

According to the basic axiom of Newton where actio equals reactio, for the infinitesimal
force vectors in the contact zone equation (5.9) holds,

t5da’ = —gMgaM (5.9)

[ the active areas AB)" and B the contact surfaces are equal da® = da™, so thal
equation (5.9) can be rewritten as

{F = gM, (5.10)
In the non-active regions ABM\OBM" and OBI\OBS" the surface stresses are equal to zero

y AT ) a1 !
% =1 = 0. With the master body defining the reference system the contact stress
vector £ = tY can now be split in a normal and a tangent part:
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t = cN n + ’-'“ Eﬂ. (‘6*1[)

normal  tangent

{

The assumption of a frictionless contact leads to the simplification that the tangent
gtresses are zero t, = 0. Furthevmore the condition that no adhesive stresses are al-
lowed in this contact model results in ty < 0, The normal contact stress is equal to the
contact pressure by = py. Equation (5.11) then reduces o

t = pym. (5.12)

The well known Kuhn-Tucker conditions for frictionless contact problems (5.13) provide
the basis for the mathematical treatment of the constraint optimization problem.

~gN S0, py S0, pagh =0 (5.13)

Constitutive equations

During the whole contact formulation a smooth contact surface was assumed. Real sur-
faces however are rough. In a microscopic scale they contain asperities, which form a
smooth surface in the macroscopic seale, where a statistical averaging process over the
asperities is made. The macroscopic contact surface may differ substantially from the
microscopic one. If contact oceurs, those microasperities deform, a smoothing and a tiny
penetration takes place. A constitutive law for this zone relates the average contact pres-
sure to a geometrical variable. An overview of those laws can be found in [Song and
Yovanovich, 1987]. Typically potential laws are postulated as in equation (5.14), which
is taken from [Kragelski et al., 1982].

ty = —cylghl™ (5.14)

The material parameters ey and m have to be determined experimentally. According to
[Oden and Martins, 1985] m vanges between 2 <y < 3.33,

Remark: In coupled thermo-mechanical problems the contact pressure is of crucial im-
portance, because the heat conduction depends on it. |Zavarise et al., 1992] used an
exponential law for the modeling, For the primary goal of the non-penetration enforee-
ment a simple contact law as in equation (5.14) with m = | is sufficient. Section 5.4.2
will show that such a law equals the constraint to be used in the penalty formulation.

5.3 Incorporation of the contact constraints

The incorporation of the inequality contact constraints into the variational formulation
18 a constrained optimization problem, the mathematics of which is described in detail
in [Bertsekas, 1982] and [Luenberger, 1992], Formally the variational equation (4.5) with
the solid terms Gg is extended by the addition of contact terms Ge.
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¢ = Gs ¥ G (5.15)

For the precedential potential I1, from which & 18 derived, this means that

1 = g+ g with 411 = G, (5:16)

Iii the ease of a permanent contact with a priori knowledge of contact surfaces those terms
adopt a form similar to boundary conditions, e.g. (5.17).

G = Gs j})m Suni A (5.17)

] l."'.: :
e Sy

contact terms G

Generally the contact zone is unknown and hag to be determined during the iteration
process, which means that it is subjected o constant changes.

5.4 Solution methods for constrained optimization
problems

Equation (4.5) in combination with (5.7) i a nonlinear constrained optimization problem
of the general mathematical form (A1), see appendix A for the mathematical framework.

Among the solution methods for this problem type it can be distinguished between
different groups. There ave first of all the primal methods. They depart from a feasible
starting point in a direction, where the objective function decreases until an optimal
solution is obtained. Thereby it must be assured at each step, that the path vemains in
the feasible vegion, The feasible direciion method, the gradient projection method and the
reduced gradient method are examples of primal methods.

The perally and barrier methods, the second type, will be treated here in more detail
due to their imporiance in numerical contact mechanics, Thay aim at regularizing the
problem by adding the constraints to the potential and approximating so the constrained
aptimization problem by an uncenstrained optimization problem,

The third group are the dual methods named like this, because they try to solve the
dual problem of equation (A.2) with the Lagrange multipliers. Cutting plane methods and
the Augmented Lagrange method ave examples for those.

The last type are the Lagrange methods that aim at solving the first-order necessary
condition directly. Mostly this is done by extending the conjugated gradient method or
the Newton methaod,

The last section dealing with solution methods is dedicated to some minor important
approaches. They consist partially of a combination of two methods, with the ohjective
to overcome the restrictions and disadvantages of each one individually.

Comparing the notation of the mathematical definitions in the appendix A with the
notation of this chapter it should be paid attention to the fact, that although inequality
constraints are denoted with a g in both cases they are formulated as g < 0 in the
mathematical section and as gy = 0 otherwise.
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5.4.1 The Lagrange multiplier method

In the Lagrange multiplier method the constraints are added with a multiplier Ay to the
potential as shown for one constraint in equation (5.18). This means basically, that the
first order necessary condition (A.2) is solved directly:

=y - f Awah dA — MIN (5.18)
B

For the variational equation (5.15) this term is calculated in a straightforward manner
(6:19). The necessary Kuhn-Tucker conditions for this case are given in (5.13).

G - = / Awéyt dA (5.19)
ol

Special care has to be taken, becanse the inequality constraint is represented as equality
constraint in (5.19). Doing this generally would mean to force even the inactive contact
surfaces to come into contact. To prevent this the active set strategy is introduced, At
each iteration step the active contact surface is determined. All the constraints involved
therein are set to be equality constraints and are added to (5.15). The inactive constrainis
are neglected. Now the Lagrange multiplier method is compliant with the fitst order
necessary conditions, since for a multipliers Ay and the inequalities gy it can be stated:

Constraint active: A = 0, g = 0

Constraint inactive: Ay = 0, ~gh < 0

Comparing (5.19) to (5.17) the Lagrange multipliers Ay can be identified as the negative
contact pressure.

PN = — AN (5.20)

The major disadvantage of the Lagrange multiplier method is, that the multipliers are
additional degrees of freedom, This increases the computational effort, especially since
the stiffness matrix of the FIEM typically has a band strueture, that will be destroyed by
the multiplier degrees of freedom. The second disadvantage are zero valued terms on the
diagonal of the atiffness matrix when the constraints are fulfilled exactly.

5.4.2 Penalty and Barrier methods

In the penalty mefhod a penalty function f(g)}) is added to the potential, when tle
constraint is violated. Figure 5.4 shows an example. The penalty function is zero as
long as the value of u is lesser than uy. Onee this threshold is passed the function grows
rapidly. Here too a constant verification of the eurrent eontact suiface is NECeSsary,

A common choice for the penalty function is a simple quadratic equation as is done in
equation (5,21), For the contact terms G, this means, that the rather simple form of
equation (5.22) is obtained.



46 Chapter 5. Contact

barrier
penalty

Figure 5.4: Comparison of barvier and penalty method

1 = [Ig 4 f%ﬁwg,{,z dA —s MIN (5.21)
OB
Ge = /.c;vg:,{}ﬁg}t dA with ey = 0 (5.22)
It

A proper choice of the penalty parameter ey is important for the solution. It can be
proved, that for the limit case ey =+ oo the solution of (6.21) converges against the
exact solution of the constrained variational problem. For infinite values the regularized
formulation yields the correct solution, On the other hand a reasonable sized value for
¢y 18 desivable, since otherwise the matrix Ko becomes ill conditioned, Too big values
result in a bad convergence rate or even divergence. Smaller values always are connocted
with a stronger violation of the constraints. This means, that by applying the penalty
method a tiny rest penetration has to be accepted. An ideal value for ey has about the
same size as the tangent stiffness matrix contributions of the elaments connected to Lhe
contact nodes,

The contact pressure corresponds in this formulation to the product of penalty pa-
rameter and penetration funetion

PN = en Of. (5.23)

The coutact regularized this way ¢an be interpreted as a linear constitutive law, Note the
equivalence to equation (5.14) with m = 1 and ey = ey,

The usual strategy when using the penalty method is that in each iteration the active
set is verified and changed if necessary. A second method, that will be dealt with in
chapler 7 is the converged active sel strategy. Here the active set is chosen, when the
first constraing is violated and remains fixed until the solution procedure converges. Then
the active set is reevaluated and newly iterated until convergence. The final solution is
reached, when no changes in the active set have to be made, after an iteration process
has converged. '
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A second form of regnlarized contact is the formulation of the constraints with barrier
functions. A look at figure 5.4 explains the difference. Whereas penalty functions become
active only, when the constraint is violated, barrier methods alveady intervene in the
vicinity of the constraint value, The idea is to establish a barvier that grows to infinity the
closer the value of u approaches (o the limit uy and o prevent a passing or a penetration,
A problem arises if u passes u in one large stop, so that the barrier function eannot
activate. Once in the infeasible vegion on the righthand side of uy in diagram 5.4, it is
difficult to shift it back into the feasible region.

Both methods do not solve the problem exactly, they only regularize it.  On the
other side they do not suffer from the disadvantages of the Lagrange multiplier method,
The number of unknowns does not increase and no special solvers have to be applied.
Especially these facts are the veason, why most of all the penalty method is very popular
in contact mechanics. The ease of implementation in FEM codes is a further ad vanlage
counected with this.

5.4.3 Augmented Lagrange

The Augmented Lagrange method is basically n combination of the penalty method with
the Lagrange multiplier method. Both terms ave added to the potential (5.24), the mul-
tiplier term and the quadratic penalty function term. The variation gives the necessary
condition for the minimum point (5,25).

m= 1, - f N / %wggﬁ dA — MIN (5.24)
fhig JRe
Ge = /ﬁnﬂwg,{;]ag}{; dA (5.25)
afte

The multipliers Ay are no longer additional degrees of freedom, but arve treated as con-
stant. They are held constant during an iteration phasge until a preliminary convergence
is obtained, Then the multipliers are updated and a further iteration loop is computed,
This procedure lasts until final convergence is reached. The problem can be regarded as
solved, if the update values of the multipliers stay below a certain predefined threshold.

1Nulul = XN,,.!.: = EN.‘?I"MW (5.26)

Equation (5.26) shows a typical first order update. The penalty teérms of the current
step are shifted into the multipliers. The multipliers can be interpreted as additional
load terms. The advantage of this method compared Lo a simple penalty method is,
that the penalty parameter ey can be chosen much smaller and ill-conditioning is less
likely to occur. In comparison to the Lagrange multiplier method the advantage is a
non-augmentation of the equation system. The disadvantage of the Augmented Lagrange
method is a higher computational effort eveated by the second iteration loop.

This method was also applied to mechanical contact problems, but, mai nly for cases,
where the penalty method failed, see eqg. [Wriggers et al., 1985]. If the pure penalty
method already gives a satisfactory result, the supplementary computational effort is not
justified.
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5.4.4 Other methods

A variety of other methods exist besides the ones presented here. Only two more, that
have been used for contact problems shall be mentioned briefly. For a more general
overview on the subject of constrained optimization it is referred to [Luenberger, 1992].

Clross constraint method

In [Zavarise et al., 1998] the cross constraint method is proposed for contact problems.
The idea thereby is to regularize the constraints by a general exponential funetion:

[ = X% _/ (eI 4 B0 dA (5.27)

4Be

Visualizing this class of functions in diagram 5.4 they range in between the barrier and
the penalty function. The idea is to combine penalty and barrier methods in such a way,
that already in the feasible region on the lefthand side vicinity of ug a barrier term is
established and on the other side a penalty term exists in cage the constraint is vielated,
This way it is achieved, that the minimal point of the unconstrained potential can be
exactly shifted to the constraint limit. Moreover the functional remains smooth and
the admissible range of the solution is not restricted. 'To avoid ill-conditioning it can
be combined with an augmentation scheme similar to the penalty term in Augmented
Lagrange,

Interior point methods

[nterior point methods came up in the recent years, delivering astonishingly good results
[or linear problems. In a second step it was intended to extend those to nonlinear prob-
lems, too. In [Christensen et al,, 1998] a comparison of a potential reduction interior
point method with the standard Newton method was performed. Christensen proved in
this paper, that at the present stage of development Newton methods are superior both
in robustness and speed.

5.5 Linearization of the contact contributions

The contact term in the global set of equations are given by equation (5.17). The generic
variable [y for the contact stress has to be chosen according to the selected constraint
representation of the previous section,

Fig
G. = | by dgy dA (5.28)
=1 p,

Differentiation with respect to the unknown displacement gives the contributions to the
tangent stiffness matrix IKp,
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oG, ™ [ Oty IGTT
= e + ty——=| dA. 5.29
i H : du d9N N e (5:29)
T an

On the element level, the contributions ean be writien as

F. = Iy dgy (5.30)
on, o, . aigw) .

Doing the FEM approximation of the integrals by sums over the elements, equations
(5.32) and (5.33) are obtained. The sum runs over all the slave nodes 1.

T
¢ = )& (5.32)
am]
é)Grr iy é}{?‘\__" .
du  Mow (3.35)

Besides the gap function gy itself, the variation gy s needed. With dgy in terms of 6x
this is

Sgy = [6x" = 6% -0 + [x" -%"] .én (5.34)
S— —

=il conil
The second term in (5.34) is a multiple of the product 61 - 1 and vanishes, because Lhe
variation 61 is perpendicular to the normal vector i, As defined in chapter 2 the current
nodal coordinates are related to the reference coordinates by x = X + u, which means
that the variation of x is simply dx = du, For the master node ® the variation is more
complicated, see equation (5.36).

dx* - = du’-n (5.35)
M =M
Mg = O 6+ B X bu. B = guMim (5.36)
a'fu iu
B
= 8,06 - B =0 (5.37)

The first term in (5.36) can be omitted due to the perpendicularity of the normal & to the
tangent vectors a,. ‘The remaining second term is similar to the form of (5.35), Together
with (5.34) this leads to equation (5.38) for the variation dgy.

bgy = [ou¥ —duM] -m (5.38)

And finally the last derivative missing is
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2(bgw) ) ('S“M) = ST p
e S R dut - Fa’ (6.39)
A general formulation of the contact linearization can be found in [Laursen and Simo,

1993),

5.6 Contact discretization

The master and slave contact boundaries have to parameterized. For this purpose the
aurfaces are interpolated with nodes and interpolation functions. In this seetion the
generalized 31 contact formulation given in the previous sections will be specialized for
2D, '

5.6.1 Contact elements

Dilferent types of contact elements exist to implement the master-slave algorithm in the
framework of the Finite Element Method, The easiest way is to usge a node-to-node
element. Prior to the computation a fixed nodal ordering scheme is constructed, where
each slave node is bound to a master node. This element can only be used for geometrically
linear problems, because a relative tangential movement and large deformations are not
allowed in the contact zone.

