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Abstract. Data providers have been uploading RDF datasets on the
web to aid researchers and analysts in finding insights. These datasets,
made available by different data providers, contain common characteris-
tics that enable their integration. However, since each provider has their
own data dictionary, identifying common concepts is not trivial and we
require costly and complex entity resolution and transformation rules to
perform such integration. In this paper, we propose a novel method, that
given a set of independent RDF datasets, provides a multidimensional
interpretation of these datasets and integrates them based on a common
multidimensional space (if any) identified. To do so, our method first
identifies potential dimensional and factual data on the input datasets
and performs entity resolution to merge common dimensional and fac-
tual concepts. As a result, we generate a common multidimensional space
and identify each input dataset as a cuboid of the resulting lattice. With
such output, we are able to exploit open data with OLAP operators in
a richer fashion than dealing with them separately.

Keywords: Entity Resolution - Resource Description Framework (RDF')
- Data Integration - On-Line Analytical Processing (OLAP) - Multidi-
mensional Modeling.

1 Introduction

Data availability on the Web is ensured as users constantly upload data. Since
multiple users can share the same entity, data duplication and unconnected re-
lated data grew on the Web. As a consequence, integration of web sources became
a necessity and the Web of Linked Data was obtained. Linked Open Data (LOD)
enables the sharing of information, structured querying formats, and facilitates
access to data by means of Uniform Resource Identifiers (URIs). Yet, due to the
heterogeneity of the Web of Linked Data, it is still problematic to develop Linked
Data (LD) applications. Nowadays, we cannot assume that all URI aliases have
been explicitly stated as links and therefore data integration is still an open
issue. Nevertheless, the size of LOD has been increasing exponentially. A study
released in April 2014 highlights that the LD cloud has grown to more than
1000 datasets from just 12 datasets cataloged in 2007 [15] having more than 500
million explicit links between them.
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The Resource Description Framework (RDF) models information that de-
scribes LD in the form of RDF triples. Each triple contains a subject, a pred-
icate, and an object defined by a URI. Data providers publish RDF datasets
using a personalized dictionary, hence a single entity has multiple definitions.
Yet, most RDF datasets have common characteristics indicating that they share
common schemata information, that may enable a tighter integration. The aim
of this project is to facilitate the user in querying similar RDF datasets on an
integrated, multidimensional fashion (which we refer to as Integrated Multi-
dimensional Dataset (IMD)). IMD is annotated as a cube with QB4OLAP vo-
cabulary [5], that enables OLAP functionalities and resolves compatibility issues
such as different resource names or granularity details. We claim that performing
OLAP analysis on top of disparate RDF datasets allows a richer analysis than
regular analysis on each independent or-manually glued together—dataset(s).

To showcase our approach, we use RDF datasets available at the US, the UK
and the Eurostat (Linked) data portals as running examples. We focus on carbon
emission data, as it is a major factor for air quality degradation. Additionally,
we use QBOAirbase?, a QB4OLAP-compliant dataset, as the basis of our model
as it contains several factual data with varying dimensional granularity. We refer
to the carbon datasets obtained from the US4, the UK® and the Eurostat® data
portals as Cys, Cuk, and Cgy respectively. The comparison of these datasets
is not straightforward, however, taking a close look, one may identify them as
cuboids of the same multidimensional space. For example, Cyg and Cygk contain
location details on a finer granularity (property/state level), whereas Cgy con-
tains higher level data (country level). We perform certain operations to generate
a single integrated dimension to enable data compatibility.

In this paper, we propose a framework to integrate and cross external RDF
datasets into a unified multidimensional view. Our framework consists of four
modules to: (i) identify potential dimensional and factual resources, (ii) inde-
pendently perform entity resolution (ER) on dimensional and factual resources,
(iii) and identify new dimensional and (iv) factual resources to be added in the
current IMD (from new links identified in ER module (ii)). Our proposal is an
incremental approach that builds the IMD schema by unifying RDF datasets at
hand. As a result, based on the granularity level of the measure in the input RDF
datasets, each dataset represents a cuboid of the IMD lattice. We thus enable the
capability, using OLAP processing, to answer queries at a certain granularity,
by means of rolling-up appropriate RDF datasets that are at a lower granularity
level. Thus, the input RDF datasets play the role of materialized views of the
IMD lattice and, combining these views, we provide a “bigger picture” of the
data. However, since our approach is purely data-driven, the resulting lattice
might be highly sparse and there might be no input RDF datasets to compute

3 The European Air Quality RDF Database: http://qweb.cs.aau.dk/qboairbase/
* https://catalog.data.gov/dataset /2015-greenhouse-gas-report-data

® https://opendata.camden.gov.uk/resource/4txj-pb2i

5 http://estatwrap.ontologycentral.com/page/t2020 _rd300
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the granularity for certain cuboids. Fig. 1 shows the structure of the IMD lattice
obtained after integrating the running example datasets.

