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Abstract. The evolution of shear zones in initially medium dense cohesionless sand for quasi-
static earth pressure problems of a retaining wall was analysed with a 3D discrete element 
method DEM using spheres with contact moments. The passive sand failure for a very rough 
retaining wall undergoing horizontal translation was discussed. Attention was laid on some 
micro-structural events appearing in shear zones (force chains, vortex structures, local density 
fluctuations). The calculated geometry of shear zones was compared with experimental results 
of laboratory model tests and finite element calculations.  
 
 
1 INTRODUCTION 

Earth pressure on retaining walls is one of the soil mechanics classical problems. In spite 
of an intense theoretical and experimental research over more than 200 years, there are still 
large discrepancies between theoretical solutions and experimental results due to the 
complexity of the deformation field in granular bodies near the wall caused by a spontaneous 
emergence of shear localization in the form of single or multiple narrow zones, which is a 
fundamental phenomenon of granular material behaviour at large shear deformation [1,2]. 

For granular materials, once a shear zone is formed, further deformation is mostly 
accommodated by the material within a shear zone. The peak and post-peak response of the 
material is thus controlled by localized shear zones. It is necessary to understand the 
underlying nature of granular material behaviour within shear zones to fully characterize the 
softening and critical state material response at the macro-level. The knowledge of both the 
distribution of shear zones and distribution of shear and volumetric strains within shear zones 
are important to explain the mechanism of granular deformation. The multiple patterns of 
shear zones are not usually taken into account in engineering calculations.  

Investigations of micro-structure evolution in granular shear zones using DEM  
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The objective of the paper is a numerical investigation of a quasi-static evolution of 
deformation micro-structure within shear zone in initially medium dense cohesionless sand 
with the discrete element method DEM. The DEM calculations were carried out in passive 
earth pressure conditions in sand behind a rigid vertical wall, which was moved towards the 
backfill. The three-dimensional spherical discrete model was used, allowing for introducing 
grain rolling resistance in order to take into account the grain roughness. Particle breakage 
was not considered because of the relatively low pressure level assumed in the simulations. 
Several characteristic micro-structural events occurring in shear zones at the grain-level such 
as force chains, vortex structures, local void ratio fluctuations and strain non-uniformities 
were analyzed. 
 

2 DISCRETE ELEMENT METHOD 
To simulate the behaviour of sand, a three-dimensional spherical discrete model YADE 

was developed at University of Grenoble [3] by taking advantage of the so-called soft-particle 
approach (i.e. the model allows for particle deformation which is modelled as an overlap of 
particles). To maintain the numerical stability of the method and to obtain a quick 
convergence to a quasi-static state of equilibrium of the assembly of particles, damping forces 
were introduced. In the paper, spherical elements were used only. To simulate sand grain 
roughness, additional moments were introduced into a 3D model, which were transferred 
through contacts and resisted particle rotations [3]. In this way, grains were in contact with 
their neighbours through a certain contact surface. Our discrete element model can simulate 
different grain shapes by using different symmetric and non-symmetric clusters of spheres [4]. 
In our computational model we used exclusively spherical particles and we modelled the 
influence of contact flatness and thus the effect of the grain shape by assuming bending 
moments and bending stiffnesses at particle contacts. In our approach, the computation time 
was significantly shortened (calculations with spheres and contact moments are 3-5 times 
faster than those using complex clumps [4]). 

The interaction force vector F  representing the action between two spherical discrete 
elements in contact was decomposed into a normal and tangential vector, respectively. A 
linear elastic contact model was assumed. The normal and tangential forces were linked to the 
displacements through the normal stiffness Kn and the tangential stiffness Ks (Figs.1a and 1b) 

n nF = K UN  (1)

s s s sF F K X  = + Δ  (2)

where U is the penetration depth between elements, N
→

 denotes the normal vector at the 

contact point and sXΔ  is the incremental tangential displacement. The stiffness parameters 
were calculated with the aid of the modulus of elasticity of the grain contact Ec and two 
neighbouring grain radii RA and RB (to determine the normal stiffness Kn) and with the aid of 
the modulus of elasticity Ec and Poisson’s ratio νc of the grain contact and two neighbouring 
grain radii RA and RB (to determine the tangential stiffness Ks), respectively [5]  
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If the grain radius RA=RB=R, the stiffness parameters were equal to: Kn=Ec R and Ks=νc Ec 
R, respectively (thus Ks/Kn=νc). The frictional sliding started at the contact point if the contact 
forces sF