A slightly better type is the iso-parametrie discretization of the eontact contribution
(beam-to-beam (JC]'ul.‘l'lt.). Both boundaries are interpolated isoparametrically, using the
same shape functions as for the elements in section 4.3. Here also a fixed relation between
master and slave nodes is established, so that the same restrictions as for the node fo-
node element hold,

Node-to-segment contact

The node-to-segment contact element does not suffer from the restrictions as the other
two element types. Large deformations and relative tangential movement are permitted.
This element type is used in thig thesis and will thus be studied in more detail,

To introduce the geometrical variables fignre 5.5 shows one master segment and the adja-
cent slave node, The interpolation is defined i equation (5.40) by the two nodes %, xM
and the linear shape function

xM(&) = x4+ (xe-x) & with £ € [0,1]. (5.40)

In the 212 case only one surface parameter £ is needed for the diseretization, The derivative
of the parameterization with respect to this parameter defines the tangent vector a,
dxM
B Do o iy e 541
a can be normalized to 8% = ¥ with [ being the length of the element | = [[x5 —x]|.
the normal vector is obtained by ii = ey x 2% The formula for € ean be deduced from
figure 5.5:
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=

E(xy-x\)

Figure 5.5; Node 1o segment element,

= 1
& = j0a~x) & (5.42)
Inserting (5.40) in equation (5.5) together with € and & from above lead to the gap
function (5.43) for the node-to-segment contact and its variation (5.44), The tangent
stiffness and residual contributions for this element will be ealeulated in the next section
nsing the penalty method to regularize the conatraints,

av = [ =(1=-8)x— £x] 0 (5.43)
gy = [0v" = (1 =&) dvi —E bvs] - 10 (5.44)

The key idea that enables a relative movement of the contact boundaries in this type is,
that no mapping is specified a priori to the computation. In each iteration step it has to
be checked, if the projection of a slave node x® onto a master segment is still appropriate
or if it has fo be shifted to a different one. However, this comes with a big computational
effort. , so that a specification of possible contact surfaces dBM and 9B% prior to the
computation makes sense.

Another way of contact representation is to construct elements connecting both sur-
faces, which transmit the pressure from one body into the other, See e.g [Tsehépe, 1996]
and [Haraldsson et al., 1997, where the pressure of a fluid is transmitted into a solid this
way, Here again a fixed mapping between the adjacent boundaries is a prerequisite.

Mare sophisticated elements have been developed using polynomial interpolation of
the boundaries. See e.g. [Wriggers et al., 1999] for an interpolation with Hermite or Bezier
splines. The advantage of those methods is the smoother surface, that can he obtained.

5.6.2 Node-to-segment contact and the penalty method

"The contributions to the tangent stiffness matrix Ky and the residuum R will be derived
in this section for the node-to-segment contact element. The penalty formulation (5.22)
is used to add these constraints to the variational form. The gy are replaced by gy as
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is needed for the active set strategy of the penalty method. As stated in equation (5.23)
the pressure in the penalty formulation is ty = py = £xg,, %0 that equations (5.30) and
(6:31) evolve to

P, = engd ba} (5.45)
O _ [0y . o Ol600)
el by + On o] [ (5.46)

Whereas the residual contributions are (5.45), (5.43) and (5.44), the tangent stiffness
matrix terms require further discussion. Equation (6.46) contains two derivatives with re-
spect to v that have to be split np into the nodal displacenients v¥, v, v,. The individual
derivatives then look like:

aylk

daf [ o i A
ovs = oy | T By S €-nu , B, = T (840
a0gn)

s = 9

alsqh) o i < — 4 dn OF .. ; —
_ﬂ% = |It$v‘c' - [l — ﬁ] 6’0'1 -—E 6\’2] . a—v: = [5‘—,; (éw + d'\«"g) 1l

oo [6v% = (1= §) dv, — £ dvi] Bv; = |y, G tive)|E

The derivatives of the normal vector % and the surface parameter 2% are:
?II i

% = -é";?,-:—}(mny . g_’;.zo
(_:iff = %[-(1—3)-5—-5’%':‘1]
EQE; = %[—E‘ﬁ+%ii]

Putting all these parts together the quite lengthy form of 5% can be assembled. Defining
the following vectors the contributions obtain a comparably simple form:
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0 i} 0

Ny = =i N=|[=(1=-f)1], Ty = - 4|,
n =& a
E !sv.g ;3.“'3
T=|-(-9al, dv.=| dv|, ave=/[ av
-£ A dvy AV2

Then the residual terms are
P. = ov!l ' eny ghN, (5.48)

and finally the contributions to the tangent stiffness matrix, given already as a product
with the displacement increments, have the following form:

apP. . g A
ET-FAV‘ = eydvl - [NNT - —IN-(NOTT + TNp) - (

[

ave (5.49)

- |§—
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Chapter 6

Computation of critical points

The subject of this chapter is the computation of eritical points on the equilibrinm path.
These points often described as well as geometrical instability points are associated with
radical form changes of the underlying structure in mechanical engineering, Mathemati-
cally those points can be identified by certain eriteria that can be derived performing a
stability analysis of the equilibrium path, which will be done in the first section. In the
next section these criteria are exploited further in order to be able to distinguish the dif-
ferent types of instability points. A more thorough examination of the main classification
of limif and bifurcation points is made in the third section of this chapter.

Having defined mathematical equations characterizing critical points, methods for
their detection can be developed. Generally two types of which exist: Indirect and direct
methods, Indirect methods are computed accompanyingly to path following procedures.
While the equilibrium path is traced with e.g. arclength at each converged equilibrinm
point of this computation test functions are evaluated. The results of those test funetions
give evidence of whether a critical point has been passed or hit in the last load step. For
a determination of the critical point with high accuracy a coupling between path tracing
and test function has to be established. Direct methods are more or less independent, of
the path following methods. These try to iterate directly to the eritical point during the
solution process which is done by mcluding a mathematical condition for eritical points
us a constraint.

several methods of both types are treated in this chapter, Special emphasis ig put
on the eritical displacement method (CDM) and the extended system, which proved to
give good results in various publications, see e.g. [Ofiate and Matias, 1996 and [Wriggers
et al., 1988| respectively,

An additional section is dedicated to branch switching procedures which are necessary
in bifurcation points, when a tracing of secondary paths is desired. A reference for this
chapter is [Wagner, 1991b] where the whole subject of this chapter is covered. The theory
of critical points can be found as well in [Crisfield, 1991b].

6.1 Stability theory

Taking a closer look at the equilibrium path of an arbitrary mechanieal structure in figure
6.1, certain points can be observed, where the path has a maximum L, minimum Ls
or bifurcates B3, Before the mathematical eriteria of those eritical points can be defined,

b
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a short exenrsion into stability theory will be made, following the theory presented in
[Crisfield, 19911).

lA

4

Figure 6.1: Equilibrinm path with critical points

The stability analysis bases on the energy potential or functional defined in section 4.2.
Starting with the variation of the potential (4.10), a Taylor series expansion for an arbi-
trary point on the equilibrium path of this variation with a fixed A yields
91 2
d11(u, A) = gu 56 & = Hir J—FE du -+ O(su). (6.1)
1 du?

Third and higher order terms again are summarized in the term O(du*). Replacing the
displacement function u by the FE approximation with the nodal displacement vectors v
equation (6:1) is transfered to the form

Gv,N) = G dv + 5 5 Ky by + O(6VY) (6.2)

where the relations for the derivatives of 611 established in chapter 4 have been used. For
an equilibrium point the minimization of the energy potential [T is required. The encrgy
change in (6.2) should be stationary which means that

G(v,A) = 0. (6.3)

For a stable equilibrium the change in energy should be positive for any small perfurba-
tions dv. This is equivalent to the vequirement that the second term in (6.2) is greater
than zero, '

v Kpdv =0 Y by (6.4)

Equation (6.4) states that the tangent stiffness matrix Ky has to be positive definite and
has only positive eigenvalues for a stable equilibrium peint. In conirast to this an unstable
equilibrium point is characterized by the following relationship:
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vl Ky dv < 0 (unstable) (6.5)

The matrix Ky is not positive definite and has at least one negative eigenvalue. The
neutral state, where the second term in equation (6.2) is equal to zero, is the conditions
for eritical points v,.

sv?! Kydy = 0 for dv, (G.6)

In this case the tangent stiffness matrix Ky becomes singular and has a rank deficiency.
Formulating this in terms of the eigenvalue prablem

[Kr(vi) — wl] ¢ = 0 (6.7

bhe smallest eigenvalue becomes zero (wy = 0). Equation (6.7) simplifies to

Kr(v,) ¢ = 0. (6.8)

Another consequence of Kp becoming singular is that the determinant at a critical point
vanishes:;

det Kp(v,) = 0 (6.9)

Applying these eriteria to the equilibrinm path in figure 6.1 means that in B, Ly and Ly
the tangent stiffriess matrix is singular, The paths from the origin to L, and to the right
of Ly are stable. The second path branching of in B and the part ]yiug in beltween [
and L» are unstable,

In table 6.1 the criteria for the stability analysis of the equilibrium path are summa-
rized.

Equilibrium point Ky Figenvalues Determinant
Stable positive definite all w, =0 det K4 = 0
Unstable not positive definite  at least one wy < 0 det Kg < ()
Critical singular wp =0 det Ky =0

Table 6.1: Criteria for the stability analysis of the equilibrium path

6.2 Definition of singular points

For a classification of critical points the parameter s indicating the length of the curve is
introdiced and the quantities displacements v and load factor A are expressed in terms
of s

v = v(s) , A = As) (6.10)

For the nonlinear equation system G this parameterization means that
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G = G(v(s),As)) = 0. (6.11)

According to the main theorem on implicit functions a solution point of (6.11) is a regular
pointif the inverse G o (v, A) ™! exists. The theorem guarantees firthermore the existence
of a local solution path through (¥, A) and the existence of the derivative %}* that fulfills

G v ax
m - Gwm T G\.\E (ﬁ.l?)

Points where the main theorem on implicit functions does not hold are called singular
points. In those points the inverse of G, (ve, A) does not exist or is singular.

A formulation of the eigenvalue problem for critical points reveals further details. With
the left- and right eigenvectors ¥ and ¢ the eigenvalue equations are

Gy —wl) dp = 0, (GF —wyl) ¥ = 0. (6.13)

The eigenvectors have the orthogonality properties ¥ ¢; = dyj. In the most general case
of a eritical point an m-fold zero eigenvalue has to be expected and for k= 1,...,m the
eigenvalue equations are

Gy =0 , TG, = 0. (6.14)
Multiplying now the tangent %2 of equation (6,12) with the left eigenvectors ¥, yvields

q’}:‘ rGﬂ' ‘Vlﬂ -+. Gr-:\ "'\--"I = D!

which simplifies when relation (6.14) is used:

U GyA, =0 (6.15)

Equation (6.15) has to hold in a eritical point and gives the main eriteria for a distinction
of bifurcation points and limit points. A case study for the eigenvectors belonging to the
smallest eigenvalue identifies the two possibilities:

As #£0 ‘P'{IGI;‘ =1 bifurcation point

A, =0, wlg, #0 limit, point

For an even more exact classification of eritical points the second derivative of G with
respect to s I8 necessary,

e (avy? v O\ Py aa\? I
o = E (r—,}:) + 2G, B Ds o+ G'“'f)? + Gaa (E) ¥ A% (6.16)

According to [Wagner, 1991b] the general solution of (6.12) has the form (6.17) with m
being the multiplicity of the zero eigenvector of (6.13).

m

A —,
= ==V ¥ pAT (6.17)

k=1

v

05
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Bifureation and limit points are differentiated further in the next sections, a graphical
illustration of all the types of ¢ritical points is then shown in figure 6.2.

Remark:  The fact that G (v, A:) = Kg(ve, A) becomes singular in the eritical
point has consequences for the Newton-Raphson algorithm. [t is not possible to solve
(4.31) in the eritical point. With the by one equation augmented system of the arclength
method (4.34) the condition that WG 5 # 0 at limit points guarantees a regularity of the
augmented stiffness matrix on the left hand side of (4.34), A solution of (4,34) in limit
points is possible, whoreas at bilurcation points the stiffness matrix remains singular,
Using the partitioning algorithm of table 4.2 however, destroys the regularity that arises
from the augmentation of the equation system. Nevertheless practical experience showed
that in numerical computations the eritical point was almost never encountered exactly
dua to inevitable numerical inexactitudes,

6.2.1 Bifurcation points

The fundamental relations that hold in bifurcation points are A, # 0 and ‘I"IPG.A = ),
With the general solution (G.L?) equation (6.12) can be separated in two equations,

Gyvo = -Gy, = w=-G/G,
Gyvey = -0 = Vi = — ¢

From the second equation it follows, that the general solution for bifurcation points is

vy A = _ .
— = Vi + tpthy with «y € I (6.18)
o8 ds kw1
Focusing now on a single instead of a multiple bifurcation point the sum vanishes and
only the first term remains. (o = o)

av oA .
"ﬁ = avn + o (6.19)

For the classification of the types of single bifurcation points the second derivative of G
(6.16) is multiplied by the left eigenvector W. Together with ¥ G , = 0 and ¥’ G,=0
this results in

Z
g G(g—:) + 20" wa;—"%’l o GM(?) = 0, (6.20)

Using equation (6.19) a quadratic equation for 2 3; is obtained. Introducing the following
variables

a = [( ,vvqb J
= [( ‘\rvvﬂ + C'VA)‘:M
¢ = T(Guvo)ve + 2G 0wy + G,

D = WV - ae
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the solution formula for quadratic equations can be applied:

(5{’5) =228 ML 8up (6.21)
13 ¢ ¢ ¢
Depending on the sign of the discriminant D a classification of single bifurcation points
can be performed now. For the case of D > 0 under the additional assumptions that
b 0 and ¢+ 0 it can be distinguished between symmetrie bifurcation points (a = 0) and
asymmetric bifureation points (a # 0). If D = 0 the square root has only one solution
and a cusp poinl is obtained. For D < 0 the solution of the square root is complex,
which is the characteristic of an isolated point, In the following table 6.2 these cases are
gummarized 11 an overview:

. svmmetric bifurcation point  a=0b#0,c# 0
TG, =0, D0 : e

asymmetrie bifurcation point  a £ 0,6 £ 0, £ 0

'W'TG_,\ =0, D=10 cusp poinl

w'G, =0, D<0 isolated point
Table 6.2: Types of single bifurcation points

In literature those critical points sometimes have been named diffevently, Points with
[2 = 0 are named simple transcritical bifurcation points in [Jepson and Spence, 1985].
The name simple pitchfork bifurcation point for a symmetric bifurcation point is rather
common, oo, A distinction into stable and unstable symmetric bifurcation points can
be made as well, see figure 6.2, The name simple isola formation point can be found in
[Jepson and Spence, 1985] for an isolated point. A more thorough discussion of all the
cases can be found in [Wagner, 1991b], serving as well as references to additional literature
covering this aubject.

