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Abstract. In this work, we present a versatile and efficient computational approach to
fluid-structure interaction based on the coupling of flexible multibody systems with fluids
analyzed by means of the meshfree particle-based method smoothed particle hydrody-
namics. Regarding numerical examples, rigid or flexible cells, and fibers in microchannel
flows are investigated. As a main feature of this paper, our results are validated with
reference simulations obtained from fundamentally different approaches.

1 INTRODUCTION

The numerical modelling of fluid-structure interaction (FSI, see, e.g., [1]) still is a chal-
lenging subject in both mechanics as well as fluid mechanics, and particularly difficult,
if large displacements or deformation of the structural components are involved. In this
work we present an approach to FSI which is based on the coupling of advanced methods
from flexible multibody system dynamics with the meshfree method smoothed particle
hydrodynamics (SPH, see e.g. [2]). The multibody formulation, on the one hand, al-
lows for the static and dynamic simulation of very general mechanical systems involving
rigid bodies, flexible components (classical finite elements and structural elements such as
beams, plates, and shells), springs or actuators, as well as joints, constraints, and contact
[3]. Particularly, the structural elements offer high efficiency and convergence order as
well as a smooth geometric surface representation, even in case of highly non-linear prob-
lems with large deformation. The fluid dynamics, on the other hand, are computed using
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the Navier-Stokes equations in SPH discretization and an interaction formalism based on
distributed surface force fields for the fluid-structure contact [4]. The approach does not
impose any fundamental restrictions with respect to geometry, motion or deformation of
the mechanical components in contact with the fluid, and thus is aimed at both efficiency
as well as applicability to a wide range of FSI problems in two or three dimensions, in-
cluding free-surface flows due to the particle nature of SPH. An outline of the theoretical
background and the coupling formalism is given in Sec. 2.

Regarding numerical examples, the focus is on the motion of rigid or flexible cells and
highly deformable fibers in (micro)channel flows, which is an important subject in fields
such as biomechanics (blood flow), microfluidics (cytometry, cell identification and sepa-
ration), or industrial applications (e.g. production processes of fiber-reinforced materials)
(cf. Sec. 3). Quantitative verification is provided via reference simulations by an immersed
boundary Lattice Boltzmann implementation and the classical finite volume method for
stationary cases.

2 THEORETICAL BACKGROUND

This section shall provide a brief overview of the underlying numerical models for the
coupled simulation of the fluid and solid domain.

2.1 Multibody dynamics

The broad field of multibody dynamics is concerned with the static and dynamic anal-
ysis of so-called multibody systems, i.e., of general mechatronical systems consisting of
mechanics, drives and embedded systems. The mechanical components, such as rigid or
flexible bodies, can be mutually independent or interconnected with some kind of joint
or constraint, and may undergo large translational and/or rotational motion, as well as
deformation, being subject to external or internal forces, constraints, contact and friction,
and, possibly, control.

The equations of motion of a multibody system can often be derived using Lagrange’s
equations of the first kind, along with a set of algebraic equations to account for con-
straints. For a system consisting of nb bodies i ∈ {1, ..., nb} subject to nc algebraic
constraint equations j ∈ {1, ..., nc} those governing equations read, using the Einstein
summation convention,

d

dt

(
∂T i

∂q̇ik

)
− ∂T i

∂qik
+ λj

∂Cj

∂qik
= Qi

k i ∈ {1, ..., nb} and k ∈ {1, ..., ni
f} (1)

Cj(q
1, q2..., qnb , t) = 0 j ∈ {1, ..., nc}

in terms of the vector qi of ni
f generalized coordinates of each body i, where λj, j ∈

{1, ..., nc}, are Lagrange multipliers [6]. T i is the corresponding kinetic energy defined as

T i =
1

2

∫

V i

ρiṙi · ṙi dV i, (2)

