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Analysis of Predetection Diversity TCM-MPSK
and Postdetection Diversity TCM-MDPSK Systems
on a Rayleigh Fading Channel

Guillem Femenias, Member, IEEE, and Ramon Agusti, Member,IEEE

Abstract - In this paper, the bit error rate (BER) performance
of predetection diversity trellis coded multilevel phase shift keying
(TCM-MPSK) and postdetection diversity trellis coded multilevel
differential phase shift keying (TCM-MDPSK), transmitted over
a Rayleigh fading channel is presented. Novel analytical upper
bounds using the transfer function bounding technique are
obtained and illustrated by several numerical examples. A new
asymptotically tight upper bound for the Maximal Ratio
Combining (MRC) diversity schemes is also derived. In order to
analyze practical TCM schemes (four or more states), only trellis
codes holding uniform error property (UEP) and uniform distance
property (UDP) are considered, enabling the encoder transfer
function to be obtained from a modified state transition diagram,
having no more states than the encoder itself. Monte-Carlo
simulation results, which are more indicative of the exact system
performance, are also given.

I. INTRODUCTION

In recent years there has been an increasing interest in
digital transmission in the field of mobile radio. The mobile
radio channel is a multipath propagation medium, and hence if
a relatively low bit rate signal with a bandwidth much smaller
than the coherence bandwidth of the multipath channel is
transmitted, signal envelope variation (multiplicative fading)
and random FM noise will produce high error rates even with
high average signal to noise ratios and place a lower limit on
the achievable bit error rate (BER). One of the most efficient
techniques to reduce fading effects is space diversity reception,
in which several signals received on different antennas are
combined [1], [2]. Another attractive technique is forward error
correction (FEC) coding. Trellis coded modulation (TCM),
originally developed for additive white Gaussian noise
(AWGN), combined with interleaving, is known to have a
powerful error correction capability in fading channels.
Furthermore, the coding gain relative to the uncoded systems
is available without extra bandwidth requirements and with
simple decoders using the Viterbi algorithm. This property
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makes it suitable for transmitting digital sequences over
bandlimited channels. Although previous papers [3]-[6] have
been devoted to the BER performance analysis of TCM
schemes on mobile fading channels, no analysis has been so
far reported for their BER performance taking space diversity
into consideration.

This paper investigates the BER performances of
predetection diversity trellis coded MPSK (TCM-MPSK) and
postdetection diversity trellis coded MDPSK (TCM-MDPSK),
over a Rayleigh fading channel. The results are obtained by
using a combination of theoretical analysis and simulation. In
performing the analysis a number of simplifying assumptions
are made. First, a theoretically ideal block
interleaving/deinterleaving of channel signal is assumed in
order that the channel may be considered as memoryless. This
assumption leads to independent fading of the adjacent
demodulated symbols and allows for considerable
simplification of the analysis. Second, it is also assumed that
fading over one baud interval may be represented by a single
fading amplitude (slow fading approximation). Third, it is
assumed that for TCM-MPSK systems the effect of the fading
on the phase of the received signal is fully compensated for at
the receiver and that for TCM-MDPSK systems the effect of
frequency offsets between transmitter and receiver local
oscillators is fully compensated for by tracking it with an ideal
automatic frequency control (AFC). Thus, our results will
address the degradation due to the effect of the fading on the
amplitude of the received signal. Finally, although all
simulation results reflect a finite decoding delay of six times
the convolutional encoder constraint length, an infinite
decoding delay is assumed in the analysis of the Viterbi
decoding process.

The paper is organized as follows. The system and analysis
models are presented in Section II. Section III contains the
derivations of the average bit error rates for both predetection
diversity coherent systems (TCM-MPSK) and postdetection
diversity incoherent systems (TCM-MDPSK), considering a
trellis decoder implemented as a Viterbi algorithm with a
metric depending upon whether or not channel state
information is available. In Section IV, an improved
asymptotically tight upper bound for the Maximal Ratio
Combining (MRC) diversity schemes is derived. Finally,
discussion and conclusions are presented in Section V.