6.2.2 Limit points

Limit pointa are extremal points of the equilibrium path characterized by the relations
As =0 and ¥ Gy #£ 0. The general solution (6.17) simply reduces to

E = L].'(b, (6'22)

with only the first term of the sum remaining (& = o). The multiplication of (6.16) with
the lefi eigenvector ¥ together with (6.22) yields

. pv\* SO
o7 Gy (:}%) + ¥ Gy = 0, (6.23)

f § o ; y Y 3
With simple arithmetic this equation can be solved for §3,

Pr VG .d

5;5- =¥ W - e (6.24)
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Here too, a case study for the sign of ¢ has to be performed. A mazimum point is obtained
for e < (0, If ¢ = 0 the path goes through a mandmum peint. For the nominator in (6.24)
to become zero giving ¢ = 0 the third derivative of A with respect to s is neaded, If
'_13%? # 0 the eritieal point is a saddle point. The following table 6.3 shows the different
possibilities for limit points in an overview.

w’ Ga#De<l maximiim point

\I'”'G‘), A0, e=<) minimum poinf

TG £0,e=0 saddle point (g}:} #£0)

Table 6.3: Types of limit points

6.3 General methods

Several methods have been proposed in literatire to detect instability points. They are
moatly indirect methods,

Limit load analysis

The classieal limit load analysis aims at solving the eigenvalue problem in an equilibrinm
point. Using equation (6.7) yields

[Kp(v) — @I ¢ = 0 (6.25)

which can be solved for the unknown eigenvalue & and the eigenvector ¢. (6.7) is a
special eigenvalue problem with the second matrix being the unit matrix I needing lesser
computational effort as a peneral :rigunvnluv_ problem,

A second eigenvalue problem [or eritical points known as classical non-linear buckling
analysis is derived by exploiting the split of the tangent stiffuess matrix Ky deseribed in
(4.25).

Kr = K + Ky + K,
Without mathematical reason a load factor A is iut’,;'ﬂclut:terl and the following eigenvalue
prr,)hlurn 18 formulated:
K: + Ky + AK,| ¢ = 0 (6.26)
Besides (6,26) another form using the split of the tangent stiffness matrix can be con-
structed with
[K; + MKy + K,)| ¢ = 0. (6.27)

Since both (6.26) and (6.27) are general eigenvalue problems they are more difficult to
solve than (6.7). Moreover they require a special solver since the matrices Ky and K,
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are not necessarily positive definite. From the practical point of view the implementation
of this algorithm is aggravated by the fact that the split (4.25) is usually not made when
the tangent stiffness matrix is assembled. A solution procedure for eigenvalue problems
ig given in appendix 13,

Linearizing the matrices Ky and K, and neglecting second order terms in (6.26) and
(6.27) leads to the classical linear limit load analysis.

Comparing (6.26) and (6.27) with the standard eigenvalue problem for eritical points
(5.7) the behavior for the limit case is obtained.

lim K(V) = Ay = | lim @lv) = W, = 1

Y=kVp Vo Ve
This is obvious becanse in the critical point all eigenvalue problems have to be identical
and fulfill (6.7) and (6.8). For A = | the matrix sum on the left side of (6.26) and (6.27)
is the tangent stiffness matrix K.

Test functions

The detection of critical points with test funections is as well an indirect method. A
common choice for the test function is det K. In the solution process of the Newton:
Raphson algorithm (4.31) often a diagonal triangnlarization K¢ = LTDL is performed.
The determinant can then be obtained easily as the product of the diagonal elements of
D

N
det Kr = [ Dy (6.28)

J=1

Due to the high values the determinant of larger matrices can assume, it can be sealed
caleulating the quotient with the value of the fivat load step:

det Ky (vy)
det Ky (vy)
For larger equation systems G with several thousands of unknowns the value of det Ky

can exceed the range of the computer. Using the logarithm funetion this problem is
remedied.

det Ky = (6.29)

N N
dpeie = (0rriog [T 12y = (-1 3 tog 0y (6.30)

Plotting the value of the determinant during path computation provides additional infor-
mation on the type of equilibrinm point, see table 6,1, Examining the relation of det Ky
with the diagonal elements D,

=0 — VDHI )Dﬂ =10
det Ky ¢ =0 =+  IDy: Dy=0 (6.31)
< 0 —% 3Dy : Dy <0
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other test functions can be observed. The number of negative diagonal elements can
bee nsed for that purpose. Passing a critical point e.g. causes a change of this number.
Other possibilities for test functions are the minimal diagonal element ﬁJf?Lﬂ(D”) and the
smallest eigenvalue w) of (6.7) which both become zero at eritical points.

Extrapolation methods

Extrapolation methods have to be seen in combination with test functions, With two or
more values of test functions e.g. the determinant det Ky, ideally at least one on each
side of the critical point a curve can be constructed, Performing a linear or quadratic
interpolation with these points leads to an easy solvable equation that provides a coarse
estimation for the critical point and a starting point for the next extrapolation step.

Instead of interpolating or extrapolating a simple bisection algorithm can be used,
too. Starting with two points the interval is split into two by computing the middle
point. Recursive splitting of the interval where the eritical point is located (indicated by
the test function) reduces the range and eonverges against the eritical poini in the limit
CHst,

6.4 The Critical Displacement Method

The Critical Displacement Method (CDM) was developed recently and evaluated for truss
and solid elements, see [Ofiate and Matias, 1995 and [Onate and Matias, 1996]. The
method bases on the secant stiffness matrix, which is used to predict first the critical
displacements and then the eritical load, The first, section is thus dedicated to the basics
of the secant. matrix following [Onate, 1995] and shows how the approach is embedded
in the general field of contimium mechantes and FEM. In the second section then it
15 described how the secant matrix can be exploited for predictions of critical values
according to [Matias, 1996], which is the most detailed work on the subject of the CDM,

6.4.1 Derivation of the secant stiffness matrix

In order to devive the full incremental form of the prineiple of virtual work an updated con-
figuration of the body B of chapter 2 is defined. Starting from the current configuration,
see figure 6.3, the updated configuration B'™4' is constructed by setting the displacements
u'*tal equal to

utel = u! + s (6.32)

According to equation (2.13) the Green-Lagrange strain tensor for the updated displace-
ments in componential form is then

1 2 £
E'tal — ﬁ((’:??‘ud uttal L GradTu'ts! 4 GradTu' A (rad ul“") (6,33)

Substituting the displacements of (6.32) in the Green strain tongor (6.33) the increment
Al ean be written as the difference of the Green- Lagrange strain tensors of updated and
current, configuration.



_G._._J. The Critical Displacement Method 65

Current l l p! [ 1 pt 4

Configuration
TR 3
ak
i
[nitial X
Configuration
Updated
A Configuration
e, P
/ ¢
o
L
Figure 6.3: Updated configuration
AE = B! - Ef = € 4 g (6.34)

Exploiting the fact that Grad u**s! = Grad u' 4 Gradau and sorting the terms in AE
according to their dependence on the incremental displacements, the tensors £ and n are
abtained, € contains the linear terms and n the quadratic.

1

£ = £ (Gradau + Grad” au + Grad™u' Gradau + Grad” au Grad u') (6.35)
|
7 = 3 Grad”’ au Gradau (6.36)

Performing similar operations for the virtual displacements, the variation of the Green
atrain tensor SEA! and the increment dAE vield:

SRSl = §.E = 8¢ + bn (6.37)

The displacements u} can be considered as fixed during the deformation increment to the
updated configuration and so du’ = 0. The corresponding expressions to (6.35) for €
and &1 are then
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J . i 4
3 = z (Grad dau + Grad"dau + Grad™n' Grad §au + Grad™8an Grad u')
(6.38)
1 o -
in = Q(G-md‘ dan Grad su + Grad” su Grad §,u) (6.39)

For the 2, Piola-Kirchhoff stress tensor Sy in the updated configuration the same incre-
mental split as for the displacements can be made.

gtal = 8! 4 48 (6,40)

An incremental relation between the strain increment and the increment of the 2. Piola
Kircliholf tensor is then defined as follows. Assuming the Si.Venant material law of section
3.2.1 and dropping the subseript, so that D=Dgy, results in

a3 = DAE = D(£ +n) (6.41)

With equations (6.34), (6.37), (6.40) and (6.41) the variational form (4.12) can be rewrit-
ten in an incremental form as

./ 0" DE + 6" Dy + " DE + 50" Dy + oS4V =
iy

. - . (6.42)
s f‘sﬁllrbbu‘“‘ﬁo dV + / é-AurTH-N - ‘/‘JEF S! dV.

Ha dfpr Ha

The integrals on the right hand side of equation (6.42) (second line) do not depend on su
and do therefore not contribute to the secant stiffness matrix. Only the integral on the
left hand side of (6.42) form the secant matrix as the integrands depend af least linearly
on the displacement inerements au.

Besides the FEM interpolation for the displacements, displacement gradients and test
functions as shown in section 4.3, further interpolations for the displacement increments
have to be made;

buh = Z Niavi , fau = Z N dav, (6.43)
i i={

With the shape functions and nodal displacement vectors, the tensors € and i are rewrit-
ten using the Bomatrices, which contain the derivatives of the shape functions VN; and
nodal displacements v* in an order depending on the element theory applied.

£=BW)jweBhv ;| 4= %Emv (6.44)

The tensors 6€ and én in terms of the B-matrices are equal to

§€ = B(v')dav = Blav |,  dn = Bidav. (6.45)
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Equations (6.44) and (6.45) can now be inserted in the integrals involving displacement
inerements on the left hand side of (6.42). According to [Onate, 1995] these integrands
can be transformed after some algebra to

SE'DE = av7[B DB

dn"DE - 68"Dn = SavT EB"TDB, + ﬂE'{hI)B'T ¥ (1= zr)@"'ﬁ@] AV
"D = dav’ (3 ABIDB; + ’3 GT HG] AV
onte! = 6,;#'[5"@@] AV.

The components of the matrix G are derivatives of the shape funetions in a special ovder;
in D the components of I are rearranged in a different order, Matrix H containg terms
gquadratic in the displacement increments av. The detailed form of those matrices can be
found in [Oﬁﬂ.i.e, IQBEI ar [Mut,ias, 1996]. The notation in both works differs slightly from
the one here, but it should be no difficulty to relate the corresponding matrices.

Using the equations above and splitting the integral on the left hand side of (6.42),
the following four matrices can be assembled from the elemental contributions:

Ky = LJ /B},"‘DB}, v (6.46)
e=1 Qe

¥ (Lo Trapat T e
Ku(av) = U [ |38"DB, + aBIDBY + (1 - 0)G DG] v (647)
¥=1 e
, fig . .1 ‘ . [‘3 =
Kviav) = / J2-pBios, + fa HG] dv (6.48)

=1 e

fla
K, = (J / G §8'Gav (6.49)

el e

Nofe, that two arbitrary parameters o and 4 were introduced in these matrices. A similar
form of the secant stiffness matrix involving those parameters was deduced by [Felippa and
Crivelli, 1991]. For values of o #3 * the incremental secant matrix will be non symmetric.
Far o = é an infinite set of wrnnwhu torms is obtained depending on the values of f.
The symmetric expression with o = } and # = ( was derived by [Ofate, 1991].

The secant stiffness matrix Kg can now be obtained as the sum of those four matrices
(6:46), (6.47), (6.48) and (6,49),

Ks = Ky + Ky + Ky + K, (6.50)

Neglecting the matrices Ky and Ky in (6.50) yields the tangent stiffness matrix Ko An
alternative way is to study the limit case, where the values of ov tend to zero, so that
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Kr = lim Kg = Ky + K. (6.51)
av—l
A comparison with the equations of section 4.3, where the tangent stiffness matrix Ky
was derived, confirms that with Kyy = K; + K, hoth ways lead to the same result.

6.4.2 Prediction of the eritical values

For the prediction of the critical values the configuration at a known equilibrium state
B is considered as a basis. The intention is to compute the updated configuration B! at
with the secant, approach in such a way that this updated configuration approximates the
eritical configuration B,.

Similar to the derivation in the previous section thie unknown displacements vitat — v,
are fupposed to be

v, = vl 4+ av  with sv = pd. (6.52)

The digplacement inerement o v is assumed to be the product of an estimate of the buckling
pattern € and a scalar multiplier p. A common choice for & 1 the current displacement.
pattern v'.

The incremental constitutive relation (6.40) can be rewritten with (6.52), splitting the
expression by dependence on p

S, = 58" 4+ D |pB(v)® + %)E;['@')@ = 8" + p8, + p'S, (6.53)

The stresses Sy and S, are equal to
S, = DB(v)® (ﬁ.54)
S, = DB (&), (6.55)

It can be demonstrated that for the choice # = v' follows B, (¢p) = B, (v'). The definition
for the matrix B can be extracted as well from equation (6.53).

B' = B(v") + pB(®) (6.56)

Substituting (6.53) and (6.56) into (6.61) the tangent stiffness matrix at the eritical point
is

Kp(ve) = KT(V"] + P[Kt.'..' + K] + ﬁzll{!.a + K.ﬂ]. (5.57)

with the matrices in this equation composed as follows:
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Kiz = U f [H""DB, + B'{'DB“”] dv (6,58)

il fiv

Ky = [J [ B/DB, av (6.59)

il i
K. = |J [G5Gav (6.60)

Nna
K = L_Jfa""'s;mv (6.61)
w=1 ¢

Negleeting the Lerms of second order in p a general eigenvalue problem yields that can be
solved with an inverse steration procedure, see appendix B for an outline of the algorithm.

|II{T(Vt) .y ;’J(KLE + K.n)l‘:ﬁ' =:0 (6-62)

Once the multiplier p is computed the estimation for the eritical displacements resnlts
from equation (6.52). Using the inerement av = p® the load increment can be compnited
by the following secant relationship with the secant matrix Kg of the previous section.

af, = Kg(p®)p® = [Kp(v') + Ky (p®) + Ky (p*®%)] p® (6.63)

The estimation for the critical load is finally

fo= £ 4 af. (6.64)

[n each eomputed equilibrium point on the path a prediction of the eritical displacements
and critical loads can be performed this way with the CDM.

6.5 The extended system

A direct method for the computation of eritical points is the extended system. In math-
ematical literature extended systems have been introduced years ago, see e, [Abbott,
1978| or [Seydel, 1979]. In the ramework of Finite Elements extended systems appeared
with the article of (Wriggers et al., 1988]. Some improvements on the methods were
described later in [Wriggers and Simo, 1990].

The idea of the extended systems is fo solve the equation system G simultaneously
with a constraint characterizing critical powmts. Therefore the equation system G has
Lo be extended and the number of unknowns increased. The fact that a condition for
eritical points is included in the solution procedure of the equation system permits the
direct computation. Solving the extended system the computation is "aiming” at or
heading for instability points. However the use of the extended system without a previous
computation of an equilibrium point or a path tracing is diffieult as the choice of the
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starting values is erucial for the convergence properties. A consistent linearization of the
constraint permits the use of the Newton-Raphson algovithm, which means quadratic
convergence in the vicinity of the solution. Due to the large load steps that might oceur
in the direct computation of eritical points convergence cannot always be assured,

In practical Finite Element engineering several steps of a path computations with
arclength are performed before the extended system is used. The converged displacement
vector then provides a good starting vector for the unknown critical displacements v,.

The method of the extended system deseribes actually a whole class of procedures,
that differ mainly by the type of constraint used, but the underlying concept. is the same.
In (Wagner, 1991b] a very good overview on this subject can be found. Here three types
of constrainta will be presented in the next sections, among which especially the first
with the eigenvalue problem (6.8) as constraint is of importance and was applied to the
imstability problems of this thesis. The other two implementing the determinant (6.9) or
the scalarly formulated eigenvalue are mentioned for completition only.