2



259

M. Schörgenhumer, P. Seil, S. Pirker, and J. Gerstmayr

with the mass density ρi, the volume V i, and the global coordinate vector ri = ri(qi) of
an arbitrary point P on the body. Qi denotes the vector of generalized forces acting on
body i, and can be computed using the principle of virtual work which states that, for any
kinematically admissible virtual displacement δqi, the total work done by the constraint
forces vanishes. Hence, the total virtual work δW is composed of the contributions δW(s)

due to internal and δW(e) due to external forces, yielding

Qi
k =

∂W

∂qik
with δW = δW(s) + δW(e) =

nb∑
i=1

Qi · δqi (3)

for the generalized forces.
The way how the generalized coordinates are chosen, and how the virtual work may

be computed, depends on the properties of the respective bodies. In case of flexible
bodies, qi represents a set of nodal coordinates corresponding to the spatial discretization.
Typical examples are classical continuum finite element formulations or structural finite
elements, such as beams, plates, and shells. Some ways for the modelling of flexible
bodies undergoing small or large deformations feature advantages over classical finite
elements. We mention in particular the component mode synthesis, which aims to model
deformations of complex geometries by means of a small set of reduced coordinates. With
respect to fluid-structure interaction, the absolute nodal coordinate formulation is superior
to classical large-deformation structural elements due to its ability to represent smooth
surfaces of arbitrarily deformed beams or plates.

For further information regarding multibody dynamics in general see, for instance, the
classic book of Shabana [6], for more specific topics refer to the respective literature.

2.2 Smoothed particle hydrodynamics

Smoothed particle hydrodynamics (SPH) is a meshfree particle-based Lagrangian me-
thod which was introduced into the field of fluid dynamics by Monaghan [7] in the 1990s.
Over the years, it has been successfully applied to a wide range of flow problems, par-
ticularly to cases involving free surface flows and complex geometries; see [8] and the
references therein for applications and some recent examples.

Assuming that the fluid domain is divided into small volume fractions represented
by a set of i ∈ {1, ..., N} discrete “particles” with associated positions ri, masses mi,
densities ρi, and corresponding volumes mi/ρi, the so-called particle approximation of a
field variable g(r) – a sort of unstructured interpolation – is defined as [2]

g(r) ≈
N∑
i=1

mi

ρi
g(ri)W (r − ri, h), (4)

with a suitable, compactly supported smoothing kernel W (r, r′, h), W = 0 if |r − r′| >
2h, and the smoothing lenght h. Hence, above sum effectively only runs over neighboring
particles within the support domain of the kernel. Note that fluid here still is modelled
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as a continuum, and therefore, the particles should not be confused with real physical
particles, but rather be seen as the nodes of a spatial discretization.

The governing equations for isothermal compressible Newtonian fluids are given by the
Navier-Stokes equations, i.e. the continuity and the momentum equation, along with a
scalar equation of state, which, in Lagrangian form, can be discretized in terms of the
SPH approximation (4) as

Dρi
Dt

=
N∑
j=1

mj(vi − vj) · ∇ri
W (ri − rj, h) (5)

Dvi

Dt
= −

N∑
j=1

mj

(
pi
ρ2i

+
pj
ρ2j

+Πij

)
· ∇ri

W (ri − rj, h) + f i

pi = p(ρi),

with the viscosity term

Πij = − 16µ

ρ0(ρiρj)

(ri − rj) · (vi − vj)

(ri − rj)2 + η2
(6)

for two dimensions, based on the well-known artificial viscosity by Monaghan [2]. Here,
D
Dt

denotes the material time derivative, and the variables ri, vi, and f i correspond to the
position, velocity, and acceleration due to external forces of particle i; ρi and pi = p(ρi)
designate the corresponding density and pressure, ρ0 and µ are the fluids nominal density
and dynamic viscosity, respectively, and η ≈ 0.01h is a parameter to improve numerical
stability. In the present work we are using Tait’s equation of state [7], and the 5th-order
polynomial Wendland kernel [10]. Note that incompressible fluids here are modelled as
weakly compressible.

