I1I International Conference on Particle-based Methods — Fundamentals and Applications
PARTICLES 2013
M. Bischoff, E. Onate, D.R.J. Owen, E. Ramm & P. Wriggers (Eds)

NUMERICAL SIMULATIONS OF DENSE SUSPENSIONS
RHEOLOGY USING A DEM-FLUID COUPLED MODEL

D.MARZOUGUI'!, B.CHAREYRE! AND J.CHAUCHAT?

1 Grenoble INP, UJF, UMR CNRS 5521, 3SR Lab.
BP 53, 38041, Grenoble cedex 9, France
donia.marzougui@3sr-grenoble.fr

2 Grenoble INP, UJF, UMR CNRS 5521, 3SR Lab.
BP 53, 38041, Grenoble cedex 9, France
bruno.chareyre@3sr-grenoble.fr

2 Grenoble INP, UJF, UMR CNRS 5519, LEGI
BP 53, 38041, Grenoble cedex 9, France
julien.chauchat@grenoble-inp.fr

Key words: DEM, PFV, suspension, lubrication, hydromechanical coupling, viscosity

Abstract. The understanding of dense suspensions rheology is of great practical interest
for both industrial and geophysical applications and has led to a large amount of publica-
tions over the past decades. This problem is especially difficult as it is a two-phase media
in which particle-particle interactions as well as fluid-particle interactions are significant.
In this contribution, the plane shear flow of a dense fluid-grain mixture is studied using
the DEM-PFV coupled model. We further improve the original model: including the
deviatoric part of the stress tensor on the basis of the lubrication theory, and extending
the solver to periodic boundary conditions. Simulations of a granular media saturated
by an incompressible fluid and subjected to a plane shear at imposed vertical stress are
presented. The shear stress is decomposed in different contributions which can be ex-
amined separately: contact forces, lubrication forces and drag forces associated to the
poromechanical couplings.

1 INTRODUCTION

The rheology of grain-fluid mixtures is subject of practical interest for both industrial
and geophysical applications. When the solid fraction of such mixture is high enough,
i.e. in dense suspensions, the bulk behavior is affected by intricated phenomena combin-
ing the viscosity of the fluid phase as well as the interactions between the solid particles
through solid contacts. Moreover, the contact interactions may be modified by the pres-
ence of the fluid, as described by lubrication theories. Additionaly, in transient situations,
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poromechanical couplings may develop long range interactions by coupling the local rate
of volume change to the pore pressure field.

Direct particle-scale modeling of this problem is a promising way to better evaluate
the interactions between phases and to link the microscale properties and phenomena to
the quantities measured for the bulk material, as it needs much less simplifications than
former analytical developements (such as [6, 11, 1]). This modeling can be based on lubri-
cation models [9], or more elaborated methods to reflect the fluid viscosity through pair
interactions between particles [14]. This is advantageous as it does not need to actually
solve Navier-Stokes (NS) equations in the fluid phase. The price to pay is that long range
interactions due to poromechanical couplings are difficult to reflect. An alternative is
to really solve NS in the fluid phase using a CFD solver, or to use a lattice-Boltzman
model [7]. It is to be noted that direct resolution of NS does not eliminate the need for
a proper modeling of the lubrication forces, due to mesh size dependencies [8]. The main
difficulty associated to this approach is the high computational cost, so that following
large deformations of thousands of immersed particles in 3D remains a challenging task.

A new method to simulate fluid-particle interactions has been developped recently
and may be of some help to tackle the computational challenge [3]. In this method, the
solid phase is modelized with the discrete element method (DEM), and the fluid flow is
solved using a pore-scale finite volume method (PFV). The key aspects of this DEM-
PFV coupling are recalled in the first part of this paper. It was implemented in the
open source code Yade-DEM [12]. Extensions of this method in order to study dense
suspensions are being undertaken by the first author. Namely, the original model lacks a
coupling term to link the fluid forces to the deviatoric strain, as explained in section 2.2.
We also generalized the boundary conditions in order to allow very large deformations of
the suspension in simple shear. Typical results of the preliminary enhanced model are
presented in the last part.

2 NUMERICAL MODEL
2.1 Original DEM-PFV Coupled Model

Our DEM approach defines the mechanical properties of the interaction between grains
whose shape is assumed to be spherical. Following Newton’s laws, the positions of particles
are updated and calculated at each time-step of the DEM simulation. As introduced in
[4], the PFV formulation is based on a simplified discretisation of the pore space as a
network of regular triangulation and its dual Voronoi graph (1).

This network simplifies the formulation and resolution of the flow problem. The con-
tinuity equation is expressed for each pore, linking the rate of volume change of one

tetrahedral element Vif to the fluxes ¢;; through each facet. Each flux can be related to
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Figure 1: Regular triangulation (left) and Voronoi graph (right).

the pressure jump between to elements via a generalised Poiseuille’s law, so that

. Ja
V=" ai = Kij(pi —py) (1)
J=j1
couples the particles velocity to the fluid pressure field. The expression of conductivity

K;; has been validated recently by comparisons with glass beads experiments [10].
The total force exerted by the fluid on particle k£ can then be defined as [5]:

FF = / pk(I)(a:)nds—i—/ pnds+/ nds (2)
o' o'y o'y

Fk,buoyancy + Fk,pressu're + Fk,mscous (3)

2.2 Lubrication Forces

As classical poromechanics, the original DEM-PFV model takes into account the
isotropic part of the stress and strain tensors (pressure and divergence of solid phase
velocity) in the coupling (eq. 1 in our case). The contribution of the fluid to the bulk
shear stress is de facto neglected. It is worth noting that the shear part of the coupling is
similarly lacking in discrete models inspired by the coupling equations of poromechanics,
such as the continuum-discrete methods [15, 16].