6.5.1 FEigenvalue problem as constraint

By far the most attention in literature was drawn to this type of extended system, see
[Wriggers et al., 1988], [Wriggers and Wagner, 1989) and (Wriggers and Simo, 1990] .
With the eigenvector equation (6.8) as constraint the extended equation system that has
to be solved looks like

‘ G(v,\)
Gv.\g) = [Kr(v,\) o] =0 (6.65)
()
with () = ||¢]| - L. (6.66)

The veetor of unknowns now consists of the displacements v, the load factor A and
the cigenvector ¢, A second constraint [{(¢) has been added to provide a nmumber of
equations sufficient for the solution. {(¢h) basically scales the norm of the cigenvector to
one. A major advantage of the extended system with this type of constraint is, that the
converged solution of (6.65) contains the eigenvector at the eritical point belonging to
the zero eigenvalue without additional calculations. With the eritical load factor A. the
critical displacements v, and the eigenvector ¢, all information needed for a elassification
ol the critical point are provided.

Computing the necessary derivatives of (6.65) with respect to all the unknowns the
extended tangent stiffness matrix is obtained. The Newton-Raphson (4.31) algorithm
then has the form

% oo =D o¥ G(v,\)
(Krd)y Kr (Kre) s ap | = — | Ke(v,A) |, (6.67)
o fa 0 A\ ] -1
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Since the additional terms destroy the typical band structure of Ky completely the com-
putational effort for a solution of (6.67) increases over-proportionally. Moreover the size
of the equation system doubles with 2V + 1. To overcome this disadvantage the following
partitioning algorithm has been developed:

Solve for Av: Kpavp = P |, Kpavg = -G

Compute: h, (Kp )y ave + (Ky )y

hy = (K¢ ¢)y ave

Solve for adh Kyathy = =l , Krady, = —hy
—_ sl 3
Compute increments: AN = G "‘:xfi}? Fllll
4‘ ﬂ-';"’l
AV = Al avp+ave

Update: A=A+ad |, v=vdav 9 =adad +ady

Table 6.4: Outline of the partitioning algorithm for the extended system

The first line of the partitioning algorithm is identical to the arclength method. The
additional effort necessary for the solution of a second equation system remains moderate,
as the tangent stiffness matrix is the same in both equations. The most time consuming
step in the solution procedure is the diagonal triangularization of Ky which has to be
performed only once. The second term in the calenlation of Ay vanishes for displacement
independent loads ((Kypg) s = 0). The following two equation systems that have to
be solved for the eigenvectors ¢, and ¢, are again moderate concerning the effort for
the same reason that Ky does not have to be triangularized. The derivatives of the
eigenvalue problem (6.8) with respect to the displacements requires special attention.
Standard elements do not provide the second derivative of the tangent stiffness matrix
Ko, so that the element subroutines have to be modified for this purpose. It would be
desirable to have o procedure that can be implemented independently of the elemental
subroutines, The numerical approximation of the derivative assures this independence.
The directional derivative of the eigenvalue problem with respect to the displacements
can be written as

(K*rqb)'v AV = %[I{.;(V + dd’:}] AV — (ﬁ_GS)

According to the definition of differentiation this equation can be stated ag the limit
process of
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|
(Kygh)y av = !-iir(l} = Kp(v +ep) av — Kp(v) av]. (6.69)
Equation (6.69) is suitable for the construction of a numerical approximation:

(Krd)y av & = [Ko(v-+ed) av — Ki(v) av] (6.70)

With this, the two vectors by and hs can be caleulated as follows:

1
hy = E [Kp (v ep) ave — P| (6.71)
By ; (K (v + e¢p) ave + G (6.72)

An important point in the algorithm of table 6.4 is the choice of the starting vector for
the eigenvector ¢p. The most simple possibility is the vector 1, with all components equal
1o one. The normed veetor of the converged displacements v, and the first or higher step
of an inverse iteration procedure, see appendix B3, are other choices. Using an eigenvector
out of the eigenvector equation (6.7) provides the by far best starting vector, but comes
with a higher effort that has to be taken for the solution of the eigenvalue problem,

;

1 unit vector
"—:-:ﬁ current displacement veetor
Py = -1 1 ; . (6.73)
iiir_ 1 1. step of an inverse iteration
[ by from eigenvalue problem (6.7)

liquation (6.73) summarizes the possible starting vectors for ¢b. The iterative loop of the
whole algorithm with the derived simplifications is given in table 6.5.

6.5.2 Determinant as constraint

A second type of extended system can be constricted with the determinant from equation
(6.9) as constraint, With the displacements v and the load factor A the number of un-
knowns does not increase compared to the arclength method, which is a preat advantage.

Giv, A)
G(v,A) = ( ! =0 6.74

0id) = | detKente, ) (6:74)
A major problem is encountered when the determinant has to be linearized and the
derivative with respect to v has to be calculated. After some mathematical operations
(see [Wagner, 1991b)) the numerical derivative is obtained from

e |
The Newton-Raphson equation for this type of extended system hag the two equations

det Ky (v + ¢ av)] ‘ = det Ky (K"K av). (6.75)
s
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Solve for pv*'h Ki(vi)avi! = P | Kp(v) avi! = -G
1
Compute: hi = s [Kp(v' + egp’) avi! — P

by = = [Ki(v'+ o) avi! 4 G

Solve for ag™ Kp(v) 9™ = ~hi | Ka(v) adf" = - by
il il i
: : = +
Compute increments; A\ = _”l‘,;p‘—n'*‘ — ll# “.
P d¢|
Avith = AN dv}-'i-l +¢V;§H
Update: A = N AN gl L

" = ANAT A

Table 6.5: Improved partitioning algorithm for the extended system

Krav=PaA = =Gv;A) (6.76)

K Kry av) = =1 (6.77)

The first is eagily solvable by the partitioning algorithm similar to the arclength method
doing the split v = vg + Avp. The load increment is then
1+ K3 (Kpave)
(K" (Krave) ||

[t i5 obvious that the computation of the terms in this equation is tedious. The derivative
of Ky has to be evalnated for two vectors and the argument of the trace operator involves

the inverse of K. The complicated realization of this extended system type is the reason
why it was not widely used in Finite Elements.

ol (6.78)

fa

6.5.3 Scalary formulated eigenvalue problem as constraint

The third type of extended system to be presented here has the scalarly formulated
eigenvector equation as constraint. The displacements v and the load factar A ave the
only unknowns here, which keeps the problem simple:

Glv,\ ) = (qbfz-- I%E‘Ev}t,)h) ¢) =0 (6.79)



74 Chapter 6. Computation of eritical points

The Newton-Raphson algorithm scheme is obtained by consistent linearization:

Ky o ] (av) ( G(v,A) -
ﬁbr"(K‘Jﬁ#’],v ﬂbFP(KTﬁb).J\ AA N dJrT Kp(v, A) ¢ \2:50)

Although this constraint seems rather simple to handle it should be noted, that the
cigenvector ¢ is needed and has to be supplied by an external procedure, as e.g. the
inverse iteration (see appendix 33).

6.6 Branch switching

1o fully compute an equilibrium path of a structure, the knowledge of secondary branches
is of importance. Path following algorithms as the arelength method work as well on
secondary branches without restrictions, so that the only difficulty is the branch switching
from the primary to secondary branches in bifureation points.

A quite simple method, which is relatively easy to implement in existing Finite Ele-
ment code is the perturbation of the displacement pattern. From an engineering point
of view it is obvious that the displacement pattern of secondary branches is deseribed
by the eigenvectors. Especially the eigenvector corresponding to the zero eigenvalue is of
importance. [Wagner and Wriggers, 1988] proposed a perturbation of the following form:

Py
Yy = ¥V, + &=t G.81
! J‘||'faf’;1|| ( )

The perturbed displacement pattern v, is computed as the sum of the displacement
vector in the eritical point v, and the eigenvector ¢y normed to 1 multiplied by a scalar
perturbation factor ¢;. Based on this perturbed solution the next load step is calculated |
Since the load level in the secondary braneh might be lesser than the eritical load a path
following algorithm should be used in order to enable a decrease of the load,

A proper choice of the perfurbation factor is of importance sinee for too small values
the solution might fall back to the primary path, On the other hand a too big perturbation
factor might lead to divergence.



Chapter 7

Computation of critical points with
constraints

In this chapter some extensions for the critical point detection methods of the previons
chapter are described. The extended syatem as a well known reliable algorithm and the
recently developed CDM are subjected to constraints. [nequality conatraints originat-
ing from damage and contact as well as displacement boundary conditions as equality
constraints are considered.

The fivst two section of this chapter ave dedicated to the combination of the simple
damage model of section 3.3.2 with the extended system and the CDM. In the third
section the one step prediction based on the extended system algorithm is presented. The
idea of an integration of the eritical point condition in the problem solution and & mere
prediction mstead of a direct computation leads to this algorithm, With the help of the
one step prediction the fimdamentally different methods CDM and extended gystem can
be compared and the question of a possible combination of both methods can be answered,

Although the main intention of this work is to study the effect of inequality constraints
in the eritical point eomputation, prescribed displacements on the boundary as equality
constraints ave used because this way it is rather simple to introduce displacement bound-
ary conditions in extended system and arclength procedures, The implementation of the
extended system for contact problems using the contact representation of chapter 5 is the
stibject of the last section.

7.1 Extended system combined with damage

A path computation ineluding damage effects is feasible in a straightforward manner, if
the algorithm of table 3.1 is used. A combination of arclength method and constitutive
damage model does not lead to major difficulties provided that the step lengths in the
itl'l?ll‘:llgth method remain moderate.

For the computation of critical points however this is not the case. Especially with
the extended system as a direct method larger load steps might oceur depending on the
difference of current and critical load level, As the exnmples in chapter 8 will show a
computation of critical points is possible only if the starting point lies in the vicinity of
the eritical point.

75
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Besides this the implementation of damage effects in connection with the extended
systent is as straightforward as with the arclength method. The St Venant constitutive
model (3.11) is extended by the simple damage model (3.30). Since damage is represented
in the variational equation (4.14), the tangent stiffness matrix Ky depends as well on the
damage parameter d. The constraint equation in the extended systemn (see section 6.5)
contains the tangent stiffness matrix Ky and damage is thus taken into account in the
eritical point computation,

7.2 The CDM including damage

For the prediction of the critical values with the CDM the fact, that first a prediction of
the critical displacements is made, can be exploited as deseribed in [Tschépe ot al., 1599,

Starting from a known point (v'; A') on the equilibrinm path, with a well defined
damage level d a prediction of the eritical displacements according to section 6.4.2 is
performed basing on the values (v A'). When the secant stiffness matrix Kg as an
approximation for the singular tangent stiffness matrix Ky (v,) is assembled (see equation
(6.57)) the constitutive tensor in the current damage state (1 — d')D is assumed.

With the prediction of the critical displacements resulting from the selution of (6.62)
and (6.52) the new damage state d. can be computed. The stress norm @ is then

3(E,) = /B, (DE,), (7.1)

with E, = E(v,) according to (2.13). The damage parameter is now chosen aceording to
the scheme

d' for #F(E.) < rt
d, = (7.2)

i (1= 5a5) for a(E) >
The predicted eritical damage parameter d; s equal to the current one, only if the pre-
dicted critical displacements indicate no further damage. Otherwise a new critical damage
parameter prediction d, is computed with the stress norm a(E;) of (7.1).

For the now following prediction of the eritical load f. this possibly additional damage
can be taken into account. The secant stiffness matrix Kg(vy) in (6.63) is therefore
constructed basing on the damage state d,.

Attention should be paid, that the damage parameter or threshold value of the path
computation are not updated when the eritical displacement prediction requires a change
in both variables,

7.3 One step prediction with the extended system

A comparison of ceritical point computation with CDM and extended system is difficult
because of the findamental different nature of both approaches. The extended system is
a direct method, whereas the CDM only makes a prediction of the eritical values. For the
computations of critical points the extended system as a diveet method is more likely to
be used than the CDM. A erucial point for the convergence of the extended system is the
proper choice of the starting values, A combination of both methods in such a way, that,
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as starting values for the extended system the results of a precendental CDM prediction
are Laken, would be a coneeivable solution.

To evaluate this possibility a comparison of the predicted values and the common
starting values of the extended system as described in section 6.5 has to be made. A
simple way is to compare the predicted eritical load of the CDM with the result of the
first iteration of an extended system computation, The vesult of this first iteration then
gerves as a one step extended gystem prediction of the eritical load.

Taking a closer look at the equation system (6.67) for the extended system with the
eigenvector equation as constraint some simplifications can be introduced, Extracting the
first, equation of (6.67) yields

Kp(v) av't! = PaMY = —G(v) = -R(v)+ AP = 0. (7.3)

In the first iteration of an extended system computation the starting values v0 and A are
the converged solution in a point of the equilibrium path. This means that the right-hand
side of equation (7.3) G(v?) is equal to 0.

-R(V") + AP =0 (7.4)

With this the equation system (6.67) for the first iteration step can be rewritten as three
coupled equations:

Kr(v®) av' = aA'P (7.5)
(Kp(v)d)yav' + Ko(v')ad! = —Kp(v))o (7.6)
o"ad = |l — [l (7.7)

For the eigenvector which is chosen according to the relations (6.73) the *short.haurl nota-
tion ¢ = ¢° is used here, Solving (7.5) for the displacement increments av! yields
= KiIPA,\l = A"l.r},a.’\l. (7.8)
As in the partitioning "a,]gr)mhm of table 6.4 the product K‘T P is denoted ag vp. Inserting
this result in (7.6) and multiplying the equation by K. ' gives
K;' (Krp)yavial' + ad' = — 0. (7.9)

Equation (7.9) can be solved for the cigenvector increment 4¢ and with this (7.7) can be
rewritten as

—p'p — "KL (Kpg)yaviar' = (@l = [l (7.10)
The increment of the load parameter 4 A can be obtained then from (7.10):
99 5 |l (7.11)

¢ Ky (Krgp) v avh]
As the starting value for the eigenvector is commonly novmed to ong, probably a better
formulation of (7.11) is
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<

AN = :

- .. (7.12)
S ((€rd) v av)

The derivative of the eigenvector equation with respect to the displacements can again be
computed numerically using a relation similar to (6,70):

(Kpth)y avp = %[K—;-(v“+f¢:) avh = Kyp(v") avp] (7.13)

The prediction of the eritical load follows from the update equation

AV = AT 4 gL (7.14)
Caleulation A" with sA' from (7.12) in each converged point of an equilibrium path
computation, a curve of one step prediction values of A* is abtained.

7.4 Displacement boundary conditions as constraint

For problems where no force boundary conditions arve supplied, the vector P which con-
tains Lhe load terms is equal to Q. In FL-programs displacement boundary conditions
are introduced in the solution algorithm of the equation system (4.31). Applying the
arclength method for path computation or the extended system for critical point compu-
tation this ig no longer possible. A rather simple way of representing the displacement
boundary conditions is seeing them as equality constraints of the form

v -V =0 (7.15)
Using the penalty method of chapter 5 the constraints can be represented in (4.20) as

G(v,)\) = R(v)+¢ L(v=¥%) = 0. (7.16)
ep is the penalty parameter, the vector ¥ has nonzero termis only at positions corre-
sponding to the degrees of freedom that arve preseribed by the boundary conditions. The
matrix Iy is a diagonal matrix with ones at positions corresponding to the preseribed
displacement degrees of freedom.