More details on SPH can be found, for instance, in the book of Liu [9], or review papers
such as [2, 9].

2.3 Coupling formalism

Concerning the coupling between the solid and the fluid domain, the following three
points must be accounted for in FSI: Firstly, the fluid domain, in general, is time-
dependent, and at least partially confined by the surfaces of each mechanical component
in contact with the fluid. Secondly, for any viscous fluid, the no-penetration and no-slip
condition must be fulfilled on any static or moving impervious boundary, i.e., the relative
flow velocity must vanish on the boundary (kinematic boundary condition). Thirdly, the
mechanical stress distribution on any boundary is given by the normal and shear forces
due to the static pressure and viscous contributions of the fluid (dynamic equilibrium).

Several approaches have been developed for the implementation of boundaries in SPH,
such as the generation of (virtual) boundary particles, kernel-adaption techniques, or
force-field approaches (cf., e.g., [2, 7]). In the present work we follow an approach sug-
gested in [11], and define over each boundary – no matter if a rigid wall or the surface
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Figure 1: Left: Sketch of the interaction between a boundary S with SPH particle i (red dot); r′ and v′

denote position and velocity of a local point on the boundary, ri and vi of the SPH particle, respectively.
Right: Plot of the absolute values of the normalized interaction force densities versus the normalized
distance rrel/rc between an SPH particle and a local point on a boundary. The solid blue line represents
the 4-th order repulsion term, while the dashed red line corresponds to the viscous contribution.

of a moving, deformable body – two short-ranged force field densities, a repulsive contri-
bution f rep to keep particles from penetrating the walls (no-penetration), and a viscous
contribution f visc to generate wall friction and enforce the no-slip condition. Based on
that, the total forces F rep

i and F visc
i betweeen an SPH particle i and any boundary S

– cf. the sketch in Fig. 1 – are defined by surface convolution integrals over the relative
vectorial distance rrel = ri − r′ and velocity vrel = vi − v′ as

F rep
i =

∫

S

f rep(rrel) dS
′ and F visc

i =

∫

S

f visc(rrel,vrel) dS
′, (7)

where f rep and f visc are given by

f rep(rrel) = k

(
1− |rrel|

rc

)4
rrel

rc
and f visc(rrel,vrel) = −tvrel

(
1− rrel

rc

)
, (8)

with the scaling parameters k and t, if the particle lies within the interaction range rc, i.e.,
if |rrel| < rc; otherwise, both force fields vanish. Of course, accounting for the dynamic
equilibrium, the corresponding counterforces act on the component of the multibody
system which is associated with S.

In our implementation, any boundary is associated with a surface mesh (line segments,
or linear triangular elements for surfaces in 2D or 3D, respectively), in case of deformable
objects defined in material coordinates of the undeformed reference configuration. Based
on that, the integrals (7) then are computed numerically using Gauss-Legendre quadra-
ture, resulting in a sum over discrete contributions each constituted by the pairwise inter-
action between one SPH particle and a local Gauss integration point on the discretized
surface. Due to the short interaction range, which typically is chosen on the order of
the SPH smoothing length, the spacing between the sampling points of the quadrature
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rule must be sufficiently small in order to consistently represent a closed surface. To this
end, the meshes are adaptively refined locally during the FSI force computation, i.e., any
surface element is subdivided recursively until an appropriate resolution for the numerical
integration has been reached.

See [4] for further details concerning the chosen potentials, the surface discretization
and adaptive refinement, as well as the computation of the counterforces acting on the
respective bodies.

2.4 Simulator coupling

In contrast to monolithic approaches, where the governing equations for the solid and
the fluid part are solved fully coupled in one single system, our implementation is a
so-called weakly-coupled partitioned scheme, based on the coupling of two simulation
libraries: The multibody code “HOTINT” [3] is used for the simulation of the mechanical
part, and calls an SPH implementation in “LIGGGHTS” [12], a parallel particle simulator,
as external program for the computation of the fluid dynamics and the fluid-structure
interaction in the sense of a co-simulation.