→
 and nF

→  satisfied the frictional Mohr-Coulomb equation (Fig.1a) 

0s nF F tanμ− × ≤ , (4)

where μ denotes the inter-particle friction angle. No forces were transmitted when grains 
were separated (tension was not allowed). The unloading was purely elastic. The elastic 
contact constants were specified from the experimental data of a triaxial compression test and 
could be related to the modulus of elasticity of grain material E and its Poisson ratio ν. A 
choice of a very simple linear elastic normal contact (Fig.1b) was intended to capture in 
average various contact possibilities possible in real sand.  

In order to increase the rolling resistance of pure spheres, contact moments were 
introduced [3]. The normal force contributed to the rolling resistance only. The contact 
moment increments were calculated by means of the rolling stiffness Kr (Fig.1B)

rM K ωΔ = Δ                      with                r s A BK K R R  β= , (5)

where β is the dimensionless rolling stiffness coefficient and ω
→

Δ  is the angular increment 
rotation between two spheres. In turn, the dimensionless rolling coefficient η controls the limit 
of the rolling behaviour  

2
A B

n
R R

M - Fη
+

≤ 0. 
(6)

To dissipate excessive kinetic energy in the discrete system, a simple local non-viscous 
damping scheme was adopted [6], which assumed a change of forces and moment by using 
the damping parameter α 

kk k k
dampedF F - sgn( v ) Fα= ⋅ ,            k k k k

dampedM M - sgn( ) Mα ω= ⋅ , (7)

where kF
→

and kM
→

are the kth components of the residual force and moment vector and kv
→

 

and kω
→

 are the kth components of the translational and rotational velocity [5]. A positive 
damping coefficient α is smaller than 1 (sgn(•) returns the sign of the kth component of 
velocity). The equations can be separately applied to each k-th component of a 3D vector x, y 
and z. Note that the effect of damping is insignificant in quasi-static calculations. The 
following five main local material parameters are needed for discrete simulations: Ec, νc, μ, β 
and η. In addition, the particle radius R, particle density ρ and damping parameters α are 
required. The material strength increases with increasing μ, β and η. 
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Figure 1: Mechanical response of linear contact model without (A) and with contact moments (A+B): a) 
tangential contact model, b) normal contact model and c) rolling contact model and C) loading and unloading 

path (tangential and rolling contact) [3], [5] 
 
The material parameters were calibrated with axisymmetric triaxial laboratory test results 

on Karlsruhe sand by Wu [7]. The index properties of Karlsruhe sand are: mean grain 
diameter d50=0.50 mm, grain size among 0.08 mm and 1.8 mm, uniformity coefficient U=2, 
maximum specific weight γd

max=17.4 kN/m3, minimum void ratio emin=0.53, minimum 
specific weight γd

min=14.6 kN/m3 and maximum void ratio emax=0.84. The sand grains are 
classified as sub-rounded/sub-angular. The triaxial compression laboratory tests were carried 
out with initially dense sand (initial void ratio eo=0.53) and initially loose sand (eo=0.80) in 
the confining pressure range σc=50-1000 MPa. 
 

3. DISCRETE RESULTS OF EARTH PRESSURE PROBLEM  
The discrete calculations were performed with a sand body of the length of 400 mm and 

height of 200 mm [2]. The height of the retaining wall was h=200 mm. The vertical retaining 
wall and the bottom of the granular specimen were assumed to be stiff and very rough, i.e. 
there were no relative displacements along a vertical and bottom surface. Since the effect of 
the specimen depth turned out to be almost negligible, discrete calculations were mainly 
performed with the specimen depth equal to the sphere size (i.e. only one grain layer was 
simulated in the perpendicular plane) in order to significantly accelerate simulations. 
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The calculations were carried out with three different mean grain diameters of spheres 
using a linear grain size range: d50=5.0 mm (grain size range 2.5-7.5 mm, 2’600 spheres) 
d50=2.0 mm (grain size range 1-3 mm, 15’600 spheres) and d50=1.0 mm (grain size range 0.5-
1.5 mm, 62’600 spheres). The initial void ratio of sand was eo=0.625 obtained by generating 
spheres at random locations within a confined volume, applying gravity and waiting for their 
settlement. The loading speed was slow enough to ensure that tests were conducted under 
quasi-static conditions. The calculations were carried out with the parameters based on a 
triaxial compression test [7]: Ec=0.3 GPa, νc=0.3, μ=18o, β=0.7, η=0.4, ρ=25.5 kN/m3, a=0.08 
with d50=1 mm, 2 mm or 5 mm. The computation time CPU was ca. 14 days (d50=2 mm) and 
30 days (d50=1 mm) using PC 3 GHz. 