The rest of the paper is as follows: Sec. 2 contains the description of our
framework and the steps we take to integrate datasets. Sec. 3 provides the tech-
nical details for implementing our framework. Sec. 4 illustrates the experiments
we performed and the results obtained. Sec. 5 explains other ER frameworks for
LD and we finally present our conclusion in Sec. 6.

Fig. 1: Lattice of the IMD created for Cgy, Cus, and Cuk
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2 Framework

In this section, we present an overview of our framework and how we obtain
the IMD by following a purely data-driven approach. Our process is conducted
pair-wise, where one input is the new RDF dataset we want to integrate with
IMD and the other input is the IMD itself. Fig. 2 depicts the data flow and the
components of the framework, note that in the first iteration the flow is reduced
to integrating two datasets and generating IMD for the first time.

In Sec. 2.1 we propose a supervised learning approach to analyze the RDF
dataset D; and identify resources as dimensions or measures. We refer to the
resulting RDF annotated with MD concepts as D 4. We perform ER between
same label resources in D 4, thus, obtaining the graph Dy (further explained in
Sec. 2.2). In Sec. 2.3, and after performing ER, we enrich IMD and its schema
with potentially new dimensions, hierarchies, and dimensional values. Finally,
as elaborated in Sec. 2.4, we align factual data by considering potential unit
misalignments.

We define the resulting IMD dataset using the QB” and QB4OLAP [5] vo-
cabularies. An excerpt defining in QB4OLAP the basic structure of IMD for our
running example follows:

schema:IMD rdf:type gb:DataStructureDefinition;

dct:conformsTo <http://purl.org/gbdolap/cubes_v1.3>;

data:IMD rdf:type gb:DataSet;

gb:structure schema:IMD;

dct:title "Integrated Multidimensional Dataset for carbon emissions"@en.
gb:component [gb:measure schema:C ; gb4do:aggregateFunction gb4do:avgl;
schema:C rdf:type gb:MeasureProperty;

rdfs:label "Carbon emission quantity"Qen;

rdfs:range xsd:float.

OO Ul W =

At line 1, we define the schema of the IMD and state that it follows a Data
Cube structure. Line 2 states that this schema has an established standard to

7 https:/ /www.w3.org/TR/vocab-data-cube/
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which the described resources can conform to. At line 3, we state that the data
in the IMD schema is represented as a collection of observations, that can be
organized into various slices, and thereby conforming to some common dimen-
sional structure. Line 4 indicates that the structure of the IMD schema conforms
to the dataset defined at line 3. Finally, in line 5, we give a name to our schema
and state that the name is in English. At line 6 we define a new measure for
“carbon emissions” and the schema of this new measure is defined at lines 7-9.
We explain how this measure is added in Sec. 2.4.

Fig. 2: Framework and modules
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2.1 Discovery of Dimensions and Measures

Performing ER at a large scale is rather costly [17]. Thus, we propose a first step
to automatically identify potential multidimensional concepts out of the input
RDF datasets. Using this technique, the subsequent ER steps will be performed
between elements labeled as of the same MD class (i.e., between dimensions or
between measures). RDF metadata information, which represents a fair amount
of triples, is removed from the process as they do not have a MD meaning.

We automatically label resources in the input RDF dataset as dimensions,
measures or metadata using a Decision Tree (DT). This DT is trained on a user
labeled dataset, where each resource contains data features and a data label.
We use a DT over other ML techniques since a DT provides “rules” used for
explanatory analysis of the resource labeling. Since the size of the search space is
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well-limited, as discussed in Sec. 4, using a DT shows good classification results.
Then, we give the output to the user to validate the annotations and correct
them if needed. Using a reinforcement method, the DT is continuously retrained
by means of the user provided corrections. This approach follows a pay-as-you-go
model that learns as new datasets come. Our tests show that few iterations are
needed to obtain good recall and accuracy. We perform the following steps each
time a new dataset is to be integrated in IMD:

Feature Extraction For each resource in Dy, the following features are gener-
ated by analyzing the datasets schema, and dictionaries:

Unique Values: The ratio of unique values based on the total occurrences.