II. SYSTEM AND ANALYSIS MODELS

The baseband system model under investigation is
illustrated by the block diagram in Fig. 1. The elements
indicated in dashed lines represent system functions that are
peculiar to the form of detection, i.e., coherent versus
differentially coherent. Input bits (representing data or digitally
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Fig. 1. Baseband system model.

encoded speech) at rate R, are encoded by a rate k/(k+1) trellis
encoder producing an encoded symbol stream at rate
[(k+1)/k]R,. Trellis coded symbols (groups of k+1 bits) are
next block interleaved to randomize the distribution of symbols
affected by amplitude fading of duration greater than one
symbol period and mapped, according to the mapping by set
partitioning rules [7], onto an MPSK or MDPSK (M = 2%!)
channel signal set. Transmitted signal is faded and corrupted
by AWGN passing through the fading channel. At the receiver,
in-phase and quadrature components are combined,
demodulated, quantized for soft decision and block
deinterleaved. Using these quantized symbols, the Viterbi
decoder detects the transmitted sequence based on maximum
likelihood estimation. Filtering is assumed to be of Nyquist
type, equally split between emitter and receiver.

For a received sequence of length N, Y,=(y,,....yn), the
metric between Y, and any transmitted signal sequence
Xy=(x,,...xy), is of the form m(Yy, X, Z,) if side information
is available and m(Y,, X)) if it is not. The metric is used by
the decoder to make decisions as to which sequence was
transmitted given the corresponding channel output sequences.
Whatever metric is selected, to simplify the decoder processing
complexity, it is required to have an additive property, i.e.,

N
m(Yy, Xy Zy)= Em(yn, X, Z,) -

n=1

1)

Letting m(Y,, X, Z,) denote the coding decision metric, the
decoder incorrectly decides that the transmitted coded sequence
is Xy # Xy when

m(Yy, X Zy)<m (Y, X5 Z,y) €3]

with a probability P(X,—X,) which is called the pairwise error
probability. By our previous assumptions

P(Xy=Xy) =Pr(m(Yy, Xy; Z,)2m(Y ), Xy; Z,y) | X,,) 3
=Pr(f20]X,)

where

f=m(Yy, Xy Zy) -m(Yy, X3 Zy,) - @
An upper bound on the average bit error probability is obtained
from P(Xy—Xy) as [8]

Pos Y Y Y alX . X0 p(X)P(Xy~X) O

N-L Xy %

375

where a(Xy.Xy) is the number of bit errors occurring when X,

is transmitted and X, is chosen by the decoder, p(X,) is the a

priori probability of transmitting X, and L, is the length of the

shortest error event. If in one way or another the pairwise error

probability can be expressed in product form, i.e.,
N

PXy~Xy =0 ] W(x,.%,) 6)

n=1

with O being a constant, then

) N
P,<Y Y Y aX,. X0 P(X) 0 [ W(x,.8) (D
n=1

N<L, Xy

and the pair state generalized transfer function bound approach
presented in [9] could be used for evaluating the average bit
error probability bound just described. In fact, by labelling
each branch between pair states in the transition diagram with
a gain G of the form

G=L T 2 Wz, 5,),

where the summations account for the possibility of parallel
paths between pair-states in the trellis diagram, expression (7)
reduces to

®

o 3T(Z)
KN, 9z

P,< ©

Z=1

where T(Z) denotes the transfer function of the pair-state
transition diagram and N, is the number of states of the trellis
encoder. This approach, which has a complexity proportional
to the square of the number of encoder states, is not considered
practical for analyzing trellis encoder structures with more than
two states. However, if the codes hold the Uniform Error
Property (UEP) and the Uniform Distance Property (UDP)
discussed in {10], without loss of generality, any transmitted
sequence X, can be chosen. In this case, a more efficient
procedure (complexity proportional to the number of encoder
states) for evaluating expression (7) is the modified state
transition diagram transfer function bound approach proposed
in [11]. In fact, by labelling each transition between states in
the modified state transition diagram with a gain G of the form

G- Z Za(t.:i',.) W(Xn,f") , (10)
2

the average error probability upper bound can be expressed as
b 9T(Z)

11
k 9z (v

P, <
z=1

where T(Z) denotes the transfer function of the modified state
transition diagram.

Taking into account that any trellis encoder consists of a
linear binary convolutional encoder followed by a memoryless
set of channel symbol assignments, determination of the
encoder transfer function now requires specification of the
binary convolutional encoder used at the transmitter. In this
paper, only trellis codes holding UEP and UDP are considered.
In particular, the rate 2/3 eight-state Ungerboeck’s code [7],
implemented by means of a systematic encoder with feedback
is analyzed.
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III. AVERAGE BIT ERROR PROBABILITY BOUNDS
A. Predetection diversity coherent systems (TCM-MPSK)

In phasor notation the nth element of the coded symbol
sequence Xy, namely x,, can be written as

xn=‘/2Esej¢"
where E=kE, is the energy per MPSK symbol. The
transmitted bandpass signal is

x(5) = Re {x(r) &’} =Re{zk: %, hT(t—kT)e""‘t} (13)

(12)

where , is the carrier angular frequency, h4{(f) represents the
impulse response of the transmission filter and T is the symbol
period.