Figure 2 presents the calculated evolution of the resultant normalized horizontal earth 
pressure force K=2Eh/(γh2d50) versus normalized horizontal wall displacement u/h (h=0.2 m) 
by means of DEM for the different sphere size d50=1-5 mm (Eh – the horizontal wall force). 
The normalized horizontal earth pressure force has a typical evolution for initially dense 
granulates during biaxial compression, triaxial compression and shearing. The specimen 
exhibits initial strain hardening up to the peak (u/h=0.03), followed by softening before 
reaching approximately an asymptote. It strongly fluctuates after the peak that is attributed to 
the build-up and collapse of force chains. For larger spheres, the parameter Kmax becomes 
higher. 

Figure 3 presents the typical particle configuration in the residual state (u/h=0.15) with the 
distribution of the sphere rotation ω. The red colour denotes the sphere rotation ω>+30o and 
the blue colour denotes the sphere rotation ω<-30o. The dark grey colour is related to the 
sphere rotation in the range 5o≤ω≤30o and the light grey to the range -30o ≤ω≤-5o (the positive 
rotation (+) denotes the clockwise rotation). All grains in the range -5o≤ω≤5o are in the 
medium grey colour. Shear zones can be clearly observed (only particles within shear zones 
significantly rotate). In turn, the distribution of the resultant sphere rotation ωc and void ratio 
e is demonstrated in the granular specimen in Figs.4 and 5 and in the main curved shear zone 
in Fig.6. The quantities ωc and e were calculated from the specimen area 5d50×5d50 that was 
moved by (1-2) grains. 

In general, the shear zones are clearly recognizable from the presence of the rotation ω and 
resultant rotations ωc, shear deformation and an increase of void ratio e (Figs.3-6) First, the 
main curved shear zone forms at the bottom of the moving wall and propagates up to the top 
boundary (d50=1-5 mm). Next, a radial shear zone appears at the wall top that propagates to 
the specimen bottom if d50=1-2 mm. Except of the two main shear zones, there exist also in 
all 3 cases other less visible localized zones. The geometry with d50=1-2 mm is similar as in 
experiments and in FE analyses [2]. The thickness ts of the main curved shear zone increases 
with increasing mean grain diameter d50 (Fig.6). At the residual state, it is ts≈50 mm (10×d50) 
with d50=5 mm, ts≈33 mm (16×d50) with d50=2 mm and ts≈20 mm (20×d50) with d50=1.0 mm 
based on the distribution of grain rotation ωc (Fig.6). It was assumed that shear localization 
takes place if |ω|>5o (Fig.6a). The width grows in the range u/h=0.02-0.11.The mean 
inclination of a curved shear zone to the horizontal is 40o (d50=1-5 mm) and is similar as in FE 
simulations [2]. In turn, the main radial shear zone is inclined to the vertical under 30o (d50=2 
mm) or 50o (d50=1 mm) (in FE calculations: 35o-45o [2]). The maximum grain rotation ω in 
Fig.6 is about ω=75o at u/h=0.15. 
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Figure 2: DEM results (passive case, translating wall): evolution of resultant normalized horizontal earth 
pressure force 2Eh/(γh2d50) versus normalized horizontal wall displacement u/h for different mean grain diameter 

d50=1-5 mm (γ=16.75 kN/m3, h=0.2 m, eo=0.63, d50=1-5 mm) 
 

  
a) b) 

c) 

Figure 3: Deformed granular body 0.2×0.4 m2 with distribution of rotation for initially medium dense sand 
(eo=0.62) from DEM at residual state of u/h=0.15: a) d50=5 mm, b) d50=2 mm and c) d50=1 mm (red colour denotes 

clockwise rotation ω>+30o, blue colour denotes anticlockwise rotation ω<-30o) 
 