00 .0 0
01 .0 7

v=1. .00 w=1) (7.17)
00 0 1 7,

The advantage of this method is the ease of implementation in existing FIE programs.
This will become apparent in the next two sections, where arclength method and extended
system are combined with displacement boundary conditions. Since equation (7.15) is an
equality constraint no check for active and non-active constraints has to be made,

Remark: Due to the choice of a reasonable value for the penalty parameter the con-
straint (7.15) is fulfilled only approximately. urther details of the penalty method can
be found in section 5.4.2.
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7.4.1 Arclength with displacement boundary conditions

For the equilibrium path computation the introduction of the scalable load parameter A
is necessary, Equation (7.15) then can he rewritien as

V- AV = 0, (7.18)

With the definifions 7.17 for 1, and ¥ the equation system (4.32) obtains the following
form

G(v,)) = R(V) +¢, I,(v = A¥) = 0. (7.19)

The Newton-Raphson algorithm (4.34) has to be modified as well for this type of boundary
conditions;

ll{:‘r- + eply -FEPI\,?} (AV"'I'l) R(V') “+ EPIV(V( — A¥)
. . = = s 7.20
i“r“‘r f.l’\ &"\H-l f'u (v'i‘ A:) ( )

The partitioning algorithm for the arclength method (see table 4.2) has to be rewritten
as depicted in table 7.1. Note that the changes in table 7.1 compared to table 4.2 effect
Ky, P and G only,

Predictor:  [Kp(v?) + 6, L] avp = ¢ IV
5
aA? = 4 ___ar
V0avh)Tavl
Iteration loop: t=0,1,... until convergence
[Kz(v)) 46 L] ave = — R(Y) = epL (v - A9)
(K7 (V') +¢, Iy] avi! = & IV

F e avi!

W =l e
AA ;

I+ L avp

i+1 i H "t
avitt = Av:-:."l-f-&.-\ula\'};”
‘_.I'H = V"l' n,V"H . AH-L = A‘-!',J,\AH'L
Convergence: |Ga(vitt, A = TOL

Table 7.1: Algorithm for arclength with displacement boundary conditions
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7.4.2 Extended system with displacement boundary conditions

Similar to the arclength method the displacement boundary constraints are introduced
into the extended system. With the definitions Iy, ¥ and the abbreviation Ky = Ky +
eply the Newton-Raphson form of the extended system with the eigenvalue problem as
constraint of section 6.5.1 is:

li‘-{-_;' 0 —eply AV R(V) + eply (v = AV)
(R‘J'd’),u I-{'f" (lt]‘(i‘]w\ 15‘35 = - Rr(\"] qfi (7‘21)
om0 ] 1

The partitioning algorithm can then be obtained in a straightforward manner and is given
in table 7.2, Note that the addition of penalty terms in the tangent stiffness matrix affects
as well the eigenvector equation,

Solve for av'*s [Kp(v) + epli] avil! = el

Kz (v) + eply] avid! = =RV = eply(v = A¥)

o
Compute: i = [(Kp(v' + eb’) + eply) avid! - epl, 9|

h = %[(I{-p(v' Fed!) 4 epl) AV + R(V) + epL (v — AV)]

Solve for ad™™":  [Kp(v) + ¢ply] ait! = - h}
[K7(v") + eply] agps’! = —hi
= ¢ agi" + ]
qb‘Ta i+)

RS TR 41
P A N e R

Compute increments: A"

Updﬂtﬂ: A""l —i Ai + A“)"i-‘l i .‘rl-l-l — .v.i - n|vl'-j-l ;

¢t = AN + agh!

Table 7.2: Partitioning algorithm for the extended system with displacement
boundary conditions

Remark: For many problems limit load points associated with snap through eannot he
encountered when the corresponding dual problem with displacement boundary conditions
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is computed. The prescribing of displacement degrees of freedom prevents the singularity
of the tangent stiffiess matrix in those cases.

7.5 Extended system with contact

An interesting aspect in the extension of the applicability of the extended systemn i3 the
critical point computation in combination with contact. In [Simo et al., 1986] results
of a buckling analysis with unilateral contact using arclength procedures are published.
Due to the emerging inequality constraints the underlying mathematics 15 rather com-
plex, Related literature is restricted mainly to unilateral contact problems with rigid
obstacles, see [Klarbring, 1988], [Bjérkman, 1992], [Rohde and Stavroulakis, 1997h] or
[Rohde and Stavroulakis, 1997a). In those papers the mathematics of path following and
eritical points with inequality constraints originating from nnilateral contact problems is
studied. [Bjorkman, 1992 describes the oceurrence of end points in these cases, where
the equilibrium path ends. Those points are no real critical points in the sense, that the
stiffness matrix is not singular and the usual conditions (6.8) and (6.9) do not hold. It
is apparent that the extended system with the constraints of section 6.5 is not able to
encounter these points.

Applying the extended system procedure to the equation system (5.15) vields:

Kr+ K, 0 -P AV Gs(v) + Ge(v)
(Kp +Ko)dlw Ko+, [(Kr+Ko)els| |ad] = = | [Kelv) + Ko(v)]o
T .
¢ i1 0 A Il - 1
(7.22)

Here K, is the matrix notation for the derivatives of the contact terms G, with respect to
the displacements, (K, = %’%ﬁ‘) The penalty method was chosen to incorporate the contact
inequality constraints in the equation system G. The vector G, consists of penalty terms
that are subjected to the changes in the active set as deseribed in section 5.4.2. It can
be thought of two strategies for the choice of the active set. The first is a constant
verification and reorganization of the active set after each iteration step. The second
possibility is a change of the active set only after convergence has been achieved. The
first time a constraint becomes active the active set ig formed and held fixed until the
iteration converges, Then the active set is verified and changes are made accordingly,
The whole process is repeated until the final convergence, where no changes in the active
sel are necessary. Compared to the first strategy this means a higher computational
effort, cansed by the additional iteration loop. On the other hand the iteration process
might become miore stable by this second approach as changes in the active sel oceur loss
frequently.

The partitioning algorithm can be used without major difficulties for the solution of
equation system (7.22), see table 7.3, The numerical derivative that is used to compiite
the vectors hy and hg deserves special attention:
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m 5=

hy = = [Kp(v+ed) ave +K(v+eh) ave - P

—

by &~ [Kr(v+ed) ave + Ko(v+ ed) ave + Go(v) + Go(v)]  (7.23)

K.(v) and K. (v + egp) in (7.23) can differ substantially, if the displacement values v
and v + ¢ cause a change in the active set. The result is that the structures of the
matrix K, is no longer the same. To prevent this, the assemblation of K, (v+egh) is made
basing on the active set used for K.(v). In other words, when the numerical derivative is
comptited no new search for the closest master segment of each slave node is performed.
The active set is not. changed either, The disadvantage is that penetration can oceur or
that adhesive forces are applied for a degree of freedom in the active set whose gap was
closed but becomes open now, But taking into account the order of magnitude of ¢ with
e = 1077 these effects arve negligible.

Concerning the strategy for the active set, the examples showed that the converged
active sel strategy did not provide any advantages compared to the active set strategy. In
the contrary, in some computations the converged active set strategy lead to divergence,

Solve for svith Kn(v) + Ko(v)] avif! = P
[Kr(v') + Ko(v)] avE' = —Gs(v') - G(v')
Compute; by = & [Iy(v' 4 ') avif! + Kol + 4 avit? ~ P]
hy = = [Ke(v 4 ed') ave! + Ko(v' + eg') avg! + Ga(v') + Go(v)]
Sobvefor ag™:  [Ky(v))+ Ko(v')] adhl” = -~}

[Kie(v') + K(v)] agph'' = =hi
— " At + (|l

Compiite increments: A

.‘j‘ I-I
P A
avith = AATH gl 4 i
Update: AL = AL A AL il ot

O = aNadi' + agh'

Table 7.3: Partitioning algorithm for the extended system with contact
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Examples

The algorithms described in chapter 7 were tested in several exam ples. For the detection
of eritical points the CDM, the extended system with the ei genvalue problem as constraing
and the one step prediction with the extended system were applied. Inequality constraing
were introduced in the examples by the occurrence of damage or contact,

‘The algorithms have been implemented in varions finite element, programs. The simple
damape model was combined with the CDM in the programs fruss-test with truss elements
and in solid-test with two dimensional 8 node quadrilaterals. Both programsg were written
by W.T. Matias the author of [Matias, 1996] and included already the CDM as a method
for the critical point prediction. All the algorithms involving the extended system were
implemented in the 'Finite Element Analysis Program’ (FEAP) written by R.L. Taylor,
see [Zienkiewiez and Taylor, 1989] and [Zienkiewicz and Taylor, 1991] for further details
of the code, This implementation comprises the simple damage model for truss and
two dimensional quadrilaterals, the displacement boundary conditions with the penalty
method (section 7.4), the one step prediction with the extended system (section 7.3), the
contact algorithms of chapter 5 and the extended system with the eigenvalue problem
constramnt (section 6.5.1).

This chapter is divided in two parts, The fivst part is dedicated to the comparisor
between the CDM and the extended system. Among the linear elastic examples that
will be shown, the simple damage model as a simple form of inequality constraint was
tested. In the second part only the extended system will be studied for various continuum
mechanical contact problems.

8.1 Comparison of CDM and extended system

The comparison of both methods in this section is made by means of standard examples
that can be found in literature. They range from simple truss problems to two and three
dimensional ones with solid elements. Almost all of them can be found in [Matias, 1996].
Except for the last example, where three dimensional solid elements were used, damage
was introduced in all of them.
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8.1.1 Simple truss structure

The first example is the simple truss structure from [Wriggers et al., 1988]. 1t consists
of 7 nodes and 10 truss elements. An outline of the structure including the geometrical
data can be seen in figure 8.1, The product of Young's modulus and cross section area is
EA = 5000, a unit load is applied al the center node.

IJ’

EA=50x10"

| S ———— 2 —_— ‘ "‘ZRD-US
Figure 8.1: Simple truss structure
Although very simple this structure allows the demonstration of limit load points as well

as bifurcation points. Plofting the negative y-displacement of the center node 4, the
equilibrium path shown in fgure 8.2 is obtained.

'ﬁw

Load factor A
A

= b i i
0 0.05 0.1 0.15 0.2

Displacement -u, of node 4

Figure 8.2: Equilibrinm path of the simple truss structure

The path has a first bifurcation point By at a load level of A = 3,474 with uy = —0.0293.
Here the secondary path associated with the asymmetric buckling pattern indicated in
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the left small picture in figure 8.2 branches off. Branch switching to the secondary path
wag performed by the method deseribed m section 6.6. The primary path undergoes a
symmetric buckling at the limit load point Ly with (u,;A) = (=0.042;3.777). Further
eritical points are the second limit load point Ly at (u,; A) = (—0.157; =3.777) and the
second bifurcation point By at (u,; A) = (—=0.171; -3.474).

<
g aquilibrium path
@ e,
o
==

=2

4 |

i i i
o} 0.05 0.1 0.15 0.2

Displacement -u, of node 4
Figure 8.3: Computation of the critical points with the extended system

Figure 8.3 demonstrates the diveet computation of the eritieal points with the extended
system. The extended system computations are symbolized by the dashed lines in figure
8.3 with the starting points and the yielding critical points as dots. With different start-
ing values for the eigenvector ¢ all the critical points can be obtained departing from
points at the early state of path computation. The number of iterations necessary for
the convergence of the extended system typically lies in the range of 5-10. The fact that
even the remote eritical points Ly and B; can be computed directly starting from points
located at the very beginning of the equilibrium path is not common. Conveniently it can
be expected to obtain those points within closer distances, [Wriggers ot al., 1988] demon-
strated a detection of these critical points using the extended system with starting values
of u, = —0,1, Due to the good results this examples can serve as a primary example for
the potential of the extended system.

The diagram 8,4 with the prediction made with the CDM needs some explication to be
understood correctly. Starting from every equilibrium point (1, A') of a path computation
with an arclength procedure, a prediction according to the algorithm of section 6.4 was
made giving the estimated values uf and A, The points in figure 8.4 denoted by 'critical
load" have the coordinates (u'; A) and are thus a plot of the estimated critical load against
the current displacements. The points denoted by ‘eritical displacement’ are a plot of the
current load against the estimated critieal displacements (u‘-’; ..\")\ As the diagram shows
even the first predictions yield eritical values quite close to the exact ones. After the
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Figure 8.4: Critical point prediction with the CDM
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Figure 8.5: One step prediction with the extended system

0.07

bifurcation point [ is passed the predicted eritical values head for the limit load point

Ly.

Performing the one step prediction with the extended system in each point of the
path computation the curve of ligure 8.5 results. The points are a plot of the predicted
critical load at the current displacement state (w,A%). To study the behavior of the
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method even after the eritical point is passed, the predictions were not stopped when
the path computation had reached the eritical point. The first predicted loads are quite
good although they are not as close to the exact value as the CDM predictions. Closer
to the critical point the predictions become more and more exact. The 'lagting effect’ of
a critical point can be seen when looking at, the values after passing the eritical point. A
switch from the prediction of the bifurcation point By to the limit load point L oceurs
approximately in the middle between both points.

primary path I

o

Load factor A

0 0,05 0.1 0.15 0.2
Displacement -u, of node 4

Figure 8.6: Equilibrium path with damage 7, = 0.1, H = |

With damage the structure suffers degradation which affects as well the equilibrium path,
The damage parameters in all examples were chosen in such a way, that the oceurrence of
damage becomes noticeable in the equilibrium path before a eritical point is reached. This
way the influence of the damage inequality constraint on the eritical point computation
can be studied. On the other hand this means that the values of the damage parameters
are not always realistic compared to real-life engineering applications.

Figure 8.6 shows the equilibrium path for damage with an initial threshold value of Tp =
0.1 and a hardening parameter of H = 1.0. The limit load is lesser, L has the coordinates
(uy; A) = (=0.085;2.755). Ly and the other limit points Ls : (uy; A) = (=0.157; —2.429),
Ly : (uy; A) = (=0.174; =2.02) can be computed with the extended system as indicated
by the dashed lines in figure 8.6. Bifurcation points By : (uy; A) = (~0.019;2.473) and
a second one By @ (uy,; A) = (—0.173; ~2.123) could not be caleulated directly. Although
it looks like Ly on the secondary branch is a bifurcation point, where path switching is
possible, it ig not. The reason is that each branch has u differerii loading history, which
implies as well, that the individual damage parameters do not coincide and both structures
are substantially diffevent,

Note, that large load steps will always lead to inaccuracies when damage is involved,
because of the numerical approximation that is made, This effect already noticeable
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curing a path computation with rather large load steps, is especially true for the extended
system, where the step size is not limited as in arclength procedures. In this simple
example however, the caleulation of L; remains unaffected by this effect,

31 critical load |
s + % Vo = 3 T—
2R | % T 3
” aquilibrium pat
=

u
critical displacament

i i

0 0.01 002 003 004 005 0068 007
Displacement “Uy of node 4

Figure 8.7: CDM predictions with damage 7, = 0.1, H = |

The results for the CDM predictions (see diagram 8.7) are more or less as expected.
The predictions seem to head towards the bifurcation point B, but detect L instead,
Comparing the predicted critical loads in figure 8.7 and the undamaged case in 8.3 the
effect of the algorithm deseribed in section 7.2 is noticeable. Already at stales where
the equilibrium path is not degradated the critical load is lesser than for the undamaged
structure.