Data Types: Such as float, integer, string, boolean, categorical, date, geoloca-
tion, a resource (i.e., a URI) or description (containing metadata information).

URI Prefiz and Resource Name: The URI is parsed to obtain these features. In
our running example, <ds:location> (in Cyk), is parsed as <ds> and <location>.

URI Resource Name Length: The total number of characters in a URI.

Additive Property: Identifies numerical type resources as additive or non-additive.

Table 1: Sample of labelled URIs
[Label  [Dataset[URI |

Measure |Cgu <sdmx-measure:obsValue>
Measure |Cuk <ds:carbon _emissions_kgco2e>
Measure |Cus <ds:total emissions_mt_co2e>
Dimension|Cgu <geo rdf:resource="">
Dimension|Cyk <ds:location>

Dimension|Cuys <ds:location _latitude longitude>

Data Classification Each resource in Dy is enriched with the above-mentioned
features and passed to the Classification module. This module contains the model
that is trained with the union of all previous datasets (Dp), with user corrected
labels. Enriched resources of D; are given as input to the trained model that
labels its new resources based on the rules identified in previous iterations. Ta-
ble 1 shows some labeled resources obtained in our running example. The next
steps will only be performed between resources with the same label. Note that
resources labeled as metadata are excluded from the next steps.

Label Validation The Classification module provides the new annotated re-
sources from Dj as a input to the User Validation module. The user corrects
the labels of Dy, which is then merged with dataset Dp_; obtaining dataset
Dp. Using reinforcement learning, the dataset Dp is re-fed to the Classification
module to retrain the DT for the next iteration (i.e., when starting the process
for a new RDF dataset to be integrated with IMD). In our running example,
the DT is initially trained with the (manually labeled) dataset QBOAirbase. We
then used this DT to label the dataset Cyk. If so, it would not assign a label to
<ds:period> and <ds:location>, as these resources do not fit any of the current
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rules. We corrected these labels, as these resources contain dimensional data,
and the combination of the QBOAirbase dataset and the corrected Cyk dataset
will conform the training dataset for the next iteration (i.e., Dp). We retrain the
DT with the new Dp training dataset and then use it to label the dataset Cys.
Table 2 shows the accuracy and recall of the model achieved to label a newcom-
ing dataset in each iteration as new (correctly labeled) resources of the previous
iteration are added to the training dataset (Dp). In our running example, our
experiments show that the model accuracy and recall improves drastically with
few new input resources per iteration.

As one may infer, the order in which the datasets are ingested in our system
may impact the accuracy and recall of each iteration. We discuss more about
our approach for automatic dimension and measure elicitation in Section 4.1.

Table 2: Model accuracy per iteration
IIteration[Model Accuracy[Recall[Dataset Labeled[New Resources Added‘

First 22.2% 15.8% Cuk -
Second 70% 83.3% Cus 30
Third 81.3% 100% Cgu 27

2.2 Entity Resolution

Entity resolution plays a significant role in our research. Once the resources are
labeled we obtain an annotated dataset D 4. We perform ER on the dimensional
and factual resources of D 4 separately to identify links, with IMD, between the
same resources. This step is required due to the usage of different vocabularies
in the input RDF datasets and IMD.

ER is done by obtaining lexicons from resource names of D4 and indexing
them for linkage purposes (referred to as Rule 1). Additionally, we enrich the
resources of D 4 with their synonym-map and hierarchy-map (that are obtained
using external dictionaries) and index them to perform ER (referred to as Rule
2 and Rule 3). We introduce a final rule to consider equivalence of two dimen-
sional resources by means of instances. We apply Rules 1-3 on instance level
to identify if two instances of separate concepts are the same (referred to as
Rule 4). A resource in D4 can be linked with a resource in IMD either through
equivalence (by having the same name lexicons or synonyms) or subsumption
(through taxonomies). The formal definition of rules are as follows:

Rule 1 Given two resources, di and ds, dy is the same resource as ds if there is
an equivalence when considering the lemmas in the names of both resources:

{dl,dg} — {dg} Zﬁdl = dy wheredy € Dag N dy € IMD

Rule 2 Given two resources, d; and ds, d; is the same resource as ds if there
is an equivalence (i.e., same lemma) when considering the synonym map (Sy) of
both resources:

{d17d2} — {dz} lﬁdg =dy wheredy € Dg ANdy € IMD N d3 € Sq1 A dy €
Sz
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Rule 3 Given two resources, d; and da, do subsumes or is subsumed by d; if dy
and ds (or their synonyms) participate in the same hierarchical-map (Hy) either
directly or through their synonym map:

d3 = d4 N dy T ds where (d3 S (d1 @] Sd1) ANdy € (dg @] Sdg) N ds € Hdg)
V (dg S (dg @] Sd2) ANdy € (dl @] Sdl) Ads € Hdl)

Rule 4 Given two resources, di and ds, there is an equivalence if 141, the instance
space of dp, has an intersection with 49, the instance space of do, that is greater
than an input parameter 6, which is the required level of equal instances in both
resources:

dy = do iff Ij1 N Igo > 0 where I;; = instances of dq A Iz = instances of do
ANOeIR

If d; maps to dy by any of the rules given above, the other rules are not
checked. As result, we link both concepts either by an equivalence relationships
(Rules 1, 2 or 4) or by subsumption (Rule 3).

We now present some examples of each rule based on our running example.
For example, there is an equivalence between dimensional URIs <ds:location> (in
Cuk) and <ds:location _latitude longitude> (in Cyg), as they provide informa-
tion for the same lemma location (Rule 1). These URISs also contain instances on
the same dimensional level. However, <geo rdf:resource=""> (in Cgy) is linked
with the location URIs via subsumption (Rule 3) at the instance level. When we
apply Rule 4, it shows that the instances of <geo rdf:resource=""> subsumes the
instances of <ds:location latitude longitude> and <ds:location>, as Cyk and
Cus provide location information at a finer granulariy level than Cgy (at coun-
try level). Additionally, <ds:period> (in Cyk) is linked with <dcterms:date>
(in Cgy), as period and date share the same synonym-map (Rule 2). The
factual resources in the datasets, <ds:carbon emissions kgco2e> (in Cyk) and
<ds:total _emissions_mt_co2e> (in Cyg), are linked based on the same lemmas
emission and co2 (Rule 1).

Before finalizing this step, and provided that ER methods can hardly achieve
a 100% recall, we let the user to manually fix any missing link we could not detect.

2.3 Dimensional Alignment

The resultant dataset Dpg is linked to IMD by means of the relationships iden-
tified in the previous step: either through equivalence or through subsumption
relations. This component identifies updates to be performed in the IMD di-
mensional data (both schema and instances) according to the links identified.
As illustrated in Fig. 2, when the dataset Dg is given as input to the Dimen-
sional Alignment component, the dimensional space of IMD can be updated by
(i) adding new dimensions, (ii) adding new hierarchical levels to existing dimen-
sions (schema level) or (iii) adding new instances to an existing dimension level.
We formalize IMD with QB4OLAP notation and to add a new dimension, or
dimensional level to IMD, we add the corresponding QB4OLAP triple.

Add Dimension If a dimension in Dp is not linked to any dimensional resource
from IMD (i.e., Rules 14 from Sec. 2.2 are not satisfied) it means that there
is no correspondence in IMD for this concept. Thus, we need to create a new
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dimension in the IMD multidimensional schema. In our running example, we add
a new dimension for location in IMD and define it using QB4OLAP annotation:

10 schema:locationDim rdf:type gb:DimensionProperty;
11 rdfs:label "Location class dimension"@en;

12 gb4o:hasHierarchy schema:locationHier.

13 schema:locationHier rdf:type gbdo:Hierarchy;

14 rdfs:label "Location Hierarchy'"@Qen;

15 gqb4o:inDimension schema:locationDim;

16 gb4o:haslLevel schema:propertylLevel, schema:statelLevel.
17 _:station_hll rdf:type gb4o:HierarchyStep;

18 gb4o:inHierarchy schema:locationHier;

19 gb4o:childLevel schema:propertylLevel;

20 gb4o:parentLevel schema:statelLevel;

21 gb4o:pcCardinality qb4o:ManyToOne;

22 gb4o:rollup schema:inState.