In short, in each time step HOTINT performs one implicit integration step of the multi-
body system, accounting for the current FSI forces, and then passes the updated geometry
– positions and velocities of the nodes defining the surface meshes – to LIGGGHTS. The
latter, in the mean time, has computed the first part of a timestep of the SPH simulation
(fluid only, without FSI), and can now evaluate the fluid-structure contact based on the
new boundary data, finally returning the new FSI forces to HOTINT.

Here, HOTINT plays the server role, and additionally is used for the setup, control,
visualization during the computation, and post-processing of the coupled simulation. Note
that, since both programs run on different platforms on different machines, communication
and synchronization is done via TCP/IP. Further information again can be found in [4].

2.5 The Lattice Boltzmann method

The Lattice Boltzmann method (LB, LBM) [13] is a CFD method originating from lat-
tice gas cellular automata. It uses a discretized version of Boltzmann’s transport equation
to compute fluid flows.

2.5.1 Basic LB

The LBM uses a set of discrete particle populations on each grid cell. Each of these
populations represents a part of the fluid that is moving in a certain discrete direction.
The evolution of these populations is governed by the LB equation

fi (x+ ci, t+ 1) = fi (x, t)−
1

τ
[fi (x, t)− f eq

i (ρ,u)]
︸ ︷︷ ︸

ΩBGK
i

(9)

6
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where the Bhatnagar-Gross-Krook approximation for the collision term ΩBGK
i is used

[14]. It reflects the tendency towards an equilibrium distribution f eq
i (ρ,u), a second-

order expansion of the Maxwell-Boltzmann distribution. τ = ν
c2s
− 1

2
is the dimensionless

relaxation time. The vectors {ci} are the discrete velocities and fi can be understood as
“the population that travels in direction ci”. For the presented calculations, the D2Q9
scheme was used. It consists of the following nine velocities:

c0 = (0, 0) c1...4 = (±1, 0) , (0,±1) c5...8 = (±1,±1) (10)

The macroscopic flow quantities can be computed from the populations via

ρ =
∑
i

fi and uρ =
∑
i

fici. (11)

A Lattice Boltzmann timestep consists of two phases: Firstly, the populations of all
cells are copied to their respective neighbors (streaming). Secondly, at each cell, the
macroscopic flow quantities are computed following Eq. (11). Then, the populations are
relaxed towards a local equilibrium by applying ΩBGK (collision).

2.5.2 Immersed boundary LB

To couple the fluid calculations to a discrete phase, the method proposed by Noble and
Torczinsky [15] was used. It is capable of handling partially filled cells and thus allows to
model solid domains immersed in the flow by representing them as a solid fraction field.
The modified LB equation reads

fi (x+ ci, t+ 1) = fi (x, t)− (1− εs) Ω
BGK
i + εsΩ

s
i , (12)

where εs is the solid fraction in the cell. For the collision operator, the modification
proposed by Holdych [16] was used,

Ωs
i = f−i(x, t)− f eq

−i(ρ,us) + f eq
i (ρ,us)− fi(x, t), (13)

where us is the solid velocity. The force and torque on a body then can be evaluated from
the collision operators via

F =
∑
n

Bn
s

∑
i

Ωs
ici and T =

∑
n

(xn − x0)×

(
Bn

s

∑
i

Ωs
ici

)
, (14)

with
∑

n reaching over all nodes covered by the body and x0 denoting its the center of
mass.