Assuming, in general, a K branch diversity system, the
complex envelope of the received signal on the kth receiver
(k=1, 2, ..., K) can be expressed as

r ()= x (D x(@)+v, () (14)

where v,(#), which represents the additive thermal noise at the
receiver front-end, is a zero-mean complex Gaussian noise
process with single-sided power spectral density N, and

Xk(t) = Pk(t) exp[j‘l'k(t)]

which represents the multiplicative Rayleigh fading
characteristic of the channel, is a normalized (unit mean-square
value), stationary, zero-mean complex Gaussian process. If the
antenna spacing has been chosen so that the individual signals
are uncorrelated then, each of the K antennas in the diversity
array will provide an independent signal to the K-branch
diversity combiner. A variety of techniques are available to
perform the combining process and to capitalize on the
uncorrelated fading exhibited by the K antennas in the
space-diversity array [1], [2]. In maximal ratio combining
(MRC) the K signals, after being cophased, are weighted
proportionally to their signal voltage to noise power ratios and
then summed. It is known that MRC provides the maximum
possible improvement that a diversity system can attain
through a fading channel. It may not always be convenient or
possible to provide the adaptive weighting capability required
for true maximal ratio combining. Instead, the gains may all be
set equal to unity, and equal-gain combining (EGC) results.
Finally, if the combiner connects to the output the receiver
having the highest baseband signal-to-noise ratio, selection
diversity combining (SC) results. Thus, the signal at the output
of the combiner will be given by

K

g=Y [prx(0) +x; (v, (0] (MRC) (16

k=1

15)

K N
g0=Y [p(0x() +e”vy(n] &) D
k=1

= + =Jw(D)
8= p () x(t) +e v, (1) s . (9

P(D)>p (1) V q#k, qe€[l,..,K]

Then, the signal received at the output of the reception filter,
hg(?), can be expressed as

K
w(t)=Y [Z X, pe(2) h(2-1T) +x;(2) nk(t)] MRc) (19)
k=1 1

(EGC) (20)

K ;
w(t)=Y | x,p, () h(t-IT) +e 7" n (1)
k=1 1

w(D)=Y x,p, () h(-IT) +e " n,(n) (SC) @1
!

where h(t)=h{(t)*hg(t) represents the overall impulse response
of the system for a perfect non selective transmission medium
and n(t) is a filtered complex Gaussian noise process.

The signal at the output of the reception filter is sampled by
an A/D converter at time t,=nT+7T, where -T2 <t1<7/2
determines the sampling instant. Assuming a perfect clock
recovery, 1=0, the complex sample at the output of the
deinterleaver will be given by

K
Yo=Y [Pra 2B, € 2l am, | MRO) (D)
k=1
K .
12=X [prn 2B re¥on, | (BGC) @)
k=1
Y= Pm 2Esej¢"+e—j‘pk'""k,n (SO), (24)

where, for simplicity of notation, we have dropped the delay
introduced by the interleaving/deinterleaving process.

1) Ideal Channel State Information: The assumption of
ideal channel state information means that the fading
amplitudes p; ,, k=1, 2,..., K, are known at the receiver. In
this case, assuming a soft Viterbi decoding it can be shown
that the maximum-likelihood (ML) branch metrics are,

m(y,sx,32,) = |y, - x,[°  (MRC) (25)
K 2
MO %ai2) = V0= X Prata| (EGC) (26
k=1
My, %,52,) = ~|Y. = Pra %[ (SO). 27

Therefore, the following expressions for the average bit error
probability upper bound can be obtained (Appendix A),

Pysy ¥ ¥ aXy Xp(Xp < 11

1
N-L, Xy %, 2 7én

-K

E: 2
1+ d,
4C,N,

28
where C,=1 or g for MRC or EGC, respectively, and @8
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PbS E EG(XN,XAN)I,(XN)
N=L, Xy %,
i (K-1 (29)
LN K (-1)'K ;
7 11 _ 5 (SC) .
melis0 L s d:
4N,
For large E/N,, expressions (28)-(29) simplify to
. 1 E 7K
5 2
Pos 3 3 Y aXy X0pO) 2 I | 7o md | G0)
N-L Xy X, nen 1Yo

with C,=(K!")"X for SC. It is observed that the upper bound on
P, is dominated by the terms in the summation which have the
smallest number of elements in n. These are referred as the
shortest error event paths. Then, asymptotically, (30) can be
simplified as