The one step prediction with the extended system in figure 8.8 shows the influence of
damage not prior to the degradation of the equilibrium path. Almost the same effect
as with the CDM can be contemplated in the vicinity of the bifurcation point B;. The
method seems Lo prediet B; but goes towards Ly in the end.

The second damage case has the parameters 7, = 0,1 and H = 0.5. Equilibrium path and
the results of the extended system computations are plotted in diagram £.9. The coordi-
nates of the critical points are, B : (uy; A) = (=0.016;2.39), Ly : (uy; A) = (—0.028;2.48)
v Lyt (uyiA) = (<0057, —1.98), By : (uy;A) = (=0.17;—1.82) and By : (uyi A) =
(—0.175; —1.57).

For this example the CDM values are quite exact from the beginning, which is especially
trie for the critical loads (see diagram 8.10). The one step prediction in figure 8.11 shows
diffuse results . In between the eritical points B, and L, the points scatter around the
equilibrium path but give the exact result in the limit load point L.

The damage parameters 7o = 0,05 and H = 1.0 yield the curves depicted in figure
8.12. Bifurcation point 8y : (u,;A) = (—0.019; 1.97) and limit load point £, : (uy; A) =
(=0.038;2.31) can be calculated with the extended system using different starting valies.
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Figure 8.8: One step prediction with damage 75 = 0.1, H = 1
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Figure 8.9: Equilibrium path with damage 7o = 0,1, H = 0.5

This time the CDM detects both points B and L, as can be seen in figure 8.13,
whereas the one step prediction curve of figure 8.14 only goes thraugh the bifurcation
point. 3,
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Figure 8.10: CDM prediction with damage 7y = 0.1, f = 0.5
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Figure 8.11: One step prediction with damage 7o = 0.1, H = 0.5
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primary path
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Figure 8.12: Equilibrium path with damage 7, = 0,05, i = 1
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Figure 8.13: CDM prediction with damage 7, = 0.05, I = |
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Figure 8.14: One step prediction with damage 7, = 0.05, Il = 1

8.1.2 Bridge truss structure

lP E=7.03% 10"

M

‘ — 3429.0 » 3429.0 —*I

Figure 8,15: Bridge-truss strncture modeled with truss elements

The second example is the bridge-truss structure of figure 8.15. It was analyzed before
by [Kondoh and Atluri, 1985] or (Ofiate and Matias, 1996]. The structure consists of 19
nodes and 35 tross elements connecting them, The geometric data ave given in figure
8.15. A unit load is placed in the apex of the bridge, where node 10 is situated. All
the truss elements have the same Young's modulus of £/ = 7.03 < 10%, but different cross
section areas, which are given in table 8.1
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Element conneeting nodes N} — N, Area A
1-2,2-4, 4-5, 6-7, 8-9, 9-11, 11-12, 13-14, 15-16, 16-18, 18-10 | 51.61
o 2.3, 17-18 o 64.52
3, 5-6, 14-15, 16-17 B3.87
46, 14-16 96.77 |
7-8,9-10, 10-11, 19-13 103.23
79, 11-13 161.29
6-8, 12-14 193.55
57, 13-15 258.06
1-3, 35, 15-17, 17-19 290.32
8-10, 10-12 300.68 |

Table 8.1: Cross section areas of the bridge-truss structire
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Figure 8,16: Equilibrium path with extended system results

In diagram 8.16 the equilibrium path can be seen for the negative y-displacements of
node 10, All the eritical points, bifurcation points B, - (y; A) = (=29.7;2563) and
By i (uyi A) = (—161,3; —301), as well as the limit load points Ly : (u,; A) = (—38.3; 2632)
and Ly : (uy; A) = (= 226;—1078) can be obtained by the extended system as the dashed
lines indicate. The results are in good accordance with the literature. Except for the
first limit load point Ly, the extended system was started a larger distance away from the
critical points. The starting approximation for the eigenvector ¢ in the extended system
procedire was the unit vector for By and Ly, one step of inverse iteration for L; and the
current digplacement vector for By.
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Figure 8.17: CDM prediction for the bridge-truss structure

The results with the CDM are quite good, too. As figure 8.17 demonstrates the predictions
head towards the bifurcation point By, The limit load point 18 predicted as well, but not
very good,

The one step prediction with the extended system in figure 8.18 goes smoothly toward
By. The first load values are too high but comparing them with the too low values of the
CDM, the absolute difference to the exact critical load is more or less equal. The curve
hitg also Ly, the jump in between both eritical points marks the switching from one point,
to the other.

When damage with the parameters 75 = 2.5 and H = 1.0 is involved the first bifurcation
point vanishes and only the limit load point Ly remains at (u,; ) = (=29.7;2273) (see
figure 8.19). The first bifurcation point is located now on the declining path 3, : (1 A) =
(—190; ~582.2) and the second limit load point at Ly ¢ (u,:A) = (—231; ~880.2). The
extended system converges correctly against all three points.

The CDM predietion in figure 8.20 also gives the correct results in the end. The tilt in
the eritical load curve, which is the effect of the enhancement proposed in section 7.2,
occurs later in the path history compared to the first example.

The one step prediction of figure 8.21 shows two diseontinuities , the end result however
is correct,
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8.1.3 3D star-shaped dome

The next example is the star-shaped dome of figure 8.22, It is geometrically identical to
the one studied in [Papadrakakis, 1981) or [Wriggers et al,, 1988], but has vertical loads
applied in all free nodes as in [Ofiate and Matias, 1996]. The structure is formed by 13
nodes and 24 truss elements, the product of Young's modulus and cross section area is

EA =10%

4

8.2

EA =10

T |ll— a5 —n-“

=

S 433

E

Figure 8.22: 3d star-shaped dome
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Displacement -u, of center node

Figure 8.23: Equilibrium path with eritical points of the star-shaped dome

10
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The equilibrium path, plotted in figure 8,23 for negative vertical displacements of the
center node, has various eritical points. Except for the bifurcation point By, which could
be computed only in the closer vicinity, all were obtained with the extended system
without problems. The data of the points ave: L : (u;; A = (=0.88;7.76), L : (ug; A=
(=2.81;-2.05) , By : (u; A = (=7.52;13.02), By : (ug A= (—8.67; 15.06), Ly i (ug A =
(~9.09;15.2).

12 1 L] T 1 L

itlcal
10 | Critica load

"""‘+"*““l'i+.'+
*
i

B- TS -

aquilibrium path g

Load factor A
B

R T ey

critical displacemant

'4 i i i i 1
0 0.6 1 1.5 2 2.5 3

Displacement -u, of center node
Figure 8.24: CDM predictions for the star-shaped dome

The first limit load point is predicted by the CDM rather good, as figure 8.24 shows.
Compared to the one step prediction of figure 8,25 it is slightly better.
Internal dcgrmlﬂhiml with the damage parameters 7o = 0.1 and H = 1.0 alters the values
of the limit load points Ly : (u;A) = (<0.82;5.19) and Ls : (us;A) = (=2.82; —1.601).
The extended system again has no difficultios in finding those points (see diagram 8.26).
Looking at the CDM (diagram 8.27) and the one step prediction (diagram 8.28) the
CIDM provides the better predictions, which is as well a consequence of the enhancements
ol section 7.2, The one step predictions become significantly better, when the eritical

point is approached.
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Figure 8.25: One step prediction for the star-shaped dome
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Figure 8.26: Equilibrium path with damage, 7, = 0.1,H = 1.0
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8.1.4 3D pin-jointed truss dome

The last example with truss elements is the 3D pin—jointed truss dome that has been
examined in [Choong and Hangai, 1993] and [Ofiate and Matias, 1996]. Figure 8.29
shows an outline of the structiure. 25 nodes are connected with 60 truss elements with
Young's modulus times the cross section area A4 = 10'. 6 vertical loads ave applied in
the third level of the dome,

| |- 25 —=
— 50 —F

— 75 — EA = 10¢
g 100 —F

Figure 8.29: 3D pin-jointed truss dome

In figure 8.30 the load factor is plotted against the negative vertical displacement of
the center node, The path has several critical points, which could all be obtained with
the extended system procedure. The limit points have the coordinates Ly ¢ (u. )) =
(—=4.01;31.4) and Ly ¢ (u;A) = (—16.7;-25.75), the bifurcation points By : (uygA) =
(—2.35;25.89), By : (ugA) = (—2.85:28.7), B : (ug; A) = (—12.5; =17.93) and By :
(ug3 A) = (—13.78; —22.16).

CDM predictions in figure 8.31 and one step predietions in fgure 8.32 show fundamentally
different results, The critical values of the CDM head directly towards the first bifurcation
point By, already the firat values are rather exact. The other critical points are hit but
not reliably predicted. The one step prediction starts with rather bad predictions and
goes towards the limit point Ly, in the closer vicinity of the bifureation points then the
values change abruptly and predict the bifurcation loads.

The 3D pin jointed truss dome was studied with damage of initial threshold 7 = 0.5
and hardening /T = 1.0. The focus was laid on the first part of the equilibrium path, so
that only a part of the critical points was computed. One bifurcation point B | (us; A) =
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Figure 8.30: Equilibrium path of the 3D pin-jointed truss dome
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Figure 8.31: CDM prediction of the 3D pin-jointed truss dome

(~2.19; 32.42) and one limit load point Ly @ (ug; A) = (—3.16; 2.45) were caleulated exactly
with the extended syatem,

Looking at both predictions, the CDM prediction in figure 834 and the one step prediction
in figure 8.35, there are na big differences to the undamaged case to be seen, The CDM
converges against the bifureation point and the one step prediction against the limit point,
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Figure 8.32: One step prediction for the 31 pin-jointed truss dome
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Figure 833: Equilibrium path of the truss dome with damage 7, = 0.5, H = 1.0
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Figure 8.35: One step prediction with damage ry = 0.5, i = 1.0
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8.1.5 Clamped shallow arch

The next example was discretized with guadrilateral solid elements, The elamped shallow
arch of figure 8.36 was studied hy [Oliver and Onate, 1986] and previously by [Dawe, 1971].
As usual a vertical load is placed in the apex of the arch, Besides the geometrical data
figure 8,36 shows one representative finite element and the material properties (£ = 72395,
v =0.0). The arch was modeled with one layer of 20 solid elements. Two different, types
of quadrilateral elements were used. For the extended system a 9 node element and for
the CDM an element, consisting of 8 nodes as described in [Matias, 1996] were chosen,

4%{4.76
=254 V= 0

R = 3380.61

Figure 8.36: Clamped shallow arch with solid elements

A plot of the load factor A and the vertical displacements of the center node yields the
curve of figure 8.37. Since only the first part of the path until snap-through takes place
1 of interest, no detailed studied of the other critical points were made. The first limit
load point Ly is sitnated at (u,; A) = (=9.7;162.65). A computation with the extended
syatem algorithm has no difficulties in locating the point.

Both, the CDM in figure 8.38 and the one step prediction in figure 8.39 detect the eritical
point. The quality of the predictions is rather similar, whereas the firat predictions of the
CDM are too low the one step predictions values are too high.

The effects of damage on this structure have been studied more thoroughly than in the
last examples, because of the higher complexity of solid elements compared to simple truss
elements, The first damage parameters chosen are 75 = 1.0 and I = 0.5, The results of
an extended system caleulation are demonstrated in diagram 8,40, The limit point L, is
shifted to a lower load level of A = 138,34 with a displacement, of Uy = —~6.79.

For the predictions of the CDM the oceurrence of damage has significant congequences as
diagram 8.41 shows. The eritical load curve is no longer straight and goes through a min-
tmum, some points even scatter around the interpolated path. The one step predictions
in diagram 8.42 scatter also, bul this time the regression curve is a straight line that goes
towards the limit load point.



106 Chapter 8. Examples

200 T 1 . ' T T
180 |
160
140 |
120 |

aquilibrium path

100 |
80 |
60 /7
40 |
20

Load factor A

10 15 20 25 30 35 40 45
Displacement -u, of center node

Figure B.37: Equilibrium path of the clamped shallow arch
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Figure 8.38;: CDM prediction for the clamped shallow arch

A second set of damage values 75 = 0.6, H = 1.0 provides similar results. The ex-
tended system in figure 8.43 yields the exact eoordinates of the limit load point L, :
(i A) = (=7.21; 125.76). The eritical loads predicted by the CDM look rather randomly
distributed in the beginning, but form a curve in the end that converges against L,. The
predicted values however aré not very good. The one step predictions provides rather
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good results, as figure 8.45 shows.
The last damage values for this structure are 75 = 0.2 and I = 1.5. As usual the extended
system values L, :
diagram 8.46), The predictions, CDM in diagram 8.47 and one step predietion in diagram
B.48, are as good as in the undamaged case. Although the initial threshold value 7, is

equilibrium path |
-\-HH-HH__‘—\—\_,—'—:
10 16 20 25 30

35

= 1.0, Il =0.5

t(uyi A) = (=8.56;110.29) are obtained without major problems (see
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Figure 8.41: CDM prediction for the shallow arch with damage 7y = 1.0, H = 0.5
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Figave 8,42; One step prediction with damage 7 = 1.0, i = (.5

more restrictive in this case the predictions are the best of all the damage cases. [t seems
that the hardening parameter H, which is the biggest of the three, has a considerable

influence on the CDM prediction of the eritical load.
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Figure 8.45: One step prediction for the arch with damage 75 = 0.6, H = 1.0
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8.1.6 Hinged circular arch

The hinged circular arch from [Wood and Zienkiewicz, 1977) is the second example with
solid elements, The geometrical and material data of this high arch are given in figure
8.49. The original discretization was one layer of 10 elements as in [Matias, 1996, each
having 8 nodes. The results were verified with FEAP and the extended system with a
fimer discretization of one layer with 50 elements, 9 nodes each:

E=1.0x10° P
v=0.

R =100

Figure 8,49: Iinged circular arch with solid elements

The equilibrinm path with extended system computations (Rgure 8.50) demonstrates the
potential of the method. A bifurcation point B, @ (u,; A) = (=10.76; 1073.2) and a limit
load point Ly : (uy; A) = (—22.16; 1262) were found. The CDM confirms the bifurcation
point (figure 8.51) and so does the one step prediction (figure 8.52), which pradicts also
the limit load point, A second computation with the finer discretization of 50 elements for
the CDM (figure 8.53) leaves a completely different impression. The eritical displacement
curve is identical to figure 8.51, but here the predicted eritical loads are more or less aqual
to the current load in each point. The only explanation for this phenomenon is, that the
CDM seems to be dependent on the diseretization.