In order to deal with sheared suspensions, another viscous contribution has to be
introduced for modeling the shear stress. Various ways may be used for this purpose
such as viscous forces obtained in the framework of the lubrication theory developed by
Van Den Brule [11]. The shear lubrication force defined by equations 4 seems to be in
concordance with the formulation obtained by the Finite Element Method (the Stokes
solver of Comsol is used for this purpose). Results of this comparaison performed on a
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simple configuration of a sphere rotating at a given angular velocity in a regular assembly
of identical particles, are shown in figure (2).

10
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—g. (2) (1): periodic boundary: conditions.
(2): shear velocity and pressure are zero.
(3): normal velocity and pressure are zero.
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Figure 2: Comparaison of viscous shear forces for the case of rotating sphere in a reqular assem-
bly of particles. h is the surface-to-surface distance and r is the particles radius.

2
Figt = "2t gin()o and = Smito, ()

w is the fluid viscosity, r the particle’s radius, q the distance between particles;h is the
surface-to-surface distance and v; and v,, are respectively the shear and normal velocity
of the particle.

The normal interaction between two elastic-like particles in a viscous fluid is described
by the Maxwell visco-elastic scheme (figure 3) which combines a spring of stiffness k
in series with a pad of viscosity 1. This combination between the lubrication and the
elasticity is close to that adopted by Rognon [9]. The force generated from this model is
then: F = ku, = vu, where k is the model’s stiffness, u, is the elastic displacement, wu,, is
the viscous displacement (u = u, +u, is the total displacement) and v is the instantanious
viscosity of the model defined, using the equation 4 as:

3.2
_571'7“,&
V= .

Uy

By equalizing the elastic force and the viscous force, we have:
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Using the finite difference method, F can be written as F' = (Ft — F7)/At (F* =
F(t+dt) and F~ = F(t)). By substituting this relation into equation 5, we obtain:

3 (= —7)
+_ 92 _ 2 kAt
FT = 5T — (6)
u _——
k
When we express F'" as a function of F'~, the normal lubrication force is:
F
v+ ——)
F—Ft — -~ kVAt (7>
kAt

2.3 Periodic Boundary Conditions

As the system is considered infinite in the flow direction, some problems can arise from
the boundary effects in the numerical simulation. In order to avoid such problems, periodic
boundary conditions are implemented in the PFV model (figure 4) (the periodicity for
the DEM part was developped independently [13]). Denoting by S = [sq, sq, s3] (figure 4)
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the period size in the three dimensions and by i € N® is the distance between one point
of coordinates r and its periodic image r’ =r + S -i in an adjacent period, then the pore
pressure is expressed as follow:

p=p+vp-Sxi (8)
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Figure 4: 2D periodic cell

3 NUMERICAL RESULTS

We generate an assembly of N=500 frictional grains of average diameter d = 0.1440.03,
density p = 2500 and friction angle ® = 30. The assembly (Figure 5) is H=13d high,
L=9d large and 1=9d wide. The granular material is first confined under a constant
pressure P, then sheared without gravity, between two parallel walls distant from H and
moving at a velocity £V/2 respectively. In order to satisfy a quasi-static regime, V is
chosen to be small so that the inertial number I = d¥+/p/P is less than 1073,

Simulations of such an assembly saturated of an incompressible fluid of viscosity pu
av

and submitted to a simple shear with shear rate ¥ = 95 at imposed vertical pressure P
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Figure 5: Simulation cell. The boundary conditions are: ug, = V/2, oyy = P, u, =0 and fluid
pressure is zero. Periodic boundary conditions are applied in the x and y directions.

are presented. The viscous stress is decomposed in different contributions which can be
examined separately: contact forces, lubrication forces and drag forces associated to the
poromechanical coupling.

Figure 6 shows the different contributions of each force applied on the granular media.
Contrary to what is sometimes postulated in the litterature, our numerical results show
that tangential lubrication forces are significant compared with the normal ones. The
total shear stress applied on the material, being dry in the first stage, increases twice
when the normal lubrication force is applied. The shear lubrication force, added after, is
not negligeable; it participates with around 80% of the normal contribution. This result
is interesting as tangential lubrication forces usually neglected compared with the normal
ones (e.g. Rognon et al [9])

4 CONCLUSIONS

In this contribution, we presented a new hydromechanical coupled model able to de-
scribe the behavior of dense granular materials subjected to a shear flow under constant
pressure. Contrary to what is sometimes postulated in the literature, the tangential lu-
brication forces are significant compared with the normal ones. The proposed numerical
model is able to describe the behavior of dense suspensions; the friction and dilatancy
laws u(1,) et ®(1,), respectively, will be compared to experiments and rheological model
from the litterature [2] in future work.
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Figure 6: Shear stress applied on the granular media function of the shear rate. In a first stage we
generate a dry material. Normal lubrication forces are added when 40% of skeleton’s
deformation are reached. Shear lubrication forces are applied then. Finally, pressure
forces associated to the poromechanical coupling are applied.
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