23 schema:inState rdf:type qb4o:RollupProperty.

At lines 10-12 we define the schema for the location dimension and add
hierarchies at lines 13—16. The hierarchical level for “State” is defined at lines
17-22, and the roll-up property from “Property” to “State” is defined at line 23.

With regard to our running example, this excerpt of QB4OLAP would be
added when the location dimension is introduced in IMD for first time (i.e., with
Cuxk or Cus)

Add Dimensional Level If Rule 3 identifies a subsumption relationship be-
tween dimensional concepts in Dr and IMD, we add a new dimensional level
to the proper dimension in IMD. In our running example, as stated in Sec. 2.2,
the URI <geo rdf:resource=""> (in Cgy) provides details on a higher taxonomy
(country level). Therefore, we add a new lattice level to the schema of IMD. The
following QB4OLAP-compliant definition states how we add the dimensional
level for “Country” and update the schema of IMD:

24 schema:locationHier rdf:type gb4o:Hierarchy;

25 gb4o:hasLevel schema:propertylLevel, schema:statelevel,
26 schema:countryLevel.

27 _:station_hl2 rdf:type gb4o:HierarchyStep;

28 gb4o:inHierarchy schema:locationHier;

29 gb4o:childLevel schema:statelevel;

30 gb4o:parentlLevel schema:countrylLevel;

31 gqb4o:pcCardinality qb4o:ManyToOne;

32 gqb4o:rollup schema:inCountry.

33 schema:inCountry rdf:type qb4o:LevelProperty;
34 rdfs:label "type Level"Qen;

35 gb4o:hasAttribute property:country.

36 property:country rdf:type qb4o:LevelAttribute;
37 rdfs:label "country Name"Qen;

38 rdfs:range xsd:string.

39 schema:inCountry rdf:type gb4o:RollupProperty.

Notice that we update line 16 with lines 25-26 to add a new dimensional
level. We define the new hierarchy in lines 27-38 and finally add the roll-up
property from “State” to “Country” in line 39.

Add Instances We add instances to IMD in two cases, either by identifying
equivalence relationship between dimensional resources (defined by Rules 1, 2
and 4 in Sec. 2.2) or when a new dimensional level is added (defined by Rule 3
in Sec. 2.2). In the first case, we need to apply ER again, but this time between
the instances of Dy and IMD. This step is required for identifying equivalences
(Rules 1 and 2) between the instances of Dg and IMD, to avoid duplication of
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instances in IMD. In the second case, however, we simply add all the instance
resources related to that dimensional resource on the newly created level.

For this second step we rely on previous work [6]. For example, in our running
example, when a new dimensional level from Cgy is identified (country level),
we add instances from URI <geo rdf:resource="">. The instances are added to
populate “Country Name” property as specified in lines 36-38 of the QB4OLAP-
compliant definition when a new dimensional level is identified. Each cuboid in
the lattice is required to have the unit of measure associated with it (further ex-
plained in Sec. 2.4). Hence, when adding the instances for “Country” dimension,
we also add the unit of measure for the dataset Cgy.

2.4 Factual Alignment

The last phase of our framework is to populate the IMD with additional factual
instances. Using Rules 1, 2 and 4 in Sec. 2.2 we obtain resources that contain
factual data and we transform instances of dataset Dy to guarantee uniformity.
Additionally, for Factual Alignment component, we require the unit of measure.
The unit can be identified by either being explicitly provided in the dataset or
we ask the user to provide this information. We require these units so that we
can transform the factual data in Dg to that of IMD, using conversion functions.
The conversion functions are stored in our framework for each unit of measure.

The factual instances of D can either have an equivalent measure from IMD,
or do not have any counterpart in IMD yet. As IMD is QB4OLAP-compliant,
the factual instances are instantiated as cuboids at a certain granularity level.
As can be seen in Fig. 1, the datasets sit at different cuboid levels based on the
granularity detail of the factual instances provided in those datasets. Therefore,
if there is an equivalent measure from IMD in D; then we compare the units,
apply the transformation on instances of D; to make them compatible, and
add the transformed factual instances to IMD. If there is no equivalent measure
from IMD in D, we import the factual instances of D; as they are and annotate
the unit of measure at that cuboid level. Note that we annotate the unit and
transformation between units as this information is elicited to automate these
tasks in future steps.