Including damage effects in the computation of the hinged circular arch requires the finer
discretization, Nevertheless some peculiarities remain. The equilibrium paths of CDM
and extended system differ substantially for damage parameters ry = 8,0, H = 0.5 as the
diagrams 8.53 and 8.52 demonstrate. For the CDM predictions applies the same as in the
nndamaged case, the predicted loads are approximately equal to the current loads. The
one step prediction shows not very promising results.
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Figure 8,50 Equilibrinm path for the hinged circular arch
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Figure 8.51: CDM prediction for the hinged cirenlar arch
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Figure 8.54: CDM prediction for the circular arch with damage 7, = 8.0, / = 0.5
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8.1.7 Cylindrical shell

The last example for the comparison of both methods is the eylindrical shell taken from
[Surana, 1983], It was studied as well in [Simo et al., 1990] and [Matias, 1996], Figure
8.56 shows an outline of the three dimensional problem with geometrical and material
data. Two different versions of the shell one with thickness & = [2.7 the other with
h = 6.35 are examined. The edges are hinged and a vertical load is placed in the center
of the shell. The entire shell is diseretized with 64 elements. As in [Onate and Matias,
1995] and [Matias, 1996] only one quarter of the shell was ealeulated with 20 node brick
elements for the CDM predictions. The FEAP modeling was made with nonlinear 4 node
Mindlin-Reissner shell elements described in [Tessmer, 2000].

In contrary to the CDM a change of the element type with the extended system does
not pose major difficulties, as standard elements can be used, The CDM requires the
secant matrix assemblation, which is commonly not implemented in FE programs. A
change of the element requires thus often an extension of already existing elements.

E=3102.75

R = 2540 e

h=127 or6.35

Figure 8 56: Cylindrical shell

The equilibrium path n figure 8 57 where the negative vertical displacements of the central
node are plotted has four eritical points. The limit points L; : (us; A) = (= 10.69; 2221.2),
Ly 1 (ug ) = (—19.4;564.9) and the bifurcation points B, : (1z;A) = (=14.6; 1660.5)
and By : (ue; A) = (—16.6;946.3). The limit points can be computed with the extended
system without problems as the size of the load step shows. For the bifurcation points
this is only true in their vicinity,

The CDM predietion in figure 8,58 hits the first limit load points correctly. The eritical
displacements seem to pass the point, only the final prediction is exact. The critical load
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Figure 8.58: CDM prediction for the shell with h = 12.7

curve approaches the point in a convex circle, becoming less exact after a rather good
first approximation,

The one step prediction in figure 8.59 detects all the eritical points in the closer area
around each point. The predictions become better the closer to the eritical point they
come,



118 Chapter 8. Examples

4000 i ' ; . 1

3500 | s

3000 | « critical load
2500 | +
2000 |

1500 |

Load factor A

1000 |

L=

0 5 10 15 20 25 30
Displacement -u, of center noda

Figure 8.59: One step prediction for the shell with h = 12.7

Redueing the thickness of the shell by one hall changes its behavior substantially. The
equilibrium path in fignre 8,60 reveals a snap-back. In total 8 eritical points can be ab-
served. Two limit, load points Ly @ (ueA) = (=13.69; 617.35), Ly : (ug; A) = (=16.7; =371.6)
and 6 bifurcation points By : (i, A) = (=9.57; 546.6), By : (u;\) = (=16.2;537.2), By :
(ug; ) = (—16.8;219.4), By ¢ (u;3A) = (—13.4;—185.4), By : (uss A) = (—13.68;617.35)
and By @ (ugA) = (—21.37; —250.6). All were encountered with the extended system,
gome even starting the procedure from a greater distance, see figure 8.60 for details.
The faet that only one quarter of the shell is modeled, is the reason, why the first bifur-
cation point is not found by the CDM. The predictions in figure 8,61 head towards the
limnit load paint imld are quite exact after some time.

Looking at the one step prediction in figure 8.62 it can be seen, that all critical points
are detected. The predictions form smooth curves, scattered values can be observed only
in between eritical points, when the switch from one to another takes place.

8.1.8 Conclusion of the comparison

Comparing CDM and one step prediction eritical loads in all the examples, the CDM
load predictions are better. This can be seen especially when looking at the examples
with truss elements. Moreover in the damage examples the advantage of the enhanced
predietions with the algorithm deseribed in seetion 7.2 is noticeable, In the examples with
solid elements the results are more or less equal. The CDM predictions are still better,
bul when damage occurs the predictions become worse. The diseretization dependence
of the CDM for the hinged circular arch of section 8.1.6 and the fact, that the CDM only
predicts some (mostly the fivst) eritical points of the path are negative points,

The examples of the comparison confirm, that the extended system as a direct method
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Figure 8.61: CDM prediction for the shell with h = 6.35

is the method of choice for the exact computation of eritical points. Since the CDM only
makes predictions of the critical values this was obvious from the beginning and thus not
an issue of examination. [t remains to be discussed, if the output of the CDM ean serve
as starting values for the extended system.

The critical displacement pattern that is computed by the CDM is not different from
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the starting values for the extended system. As mentioned in section 6.4.2 the current
displacement pattern is chosen as an estimation for the critical displacements. Togethor
with equation (6.52) this means thal after computing the only unknown, the factor p
in (6.52) the predicted critical displacements are a multiple of the eurrent ones. Thig
is identical to the first possibility of the proposed starting values for the eigenvector in
the extended system (see equation (6.73)). The fact that limits the use of the predicted
critical displacements by the CDM is, that no reiteration of the displacement veetor takes
place and the initial pattern remaing unchanged.

‘The only values that can provide meaningful starting value for the extended system are
the predicted critical loads. Therefore the one step prediction with the extended system
was made to evaluate this possibility. Despite the fact that the CDM load predietions
were better than the one step predictions, the CDM predictions were not taken as starting
values for the extended system. The reason is, that the effort to implement, the CDM in
already existing I'E programs is considerably high, since the secant stiffness matrix has to
be constructed, The extended system on the other side with the partitioning algorithm
is quite easy to implement. This also holds for the one step prediction that is based on
the same algorithm. Moreover with the extended system the corresponding eigenvector
is computed automatically.

For this reason only the extended system will be used in the following examples, where
the computation of critical points in combination with contact inequality constraints will
be studied.
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8.2 Extended system with contact

All the examples of this section were computed with the Finite Element program FEAP,
where the contact algorithm of chapter 5, the displacement boundary conditions with the
penalty method of section 7.4 and the extended system procedure of section 6.5.1 were
implemented,

8.2.1 Arch with obstacles

The first example with contact is an arch with two obstacles placed above and below it at
one side. Figure 8.63 shows an outline of the structure including geometrical and material
data, A load is placed in the apex and the distance between obstacles and arch is 0.1,
The arch is discretized with 20 layers of 300 Ql-clements each, the obstacles consist of
100 elements in 10 layers, In a first step basically two different versions of the arch were
computed, with clamped ends and with hinged ends.

JE = 7000
v=_03

Figure 8.63: Arch with obstacles (clamped and hinged)

To study the influence of contact on the equilibrium path of the structure at first the
normal path of the arch without obstacles is computed. Figure 8,64 shows the expected
result. Since the arch is clamped the curve has two limit points L, with the values
(1yi A) = (—4.93;233.7) and Ly with (uy;A) = (=16.38;115.9). The deformed arch can
be seen in the small images in figure 8.64. Both points are computable with the extended
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Figure 8.64: Equilibrium path for the clamped arch without obstacles

system, the limit point Ly even starting from further apart as the dashed line indicates,
L, only with starting points in the vicinity of the eritical point.

In diagram 8.65 the equilibrium path of the clamped arch can be seen when the
abstacles are present. The path still has two limit load points, but the values have
changed: (u,; ) = (—5.62;242.2) and (u,; ) = (—9.84;214.4), The pictures of the
deformed structure in figure 8.65 demonstrate the changes in the deformation process,
The results of the extended system are good, both points are found, L; from a greater
distanece and Ly only in the closer area.

The one step prediction for the clamped arch with obstacles is shown in figure 8.66. The
curve hits both points exactly, in between the points it is noticeable, when the prediction
switches from one point to the other. Comparison with the result of the extended system
computations suggests that the one step prediction is a good indicator for an efficient
application of the extended syatem. The one step prediction which is basically identical
to the first iteration of the extended system procedure (see section 7.3) can indicate from
which points on the equilibrium path an extended system algorithm converges to a critical
point,

Looking at diagram B8.G6 it secems obvious that for obtaining Ly the extended system
should not be started from points with —u, < 8, as the procedure might, fall back to L,
otherwise. It might be even better not to take the first point with —uy = 8 but the second
or the third. For a successful computation of L; it seems as if a convergence is possible
from the first points of the equilibrinm path. A comparison of these indications with the
results in diagram 8,65 confirms the assumption.

The next figure 8.67 containg the equilibrium path for the hinged arch without obstacles,
A biturcation point By ; (—uy;A) = (—3.72; 196.8) and a limit load point Ly : (—1u,;\) =
(—6.86;223,0) are detected by the extended system. For Ly the deformed arch is plotted
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Figure 8,66; One step predictions for the clamped arch with contact

inn the small picture, for B the deformation of the secondary path branching off at this
point is given. This secondary path deformation is actually the eigenvector corresponding
to the zero eigenvalue in 13,. The displacements are multiplied by a factor to make the
difference to the primary path deformation noticeable,

For the hinged arch with obstacles in diagram 8.68 the bifurcation point vanishes and



124 Chapter 8. Examples

i i

8 10 12
Displacement Uy of center node

Figure 8.67: Equilibrium path for the hinged arch without obstacles

250 | . .

200 ¢

w,:ﬂ'%mmm%

alormation

=1rn

180 f

100

Load factor A

50

1. A i i i

0 1 2 3 4 5 G 7 8 ]
Displacement Uy of center node

Figure 8.68: Equilibrium path for the hinged arch with contact

only a limit load point at (—uy: A) = (=6.97; 245.0) remains, The extended system is able
to hit this point directly from a distance, The one step prediction in figure 8.72 is quite
good.  After some initial up and down the curve stabilizes for points with —u, = 3.5,
which is in accordance with the results of the extended system in diagram 8,68,

Besides applying a force as boundary conditions, there can also be applied displacements.
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Figure 8.69: One step prediction for the hinged arch with contact

In the next examples the hinged arch is studied with a displacement of w, = 1 in the
apex node. Plotting then the load factor against the displacement does not make much
sense any more, ag both are linear dependent. Instead of the load factor the nodal reaction
in the apex node are used for this type of boundary value problems.

The hingmd arch without obstacles and {Iispla(:ﬂnmnt huundﬂry conditions has the equi-
librium path of figure 8,70, Using the extended system for this problem reveals two
bifurcation points Iy : (uy; Fy) = (=3.69; —196.3) and By : (uy; F,) = (—25.62; —345.9).
The results are almost. identical to the dual problem with force boundary conditions, see
ligure 8.67. The small pictures of the deformed arch confirm this result, As mentioned in
section 7.4 the equilibrium path has no limit load point, due to the displacement bound-
ary condition. This example shows, that the extended system works good as well with
the dual boundary conditions.

Adding the obstacles to the problem the curve of diagram 8.71 is obtained, The limit
load point of diagram 8.68 disappears and only one bifurcation point at 3, : (1y: ) =
(=10.48,97.5) can be detected. Primary and secondary path deformations are shown in
the small pictures in figure 8,71, The secondary path deformed structure is the up-scaled
eigenvector in the bifurcation point,

The one step prediction for this problem is plotted in a different manner than the other
results. Here again the representation of the load factor A versus the displacements of the
center node is used, Although the curve is a straight line, the one step predictions can be
interpreted. It was plotted this way, because the predictions yield the load factor, that
cannot be put directly in a reaction-displacement diagram. The predicted values can be
seen in figure 872, In the beginning the curve seems to head towards a eritical point but
then turns away. This happens in the moment when contact occurs, because before this
moment, the problem does not differ form the unconstraint one of figure 8 70.
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As it i interesting to see, if the penalty method for displacement boundary conditions
works also with preseribed values in multiple nodes, the displacement values of the three
center nodes are consirained with u, = —1. The equilibrium path for the structure
without ebstacles is shown in figure 8,73, Twao bifurcation points similar to figure 8.70 are
found: By @ (uy; Fy) = (—4.36; =50.2) and By : (u,, F,) = (=25.63; ~117.3). Reactional
forces and displacement still belong to the apex node of the arch.

When the obstacles are present, the behavior changes as the equilibrium path in
diagram 8.74 demonstrates. Only one bifurcation point By can be computed at (uy; F,) =
(=11.01; -3'{'.6) with deformation similar to diagram 8,71,

The last fgure 8.75 contains the one step prediction, which is also similar to figure 8,72,
It indicates that good starting values for the eritical point computation have displacements
—ty, > 8.

8.2.2 Block pressing on arch

A block pressing on an arch is the next example with contact. The geometrical and
material data are to be seen in figure 8,76, The block is loaded with a unit load in all
the nodes, except for the corner nodes, where half of the load is specified. The block is
located on top of the arch. The discretization of the arch is 20 layer with 400 elements
each and the block has 11 layers with 300 elements each, Besides with the arch in figure
8.76 that is clamped, the example was also computed with a hinged arch, A sidewards
movement of the block is prevented by fixating the x-displacements of the upper corner
nodes of the block.

E = 10000

E = 70000
v=0.3

Figure 8.76: Block pressing on clamped arch



130 Chapter 8. Examples

Figure 8.77 shows the equilibrium path and the typical behavior of & elamped arch with
two limit points. The extended system vields the exact coordinates with Ly i (uyi A) =
(—37.87;12.88) and Ly @ (u,;A) = (~81.97;10.18), The symmetric deformation of the
arch are given in the smaller pictures.

The one step predictions in figure 8.78 are quite good, the curve goes through both
points. A comparison of one step prediction with figure 878 confirms the convergence
vadiug of the extended system computations.
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Figure 8.77: Equilibrium path for the block pressing on clamped arch

Changing the boundary conditions for the arch in such a way, that the ends are hinged,
enables bifurcating ol the equilibrium path, see diagram 8.79. The extended system
has no problem in locating the bifurcation point By : (u,; A) = (~23.02; 11,03) and the
limit point Ly 1 (u,; A) = (—40.75;126.45). The up-scaled secondary path deformation
associated with the eigenvector in B, can be seen in figure 8.79. The good results of the
one step prediction (figure 8.80) are i accordance with the convergence rading of the
extended system.

A further interesting load case of this example is the hinged arch with the block
on top of it and a unit displacement prescribed in the upper center node of the block.
The equilibrivm path in diagram 8.81 has no limit peint, only the bifurcation point
By i (uyi Fy) = (—26.89; —3440) is left. F, is the reactional force in the upper center node
of the block. In the diagram 882 the one step prediction for this load case is given,
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8.2.3 Two arches

The next example is the strueture of figure 883 with two arches. The lower arch is
clamped and the sidewards movement (x-divection) of the upper arch is prevented by the
boundary conditions in the corner nodes, where the unit loads are applied.

E=4.0x 10"
Vo= (.2

Figure 8.83: Outline of the two arches
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[Figure 8.84: Equilibrium path of the two arches structure for different discretizations

Since only four node elements with linear shiape functions are used, the question arises, if
the elementation chosen is sufficient [or a proper computation of the structure, Therefore
a convergence test with different diseretizations is made to see, how many elements are
necessary, Figure 8.84 shows the results for the three discretizations with 1800, 14000 and
30000 elements. The curves demonstrate, that there is practically no difference anymore
between the 14000 and the 30000 element curve, so that 14000 elements can be considered
ag suflicient for this example.