2.5.3 Coupled calculations

As discussed in Subsec. 3.1, coupled calculations with one circular rigid cell in the
simulation domain were performed. In the dynamic case, its trajectory was computed by
numerical integration of Newton’s law using the Velocity-Verlet algorithm.
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Figure 2: Left: Sketch of the test system: A circular cell (red) of diameter d is placed in a gravity-driven
channel flow in x-direction, with periodic boundary conditions. The vector r designates the position of
the cell center. Right: Snapshot of a coupled multibody dynamics - SPH simulation of the flow around
a fixed rigid cell; the color map shows the absolute flow velocity.

3 NUMERICAL EXAMPLES AND VALIDATION

As already mentioned in the introduction, in the present work we have focussed on
the quantitative investigation of rigid or deformable cells in microchannel flows (cf. Sub-
sec. 3.1), and set up some test examples which involve fluid interaction with flexible fibers
(see Subsec. 3.2).

3.1 Example 1: Cells in microchannel flows

The dynamic behavior of rigid or deformable cells in microchannel flows, such as white
or red blood cells in microcapillares, is of interest in various scientific fields including
biomechanics (blood flow) and microfluidics (cytometry, cell identification and cell sepa-
ration) [18, 19].

As shown by the sketch in Fig. 2, here we consider a circular cell of diameter d and
mass density ρs = 1000 kg/m3 in a simple rectangular channel (length l, width b) with
rigid walls parallel to the x-axis, filled with an incompressible fluid with a nominal mass
density of ρ0 = 1000 kg/m3 and a dynamic viscosity of µ = 0.001Ns/m2. At the walls
and the surface of the cell, the no-slip condition holds, and at the channel in- and outlet
periodic boundary conditions are applied. The flow is driven by gravity g in x-direction,
which is computed from the analytic Poiseuille solution as

g =
12ν

b2
v̄, (15)

with the kinematic viscosity ν = µ/ρ0, and the average in- or outlet flow velocity v̄ of the
undisturbed Poiseuille flow. No additional boundary condition, such as a Dirichlet condi-
tion for the pressure on the inlet, is specified and hence, the absolute value of the pressure
remains undetermined. This, of course, should not affect the solution for incompressible
flows.

Firstly, we have performed stationary benchmark computations in a channel with the
dimensions l = 250µm and b = 50µm, and an average Poiseuille velocity of v̄ = 0.2m/s,

8
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which corresponds to a Reynolds number of 10 with respect to the channel width. In
case 1, the center of a rigid circular cell with d = 8µm was fixed at the position r0 =
(75µm, 25µm), constrained to constant rotation about its center at an angular velocity
of 62800 rad/s. In case 2, the cell was fixed at the point r0 = (75µm, 12.5µm), while
its rotation was locked. For both cases, the drag force, lift force, and the torque on
the cell were evaluated in the stationary state, with our coupled multibody dynamics -
SPH approach (MBD-SPH), the immersed boundary Lattice Boltzmann code (IB-LB),
and ANSYS Fluent as finite volume solver. As to the spatial resolution, approximately
90-100 cells or particles were used per channel width b in case of MBD-SPH and IB-LB,
and a comparable resolution for the finite volume mesh. A comparison of the results is
given in Table 1. We find a very satisfactory mutual agreement within a few percent
for all cases and quantities, except for the lift force in case 1; the significant deviation
of the MBD-SPH result here will be subject to future investigation. Secondly, we have

Table 1: Comparison of results for the drag force fx in x-direction, the lift-force fy in y-direction and the

torque m acting on the cell for both stationary cases as discussed in the text, obtained from simulations

using the finite volume solver ANSYS Fluent, the IB-LB implementation, and our coupled MBD-SPH

approach.

Case 1 Case 2
Fluent IB-LB MBD-SPH Fluent IB-LB MBD-SPH

fx [10−3N] 2.60 2.64 2.70 2.11 2.13 2.22
fy [10−4N] -7.62 -7.96 -5.40 4.60 4.68 4.32
m [10−9Nm] -12.92 -13.57 -12.55 -1.48 -1.54 -1.43

investigated various dynamic cases in which the cells are driven by the flow, starting from
certain initial conditions. According to literature [18, 19], the cell approaches a lateral
equilibrium position (in y-direction), which, in general, does not lie on the centerline of
the channel. However, that position depends on the material properties of solid and fluid,
the cells geometry and size (compared to the channel width), as well as the Reynolds
number of the flow.