In our running example, the URIs that contain data for carbon emission are
<ds:carbon _emissions _kgco2e> (in Cyk), <ds:total emissions mt co2e> (in
Cus), and <sdmx-measure:obsValue> (in Cgy). Each dataset contains emission
data in a different unit of measure: kg for Cygk, mt for Cyg, and tonnes for Cgy.
Cus and Cyk contain factual instances on the same cuboid (3-D) level. Yet,
they have different units of factual measures. We select the unit of measure from
Cuk (kg) as the base unit at that cuboid level and transform factual instances
of Cyg from mt to kg before combining them. Cgy contains factual instances
on a higher cuboid (2-D) level and therefore we can import the new factual
instances to that cuboid level but we should also transform their values from
tonnes to kg (to guarantee correct Roll-up between both cuboids). Additionally,
the unit of measure for carbon emission are available in Cykx and Cyg, but
Cgy does not implicitly contain the unit of measure. Therefore, we extract this
information from the Eurostat website and annotate it. We add the new unit of
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measure in our schema:C with use of rdfs:comment since each measure can have
it’s own unit. For future work, we plan to incorporate more advanced state-of-
the-art techniques to integrate measures into the IMD through either formal
representation of the measures dependencies by means of specific predicates [13,
4] or through the semantic representation of the calculation formulae of such
measures [3].

3 Implementation

In this section, we first discuss the prototype created to implement our method
and then discuss a set of experiments conducted to show its feasibility. We build
a Java project to extract entities from input graphs using Apache Jena® and add
features that are computed using the OpenLink Virtuoso® platform. Then, for
building the DT model to label resources as dimensions, metadata or measures
we opt for the KNIME Analytical Platform'® and perform ER operations on the
annotated datasets using LogMap [8] and Instance-based Unified Taxonomy [1§]
to finally merge the datasets. We use LogMap over other ontology alignments
tools as it has low time complexity and high (successful) linkage discovery [1].

Next subsections elaborate on the implementation of the framework: Sec. 3.1
describes how we built our classification model. Sec. 3.2 describes the techniques
used for performing ER operations and finally, Sec. 3.3 elaborates on how we
extend the IMD schema. We use real datasets (Cys, Cuk, and Cgy) to showcase
the feasibility of our method.

3.1 Model Building in KNIME

In KNIME, we use the Ezcel Reader nodes that read the features specified in
Sec. 2.1 (Feature Extraction). We train the Decision Tree Learning node using
the training input data and we test the Decision Tree Predictor node using
the testing data. In Sec. 2.1 we specify that in each iteration we increment the
training datasets with new (user validated) label resources. This incremented
data is then used to retrain the DT model. In Sec. 4.1 we perform Leave One
Out (LOO) cross-validation to show the accuracy of our approach. That is,
how likely is the trained model able to identify measures and dimensions from
previous examples.

3.2 Entity Resolution for Dimensions and Measures

Our focus is to integrate RDF datasets in a common multidimensional space and
build a lattice, therefore, we use state-of-the-art techniques to perform ER. We
use LogMap for ER operations defined using Rules 1-3 (see Sec. 2.2) as LogMap
uses WordNet!! to obtain lexicons from resource names, indexes resources for
linkage purposes with their synonym-map, and builds hierarchies for each class.

8 https://jena.apache.org/

9 https://virtuoso.openlinksw.com/
10 https://www.knime.com/
' https://wordnet.princeton.edu,/
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Additionally, for ER Rule 3, we use the mapping technique (on instance level)
proposed in [6] along with matching of resources using rdfs:subClassOf property.

Furthermore, we use Instance-based Unified Taxonomy [18] for ER Rule 4
stated in Sec. 2.2, as it builds a unified taxonomy of classes and links instances
through owl:sameAs property and exact matching. Sec. 4.2 states the perfor-
mance results obtained when applying ER operations on our datasets.

3.3 Schema Alignment

To add dimensions, dimensional hierarchies, and dimensional instances: we use
Apache Jena to extract the annotated data from the input dataset, add QB4OLAP-
compliant triples at new granularity level (if required), remove duplicate in-
stances, and add it in the IMD dataset. To add factual instances, we extract
the units of measure in the input dataset and compare it to the unit of mea-
sure of IMD, if the unit of measures differ, conduct transformations on the
resource values. We also ask the user to provide conversion function, using the
Java interface, where the unit of measure is not automatically convertible. We
extract the dimensional hierarchy of measures from the input graph and com-
pare them to the IMD dataset to either remove duplicate instances or to add a
QB40OLAP-compliant triple at newly identified granularity level. Lastly, we add
new instances to the IMD dataset.