The distribution of the resultant grain rotations ωc is non-uniform in the region between the 

wall and curved shear zone (Fig.3). It is non-uniform in the curved and radial shear zone along 
their length (Fig.4A) and width (Fig.6a). The resultant grain rotation ωc has its maximum in the 
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mid-width of the shear zone. It is equal to 70o (d50=1.0-2.0 mm) and 45o (d50=5.0 mm) at 
u/h=0.15. At u/h=0.05 it is 35o (d50=1.0 mm). A parabolic distribution of ωc and e across a shear 
zone (Fig.6) is similar as in FE calculations [2]. The distribution of void ratio across the shear 
zone is also strongly non-uniform with its maximum value along the centreline (Figs.4 and 6). 
The void ratio alternates along a shear zone in a nearly periodic fashion (Fig.5) as in biaxial 
compression tests based on the DIC technique [8]. The specimen globally dilates in the shear 
zones, however, the local void ratio can also reduce. Thus, local contractancy in the shear zone is 
obtained (Fig.6c). The maximum value of e in the shear zone at the residual state is about 0.74 
(Fig.6) and is similar as in FE calculations [2] (e=0.78). Beyond the shear zone, the void ratio is 
about e=0.63-0.65 (Fig.6).  
 

  
a)                                                                   b) 

 
Figure 4: Distribution of resultant grain rotation ωc (a) and void ratio (b) in initially medium dense sand 

(eo=0.62, d50=1 mm) from DEM at residual state of u/h=0.15  
(scale denotes grain rotation intensity in [o], yellow colour (+) - clockwise rotation) 

 
The evolution of the contact network in the granular specimen is demonstrated in Fig.7. 

The colour intensity represents the different compressive normal contact force between two 
particles (red colour – great normal contact forces, higher than average normal contacts, 
green colour – small normal contact forces, lower than average normal contacts). The 
distribution of internal contact forces is non-uniform and continuously changes. Force 
chains of heavily loaded grain contacts bear and transmit the compressive load on the 
entire granular system and are the predominant structure of internal forces at micro-scale. 
They build up and collapse. The force chains are created mainly in a region between the 
wall, radial and curved shear zone and along a curved shear zone. They are the highest at 
the wall (Fig.7A). Thus, the anisotropy of the numerical test is very strong due to obliquely 
oriented force chains. In a curved shear zone at the residual state, the strongest force chains 
are perpendicular to the shear zone line (Fig.7Bc).  

The number of contacts diminished in a curved shear zone during wall translation due to 
sand dilatancy leading to a reduction of the stability of force chains (Fig.7B). At the 
deformation beginning, the total contact number in the granular specimen was equal to 
119’154 (and for the small region of Fig.7B, the contact number was 10’090). When a 
shear zone was started to form, this number decreased down to 109’859 (8 946) at 
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u/h=0.045. At u/h=0.09 the contact numbers was 108’276 (8’538), and at u/h=0.15 was 
107’777 (8’038).  
 

  

Figure 5: DEM results (eo=0.625, d50=1 mm): distribution of void ratio e in mid-region of curved shear zone in 
initially medium dense sand at horizontal wall displacement of u/h=0.15 (vertical left axis – vertical co-ordinate, 

vertical right axis - void ratio, horizontal axis – horizontal co-ordinate, solid lines - edges of shear zone) 
 

   a) 
 

  
b)                                                                                  c) 

Figure 6: DEM results (initially medium dense sand, eo=0.625): a) distribution of resultant grain rotation ωc 
across curved shear zone width ‘y’ in initially medium dense sand at residual state of u/h=0.15 for different mean 

grain diameter d50=1-5 mm, b) distribution of ωc against u/h (d50=1 mm) and c) distribution of void ratio e against u/h 
(d50=1 mm) (dotted line in ‘b’ corresponds to average values) (vertical solid line – edges of shear zone) 
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 A) 
                                               a)                                                                      c) 

   B) 
                                     a)                                            b)                                              c) 
 
Figure 7: Distribution of contact normal forces between spheres (eo=0.62, d50=1 mm) from DEM at: a) u/h=0.02 

(without shear zone) b) u/h=0.06 (shear zone appearance), c) u/h=0.15 (full development of shear zone): A) entire 
granular specimen, B) zoom on mid-region of curved shear zone 