For a comparison between our approach and the IB-LB results, a rigid circular cell
with d = 8µm was placed in a channel of width b = 50µm, with v̄ = 2/3m/s (Re = 50),
at the initial position r0 = (42.5µm, 6µm) of the cell center and an initial velocity in
x-direction equal to the velocity of the corresponding Poiseuille flow at that position.
Furthermore, one test case simulated with our MBD-SPH formulation was added, where
the rigid cell was replaced by a deformable one which was modelled based on a linear
plate element, with the same circular shape in the undeformed reference configuration,
and an elastic modulus and Poisson ratio of 33000N/m2 and 0.45, respectively. The same
spatial resolution as for above stationary cases was used in all simulations.

The left-hand side of Fig. 3 summarizes our simulation results for the trajectory of the
cell center in y-direction. We see very good agreement between the two computations

9
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for the rigid cell, while keeping in mind that they have been performed with completely
different methods. As expected, the flexible cell exhibits a different behavior, and moves
towards another equilibrium position closer to the centerline of the channel while ex-
periencing both rotation and shear deformation (cf. also the right-hand side of Fig. 3).

0.0005 0.0010 0.0015
t s

5. 106

0.00001

0.000015
y m

Figure 3: Left: Results for the trajectories of the cell in y-direction moving in the channel flow: The solid
blue line and the dashed red line show the results for an identical simulation setup with a rigid circular
cell (see text) simulated with our MBD-SPH approach and the IB-LB implementation, respectively. The
dotted black line corresponds to a MBD-SPH computation where the rigid cell was replaced with a
deformable one, modelled with a linear plate element. Right: Snapshot of a simulation with the flexible
cell exhibiting shear deformation and rotation, shortly after the initial configuration. The contour plots
show the absolute velocity and the pressure field, respectively.

3.2 Example 2: Flexible fibers with fluid interaction

Especially in the context of industrial processes such as the production of composite
materials, the interaction of rigid or flexible fibers with fluids is an important aspect.
Due to the efficient multibody formulation of various beam elements (cf. also Sec. 2.1), as
well as the support of models for mechanical contact provided by HOTINT, the present
approach is well suited for the investigation of such fiber-fluid interaction problems.

We have set up some test examples involving a set of fibers modelled by ANCF beam
elements [17], including mutual mechanical contact as well as fiber-wall contact, which
shall be presented here concludingly without any quantitative analysis. Fig. 4 shows one
example of fibers moving in a channel flow (with periodic boundary conditions for the
fluid) aroung a rigid, fixed obstacle, as well as a snapshot of a simulation where fibers
immersed in a highly viscous fluid are injected into a mold by a piston pump. Here, the
coupled fluid-fiber simulation helps to understand the fiber placement and orientation
during an injection process.

10
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Figure 4: Left: Flexible fibers modelled by 2D ANCF beam elements [17] with fiber-fiber and fiber-wall

contact in a channel flow (from left to right) around a rigid fixed obstacle (white bar). Right: Flexible

fibers immersed in a highly viscous fluid during injection into a mold by a piston moving from left to

right; note also the free fluid surface in the mold. In both plots, the color map corresponds to the absolute

flow velocity.

4 OUTLOOK AND CONCLUSIONS

By direct coupling of flexible multibody systems with fluids modelled by means of
SPH we have developed a versatile approach to FSI which, in the present work, was
used for simulation of systems involving of rigid or flexible fibers or cells in microchannel
flows. Validation of the method could be provided by satisfactory agreement with refer-
ence simulations based on fundamentally different, mesh-based approaches – an immersed
boundary Lattice Boltzmann implementation, and the classical finite volume method.
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