4 Experiments and Results

This section discusses about the feasibility of our framework defined in Sec. 2
and implemented using the techniques provided in Sec. 3.

4.1 Model Testing in KNIME

Once we have (correctly) labeled all the resources in our running example, we
use it as ground truth to perform LOO cross-validation to show the accuracy
of our approach by picking a resource from the dataset, training the model on
rest of the resources and check how well the model labels the one resource not
used in training. This exercise is repeated for each resource, and the goal is
to test the model’s ability to see how our approach behaves with a resource
that it has not seen before. We have 230 resources in total and therefore the
LOO cross-validation is performed 230 times (once for each resource). After all
230 iterations are conducted, the model yielded an average error rate of 7.39%
with a 6.84% variance between these error rates. Most of the errors produced
were due to the resources not satisfying any of the rules obtained and hence the
model labeled them as “?”. Additionally, to check the validity of the model on a
dataset from a different domain, we tested the DT (trained on carbon datasets)
on a dataset from the crime domain'2. This dataset contained 40 resources,
of which the model correctly labeled 29 resources (i.e. obtained an accuracy of
74.36%). These experiments show that the domain is irrelevant when deciding

'2 https://data.cityofchicago.org/Public-Safety /Crimes-2001-to-present-
Dashboard /5¢d6-ry5g
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the multidimensional role of a resource. In the future, we plan to validate this
hypothesis with more thorough experiments.

Also, as one may expect, the order in which we take the resources has a big
impact on the training. We will investigate how to make our method more stable
in the future. Nevertheless, the big advantage of building a DT is that we obtain
rules to label each resource. Table 3 contains the most relevant rules obtained
from our tests. Relevantly, after training our model with different orders, we
eventually get very similar rules. Thus, the order has an impact during the
reinforced learning stage.

Indeed, after identifying the rules in this experiment, we notice that these
rules are aligned with the main rules provided by previous research works in
the literature (e.g., [14,2] present thorough surveys). However, most of these
approaches manually identify dimensions and measures, while our approach em-
beds a semi-automatic approach.

Table 3: Interesting rules identified for each label
l Label [Rule ‘
Measure |Resources that have additive feature marked as “Yes”
Metadata |Resources that contain W3C defined prefix in URI Prefiz,
such as foaf, owl, rdf, and rdfs
Dimension|Resources that have Data Type as “GeoLocation” or have
“>99%” Unique Values and Data Type as “String”

4.2 Entity Resolution

We label the resources either as dimensions or measures to facilitate ER in our
framework. The labeling of resources indicates that instead of performing an
NxM comparison, only compare the resources that are equally labeled either as
“dimension” or “measure”. For example, when we compare Cyg with Cyg with
a generic ER framework, not considering dimensions or measures (i.e., labels),
there would be 810 comparisons to be done. But, when we compare them with
labels, the comparison drops to 139. Table 4 states the total number of resources
in each dataset, and how many of them are dimensional and factual resources.
Table 5 provides the number of comparisons made for matching these datasets,
with and without labeling the resources. We observe that using labels aids in
comparison as most of the resources in RDF datasets are metadata that only
provide additional information. Also, when there are links identified in the pre-
vious ER iteration, the number of resources to be compared decrease in the next
iteration. After labeling and comparing all three datasets (Cyk, Cus, and Cgy),
as stated in Table 5, we reduce the number of comparisons by 88% and the
runtime by 81%.

As defined in Sec. 2.2, whenever a resource d; in D 4 maps onto a resource ds
in IMD, we always select the URI of ds to define the newly identified resource.
To avoid re-computation of synonym-maps and hierarchical-maps every time a
new resource needs to be matched, we store them in IMD.

Missing links The framework missed some links between resources that had to
be added manually. For example, <sdmx-measure:obsValue> in Cgy contains car-
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bon emission, yet it was not linked with either <ds:carbon _emissions kgco2e> in
Cuk or with <ds:total emissions_mt_co2e> in Cys. Similarly, <ds:sub_sector>
from Cyg and <ds:category> from Cyk contain the type of areas (e.g. primary
schools area, chemical production area, glass production area, etc.) where the
carbon emission value is collected, yet these two resources were not linked. Based
on this the recall of our approach, for identifying linkage, is 71.4%.