 
Figure 8 presents a spontaneous occurrence of displacement fluctuations in the shear zone 

in the form of clusters of circulating cells (so-called vortex structures) observed both in quasi-
static experiments [9,10] and discrete simulations [11,12]. It is hypothesized that this non-
uniform micro-structure is related to buckling of force chains. The plots were obtained by 
drawing the displacement difference vector ( −iV avgV ) for each sphere with respect to the 
background translation corresponding to the homogeneous (affine) strain ( iV  represents the 

sphere displacements during e.g. 100 iterations and ∑=
n

i
iavg V

n
V 1

 are the average 

displacements). The individual particle displacements are able to form large long-range 
deformation vortex structures, wherein cells rotate as a rigid body whereas the space between 
them is characterized by intense shear deformation. The vortex-like patterns are well 
recognized in particular at the residual state with the highest mean grain diameter d50=5 mm 
(Fig.8). Several vortices (3 at d50=5 mm and 10 at d50=1 mm) occur along a curved shear zone 
with the diameter of about ts. They rotate anticlockwise. The distance between vortexes is 
variable – some of them are close to each other (at the distance of about ts) or far away from 
each other (at the distance of about 5×ts).  
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a) 

b) 

c) 
                                                      A)                                                        B) 

Figure 8: DEM results: formation of displacement fluctuations in form of vortex structures in curved shear zone 
at residual state of u/h=0.15: a) d50=5 mm, b) d50=2 mm and c) d50=1.0 mm,  

A) entire granular specimen, B) zoom on mid-region of curved shear zone 
 

A link between force chain, vortex structure and void ratio changes in the region 70×100 mm2 
of a curved shear zone at the residual state during wall normalized displacement interval of 
u/h=0.01 (from u/h=0.15 up to u/h=0.16) is described in Fig.9 with d50=5 mm.  

A vortex structure exists at u/h=0.15 (Fig.9Aa) and is not visible at u/h=0.16 (Fig.9Ba). In 
turn, a force chain vanishes at u/h=0.15 (Fig.9Ba) and a new force chain occurs at u/h=0.16 
(Fig.9Bb). Small dilatancy occurs close to a broken force chain (Figs.9Ac-9Ae) and small 
contractancy happens near a new force chain (Figs.9Bc and 9Bd). Thus, the occurrence and 
vanishing of vortex structures strictly corresponds to force chain changes.  

 

4. CONCLUSIONS 
- DEM realistically predicts the experimental results of a pattern of shear zones in the 

interior of initially medium dense sand behind a retaining wall. The global wall 
pressure increases with increasing mean grain size. Grain rotations are noticeable 
only in shear zones. Dilatancy takes place in shear zones with small local 
contractancy regions.  
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  a) 

  b)  

               c)  

     d) 

         e)  
                                         A)                                                                       B) 

Figure 9: DEM results (eo=0.62, d50=5 mm): evolution of micro-structures in curved shear zone for normalized wall 
displacement interval of u/h=0.01 at u/h=0.15 (A) and u/h=0.16 (B): (solid lines- shear zone edges) a) map of 

displacement fluctuations of Fig.15Ba (red dashed line – broken force chain, black dashed line – new force chain), b) 
geometry of force chains between spheres (red dashed line – broken force chain), c) and d) zoom on geometry of 
force chains and spheres (red spheres are in force chain, yellow colour between spheres denotes higher void ratio, 

blue colour between spheres denotes lower void ratio), d) map of void ratio with intensity scale (red colour 
corresponds to higher void ratio, black dotted line - broken force chain, white dotted line - new force chain) 

new force  
chain  

broken force chain  
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- In shear zones, vortex structures and local void ratio fluctuations systematically occur 

that seem to have a periodically organized structure. The number of vortices 
increases with decreasing mean grain diameter. The distance between vortices 
increases with increasing mean grain diameter. The vortices are a direct 
manifestation of grain rearrangement.  

- The distribution of internal contact forces is non-uniform due to a build-up and 
collapse of force chains. The number of contact forces continuously decreases in a 
granular specimen due to material dilatancy.  

- The deformation of force chains plays a key role in the formation of vortex 
structures. The collapse and build-up of force chains is connected with vanishing and 
appearing vortices, respectively. The collapse of force chains leads also to a 
formation of larger voids and their build-up to a formation of smaller voids.  
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