Looking in detail at the equilibrinm path of diagram 8.85 reveals four critical points.
‘T'wa bifurcation points with By : (u,; A) = (=0.85; 17.21) and B, : (u,; A) = (—4.77; 75.94)
and two limit load points with Ly @ (u,;A) = (—12.94;108.83) and Ly @ (u,;A) =
(=47.73:42.14) are found. The deformed arches and the secondary path deformation
respectively are depicted in the small pictures next to each critical point.

A comparison of these results with the one step prediction in diagram 8.86 demon-
strates clearly the switching of the prediction from one eritical point to another. Again
the similarity of convergence radius of the extended system and the one step prediction
curve is apparent,
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8.2.4 Embedded deep arch

A further example is the hinged deep arch with two rectangular blocks at the bottom as
depicted in figure 8.87. The blocks are clamped on one side. The deep arch has an inner
radiug of By = 98 and spans an angle of v = 289°. Unit loads are applied in the 41 center
nodes of the arch. The discretization chosen was 12 layers of 600 elements each for the
deep arch and 8 layers of 300 elements each for the blocks. '

E = 160000
v=0.2

E = 30000
v=03

R e e

60 130

Figure 8.87: Outling of the embedded deep arch

The equilibrium path in figure 8.88 shows a bifurcation point B, : (1,; A) = (—7.90;5.31)
and a limit load point Ly : (uy; A) = (=170.29;61.55). Both points can be computed with
the extended system, as is also indicated by the one step prediction in figure 8.89.
Replacing the force boundary conditions with displacement boundary conditions (unit.
displacements in the 41 center nodes) changes the behavior (see figure 8.90). Two bifur-
cation points can be computed with the extended system: B, : (u,; F,)) = (-72.37,377.9)
and By : (wy; F)) = (=143,64; 720.0). The one step prediction in figure 8.91 confirms the
starting points for the extended system procedure.
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8.2.6 Deep arch with obstacles

The geometrical data of the hinged deep arch with two arclies as obstacles is oullined in
figure 8.92. The obstacles are clamped on one side. The elementation of the deep arch
is 12 layers with 600 elements each, the obstacles have 300 elements times 8 layers, Here
also unit loads are placed in the 41 center nodes of the deep arch,

E=]60000
v=0.2

E=50000
v=().3

Figure 8,92: Outline of the deep arch with abstacles

The two limit load points Ly : (u,; A) = (=50.44; 20.94) and Ly ¢ (uy; A) = (=144.4; 8.74)
ean be calculated with the extended system, as demonstrated in figure 8,93, The extonded
system computations for the points are started from a not to far distance as indicated by
the one step predictions of figure 8,94,
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8.2.6 Large deformation of a ring

The last example is a ring which undergoes large deformations. An outline of the eroas
section of this 3D problem is depicted in figure 895, Due to the symmetry only one
quarter of the ring is computed with a discretization of 5 layers for the height with an
array ol 30 times 20 elements each. 8 node nonlinear brick elements are used, The contact,
mterface of chapter 5 was derived for two dimensional problems and eannot be applied
here. Since this is a unilateral contact problems, where the constraints eoineide with a
global degree of freedom, a simple penalty formulation for the z-degree of freedom of the
nodes on the upper and lower side of the ring is used. Denoting an represéntative degree
of freedom hy an subscript &, the contact terms are:

P, = ¢y (Wk = M) 5”!: (ﬂl)
ar
Fﬂkmjk = dnOup Al (8.2)

Uman 18 the maximal allowed z-displacement for the node, In other words equations (8.1)
imply that if the constraint for a degree of freedom k is active ey has to be added to the
diagonal of the tangent stiffness matrix Ky at the corresponding position.

0.0’[)01
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| E= 110000
ol v=03
[}

< 800 >

Figure 8.95: Outline of the cross section of the ring

As boundary conditions the in—plane movement of the inner nodes of the ring were fixed
and a unit displacement, was applied on all upper nodes of the inner ring. Symmetry
boundary conditions were used to enable the modeling of the entire ring by computing
only one quarter,

The equilibrium path of this problem is given in figure 8.96. The deformations of
the structure are plotted on the left side of figure 8.97. The two bifurcation points
By (—ueid) = (—43.9;69.8) and Ba : (—u.; ) = (—68.6; 135.2) that are indicated by
the one step prediction in diagram 8.96 are conformed by the count of negative diagonal
elements during the arclength path computation. The one step prediction indicates, that
the computation of I3, is feasible in the nearer area, whereas By scems problematic. The
firat tterations in the extended systern computation of B, indicated convergence against
the correct point, but then the iteration process diverped. A check of the eigenvector
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that is computed by the extended system in the iteration before divergence takes place,
demonstrates the expected buckling of the ving. (see right side of figure 8.97).

EDU 1 T T T P T T :_,.,-"’-’_
-~
150 | -
..-"'J-B
2
100 | et
If + i__i__.o-"r-l-f-i- i
g of _— B
@ ==
_§ o l—" aquilibrium path :
I
-50 | + @+ critical load ¥ 5
; i
-100 : LEN .
.150 i i i i i R— i i
0 10 20 30 40 60 60 70 80 90

Displacement -u, of nodes on the inner ring

Figure 8.96: One step predictions for the ring

Iigure 8.97: Ring: Deformation (left) and eigenvector at point 13, (right)



Chapter 9

Conclusion

This thesis is concerned with instability points in structural mechanics. The abjective
was to directly compute eritical points in combination with inequality constraints. Only
isothermal, static or quasi-static mechanical problems were considered for this purpose,
Inequality constraints were chiosen which originate from internal damage or contact, All
problems were solved numerically with the Finite Element Method.

A simple damage model without plasticity effects was used as constitutive law for
the problems with damage inequality constraints. The model is bilinear and bases on
the hyperelelastic Si.Venant material law. [t was chosen because of its simplicity and
eage of implementation. The way this model is represented in the global set of equations
facilitates a combination with the critical point detection methods.

Contact constraints were the second type of inequality constraints that were consid-
ered. A general formulation for bilateral contact was nsed, following the master-slave
concept. A node-to-segment contact element for two-dimensional problems allowed a
tangential movement of the bodies. The incorporation of the inequality constraints in the
set of equations is more difficult than in the damage case, Among the common methods
that were presented the penalty method was chosen, Tt ig used frequently for contact
problems of this formulation type and is easy to implement in existing FE programs,
Moreover it does not lead to an augmentation of the number of equations and unknowns,

The governing equations of the isothermal quasi-static problems in this thesis were
derived from the weak form of the balance of linear momentum, These equations were
olved with the FEM in combination with the Newton-Raphson method. Prior to a
eritical point computation the equilibrium path of all problems was ealenlated, Due to the
complexity of the load—deflection paths arclength methods were used. A variety of control
equations was presented among which the iteration on a normal plane was implemented,
The efficiency of this control equation type was confirmed in the examples.,

In stability theory the energy potential was used to define the criteria for stable and
unstable parts of the equilibrium path. The conditions for singular points were also
devived in this context and a distinction of limit load points and bifurcation points was
made. Among the methods for a eritical point detection, generally indiveet and direct
methods can be distinguished. For the objective of a caleulation of eritical points, the
direct methods were preferred as these provide a faster, direct and more exact way, The
extended system proved to be reliable in this field. A factor that could be improved in
this method is the dependence on the starting values. Therefore, a possible combination
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of the extended system with o second method was studied. The CDM showed to give
rather goad predictions of the eritical values with the help of secant stiffness relations.

A conceivable combination of both methods, to use the results of the CDM as mput
values for the extended system was evaluated. The critical displacements predicted by the
CDM were not suitable, as the ¢vitical displacements are merely a multiple of the current
diaplacement pattern of the starting value. Without a reiteration of the displacement
vector this does not make any difference to using the eurrent displacement pattern, as it
is already done in the extended system. A use of this eritical displacement prediction for
the eigenvector starting value does not make much sense either then, The eritical load
predicted by the CDM was evaluated ag input for the extended system. Therefore the
one step prediction methods based on the ideas of the extended system was developed.
The out-coming critical load was then compared to the CDM prediction. The first part
of the examples was dedicated to this comparison. Additionally to the normal constraint
free cases, damage was introduced. For the CDM in combination with damage the fact
that first a prediction of the eritical displacements was made was exploited to enhance the
eritical load prediction, The prediction was then based on the damage state corresponding
to the predicted eritical displacements.

The comparison of the eritical load predicted by CDM and one step prediction demon-
strated that the CDM values generally were better than the one step prediction values.
In the damage problems the CDM enhanced predictions mentioned above showed the ex-
pected improvements, In some problems with solid elements and with damage however,
the one step prediction values were better, Despite these results, the oritical load remains
the only meaningful starting value for the extended system that ean be taken from CDM
predictions. Taking further into account that the effort for the implementation of the
CDM is rather high due to the use of the secant stiffness matrix, the conelusion of this
comparison was that a combination does not offer any substantial advantages.

In the second part the extended system was evaluated for problems with contact
constraints, A rather straightforward way of combining extended system and contact
was presented, The idea of a critical point computation with the extended system for
problems with digplacement boundary conditions lead to the development of a represen-
tation of these with a penalty method. Preseribed displacements were treated as equality
constraints. Using this, several contact examples with force and displacement boundary
conditions were computed, It turned ont that the one step predictions provides a good in-
dicator for meaningful starting points of the extended system. Common test functions for
eritical points sueh as the determinant or the smallest eigenvalue of the tangent stiffness
matrix can be used to detect eritical points when they are caleulated accompaningly to
a path computations, but do nol provide any information about a successful application
of the extended system. Here the one step prediction can at least give hints. In regions
where the one step prediction values form a smooth curve the use of the extended system
seems appropriate. One step prediction values lying scattered around indicate unfavor-
able stariing values, The fact that the one step predictions in between two critical points
clearly reflects the jump from one point to the other, confirms the use as an indicator,

The results of the extended system with contact problems were good, Most of the
critical points were correctly detected, although some of them only with starting values
in the closer vicinity of the critical point. This holds especially for eritical points situated
in between others or close Lo others, o that the extended svstem showed problems in
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resolving each point. [n the last example the extended system did not work, but the eritical
point was found by the one step prediction. Although the extended system diverged, the
eigenvector in the eritical point was correct,

The combination of extended system and one step prediction proved to be useful also
in the computation of eritical points for more complex contact problems, Besides its ease
of implementation in existing FE programs, another advantage of the extended system is
that the eigenvector belonging to the critical point is computed antomatically within this
process, In bifurcation points this eigenvector provides mfmmm.mu about the secondary
path and can be used in branch switching procedures,
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Appendix A

Constrained optimization problems

The most general form of constrained optimization problems is the constrained nonlinear
optimization problem, The mathematical form of which looks like:

minimize flx) xeTlch" (A1)
aubject Lo h(x) =0 g(x)<o0

The function f has to be minimized subject to equality constraints h and inequality

constraints g. Both are vector functions, of the dimensions m and p respectively, with
P TOS] .

P = T

ha(x) a1(x)
hex) = [ ] =0 gx) = [#¥] <o
h-ml(x] _rh,(x)

A point % that satisfies (A.1) is called feagible. An inequality constraint gi(x) < 0 is said
to be active at a feasible point X, if g;(%) = 0 and inactive, if ¢;(%) < 0. Transferring this
back to the problem of contact, this can be connected to the terms of the active 98," and
the inactive contact surface OB\AB,.".

If it were known a priori which constraints were active at the solution to (A.1) the
inactive constraints could be ignored and the active ones treated as equality constraints,
Generally this is not the ease, bul nevertheless using this as a simplification leads to the
definition of the active set. The underlying idea is to partition the inequality constraints
in two groups: those that are to be treated as active and those that are to be treated as
inactive. Forming now a set of the active ones and ignoring the inactive gives the active
set, It is evident that the active set in not constant during the computation. In the same
manner as constraints become active or inactive the active set has to be changed.

According to [Luenberger, 1992, where the following definitions are taken from, for a
regular point x* (o be solution point of (A.1), the following first-order necessary conditions
(A.2), called the Kuhn-Tucker Conditions, have to be fulfilled:
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V(x*) 4 p"Vhix") + ATVg(x® = (A.2)
M) = 0 (A3)
with pn e " A E EP A0

|
=

The vectors pand A are called the vectors of the Lagrangion Multipliers, The last
two terms of the first equation assure, that the gradient vectors Vg and Vh ave linearly
independent. Differentiating equation A.2 one more time the Hessian matrix L is obtained.

L(x) = g’; [716) + W'h(x) + A"g(x)] (A4)

The second-order necessary condition for a regular point x* satisfying the constraints f, g
to be a minimum point of (A.1) is, that the Hessian matrix L is positive semidefinite.

L(x') = F(x") + p"H(x") + ATG(x") (A5)

Here f,h g € C? is vequired, whereas for the Kuhn-Tucker Conditions f, h,g € O is
sufficient.
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Inverse Iteration

Among the solution procedures for eigenvalue problems two main groups can be distin-
guished: lterative and direct procedures. Fspecially for large matrices iterative methods
are superior in computation time, but suffer from the disadvantage that they only compute
few eigenvalues and ~vectors. The tnverse iteration, the Jacobi method and the subspace
tteration are common mathematical procedures for solving eigenvalue problems. Details
about those methods can be found in [Bathe, 1996] and [Wagner, 1991b], Here only the
inverse iteration will be deseribed briefly as it is used in the CDM.

With the inverse iteration the smallest eigenvalue and the accompanying cigenvector of
an eigenvalue problem can be computed. A similar procedure called the forward iteration
exists for the caleulation of the largest eigenvalue. As stability problems in mechanics
always are connected with the smallest eigenvector only the inverse iteration is of interest
in this thesis.

The eigenvalue problem to be solved can be formulated as

(K —wM) ¢ = 0, (B.1)

where K is a positive definite matrix, M a banded matrix typically, w the eigenvalue and
¢ the associated eigenvector, The inverse iteration algorithm is shown in table B.1.
As a starting vector for x the vector 1 with all components equal to one is a good choice,
because it still "contains all information”. The Rayleigh quotient p(%X) is used as an
approximation of the first eigenvalue,

If M is equal to the unit matrix I the problem simplifies considerably. To solve the
problem

(K- wl) & = 0, (B.2)

the inverse iteration algorithm from B.1 can be altered as presented in table B.2

The convergence proof for both procedures can be found in [Bathe, 1996]. [Wagner,
1991b] contains a short diseussion of the practical aspects, which are important for the
application of the inverse iteration. The method can be extended to the computation of
higher eigenvalues with a Gram-Schmudi-orthogonalization, sce ez [Wagner, mmb].
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Starting value: x' = 1, yh = —Mx!
Iteration loop: 1=10,1,...  until convergence
ﬁi-H = K_—Iyi
gt o= - Mzt

] T .
p(ﬁlll.l) - xH-] }.I
' Fit1d i+
N TR, 1.
T gyl
W = gt '
[l = w)| _—
Convergence:; W 5 =i
R [ . .
Solution: T g

Table B.1: Inverse iteration algorithm for the general vigenvalue problem

B‘L'm‘biug- value: =1
Iteration loop: t=0.1,... untl eonvergence
R‘H o K—lxi'
1l
st g
i+1
o o X
(Esan|
Wt = (%)
(R —
w W
'l'l— "-_'H—ll < TOL
Convergence: W A ,
w =Wt gy = x
Solution:

Table I3.2: Inverse iteration algorithm for the special eigenvalue problem
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