Table 4: Total & labeled resources

lDataset [ Total[Dimension[Measures‘

Table 5: ER with & without labels

[Using labels|Comparisons[Run-time (s)]

Cuk | 30 16 3 Yes 201 31
Cus | 27 7 9 No 1658 165
Cgu 16 2 1

5 Related Work

In this section we mention some frameworks that provide entity resolution com-
ponent for integration of RDF datasets.

The user can obtain a clean and consistent local target vocabulary using [16]
while tracking data provenance. It includes an identity resolution component for
discoverying URI aliases in data and maps them to single target URI based on
user-provided matching heuristics using SILK [7].

The authors of [12] provide a mapping technique that achieves integration au-
tomatically using SPARQL CONSTRUCT mappings. The mappings are trans-
lated to the new consolidated, well specified and homogenous target ontol-
ogy model, thereby, facilitating data integration from different academic RDF
datasets by providing a bridge between heterogeneities of RDF datasets.

In [11], the authors define a multidimensional model based on the QB vocab-
ulary and present OLAP algebra to SPARQL mappings. They use graph-based
RDF data model along with QB vocabulary for querying and storing of Data
cubes. They also define common OLAP operations on the Data cubes by re-using
QB. The drawback in their approach is that it does not allow optimized OLAP
queries to RDF and the entire ETL process needs to be repeated if new statistics
are defined.

OLAP4LD [10] provides a platform for developers of applications using Linked
Data sources reusing the QB vocabulary and explore the Eurostat data via
Linked Data Cube Explorers. The authors focus on translating analytical opera-
tions to queries over LD sources and pre-processing to integrate heterogeneously
modeled data.

A Federated Datawarehouse (F-DW) [9] is the integration of heterogeneous
business intelligence systems set to provide analytical capabilities across the
different function of an organization. Reference data is made common across
various data warehouses for data consistency and integrity, and identical data
value for a confirmed fact will be ensured. The prime design objective of a F-
DW is to achieve a “single version of truth” and the authors stress that there
should be defined, documented, and integrated business rules used across the
component data warehouses in the whole architecture.
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Our approach is different in the sense that our inputs are datasets and not
multidimensional (MD) schemas. We aim towards a generic approach that gen-
erates a MD interpretation of RDF datasets. RDF datasets can embed a MD
interpretation by using QB4OLAP but, unfortunately, publishers (such as Eu-
rostat) are not yet publishing native MD datasets. Therefore, we first identify
and assign a MD interpretation to online RDF datasets. Then, we perform ER
but over the identified MD concepts of the same class. This way, we drastically
reduce the problem complexity (typical ER tools are quadratic on the dataset
size). In our case, many triples are disregarded (RDF metadata without MD
meaning and not useful for data analysis) and create two big groups of concepts:
facts and dimensions. In our tests, 48% of the resources were disregarded for data
analysis, 34% were identified as dimensions and 18% as facts. As a consequence,
we simplified the complexity of the entity resolution process considerably.

6 Conclusion

In this paper, we present a technique to semi-automatically combine RDF datasets
into the same multidimensional space and identify each dataset as a cuboid of
its lattice. Unlike other frameworks, we perform integration based on a multidi-
mensional interpretation of arbitrary datasets. We showcase our method choosing
RDF data as a use case, but the proposed methods could be generalized for other
data models. Specifically, we have defined a set of steps to generate a single data
cube out of independent, yet overlapping, RDF datasets. We use QB4OLAP to
annotate the integrated data and define, for each input dataset, a cuboid at the
right aggregation level of the IMD. As a consequence, the schema of the input
RDF datasets is integrated, and we can use state-of-the-art tools to analyze
QB40OLAP data to perform OLAP operations on the defined lattice. This novel
method is a significative step towards automating effective multidimensional in-
tegration of related RDF datasets that were created independently. Indeed, our
approach could be generalized to other data formats. Importantly, providing a
MD interpretation of the datasets considerably reduce the complexity of ER
when integrating the dataset schemas.

For our next work, we will propose a mechanism to query the source RDF
datasets (example Cyk, Cus, and Cgy datasets used in this paper) via federated
SPARQL queries and therefore avoiding to materialize the IMD.
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