-KL

s

1 E,

< C GD
2k *{ 4N,

P,

-

where C, is a constant that depends on the type of diversity, on
the distance structure of the code and is inversely proportional
to (B*), with B? being the product of the normalized squared
Euclidean distances along each of the shortest error event
paths. Thus the code design criteria for minimizing BER after
decoding is to maximize the length of the shortest error event
paths and the product of the squared Euclidean distances along
these paths. Furthermore, it is observed that the effect
produced by the use of space diversity is similar (except
constants) to that produced by the use of TCM. It is also
interesting to notice that both factors, K and L, are
multiplicative one with respect to the other.

Using the results of (28)-(29), transfer function (TF) upper
bounds for the eight-state Ungerboeck’s trellis-code in
Rayleigh fading, with the number of diversity branches as
parameter, are presented in Figs. 2-4'. Monte-Carlo simulation
results are also provided and clearly indicate that the upper
bounds become tighter as the number of diversity branches
increases and thus the Rayleigh fading tends to be
compensated for. The performance of QPSK reference systems
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Fig. 4. BER vs E/N,. Eight-state trellis code, ideal CSI, Predetection
SC K=1,2,3.

is also presented. From these results, it can be observed that
for average bit error rates of practical interest the trellis-coded
modulation schemes perform better than uncoded schemes. For
example, at an average BER of 107?, of interest in digital
speech transmission, the eight-state trellis-coded systems,
regardless of the predetection diversity scheme used at the
receiver, offer coding gains relative to the corresponding
uncoded QPSK reference systems of about 11.75 dB, 5.8 dB
and 4.1 dB for K equal to 1, 2 and 3, respectively. Thus, it is
obvious that relative coding gain lessens as the number of
antennas in the diversity array is increased, therefore only
diversity systems with up to three antennas will be considered
of practical interest. It can be observed that for high signal to
noise ratios, regardless of the system, predetection EGC and
predetection SC are only, respectively, 0.62 dB and 1.5 dB
inferior to predetection MRC for K=2. For K=3, predetection
EGC and predetection SC are, respectively, 0.85 dB and
2.59 dB inferior to predetection MRC.

! For clarity reasons, curves are not labelled with the corresponding value
of K. Anyway, they can be easily identified by its slope and because of its
lower BER when increasing K.
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2) No Channel State Information: When no CSl is provided
the Gaussian metric takes the form

MYy x,)= =1y, =%, 17 (32)

Thus, average bit error probability can be upperbounded as
(Appendix B),

P, <min fj Y ¥ a(xy. Xy)p(Xy)

A zON=]_’ Xy XN

2ekexp kaig2 Ze
Lyt « 0N, (EGC)
2 aer (K-1)!
- 2k- E
TR exp| | exRy + g Kd:—R,||dR,
0 NO
(33)
P,<min ¥ ¥ ¥ a(X,, Xy)p(Xy)
A20N-L, Xy 1,
E M1y .
L] 2kexp| 2222 | Y (M. 1)(—1)'- (5C) .
2 én Ny im0 i
(34)
-f"'R exp| -| (1 +i)R? + hod> E: g lar
o n n [} nNO n n

These integrals are easily evaluated using iterative integration
techniques, i.e.,

I = foka e (ax+bx) gy
(35)

|~

[_xk—l e"(“"z*bx) - b]Ik—l + (k- 1)]11‘_2]"0'

N oo

a
for k =1, 2, 3, ... and with
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I,= 1| = ey b_ .
2\ a 2/a

Using numerical techniques to perform minimization over
the Chernoff parameter in (33) and (34), transfer function
upper bounds for the eight-state trellis-code , with the number
of diversity branches as parameter, are presented in Figs. 5 and
6. Monte-Carlo simulation results and the performance of
QPSK reference systems are also shown. By comparing these
results with the corresponding results for ideal CSI, a
performance degradation of approximately 1.5 dB can be
observed.

For large E/N, the asymptotic expansion of the
complementary error function can be used, in which case the
pairwise error probability reduces to

2ek (2K-1)!
(K-1)!

(36)

P(xN~XN) < tmin 11

A20 2 nen

E
exp| KAZd: —2 7

]
2. (EGC)

N,

E
[xomz ,
0

E

exp[lf,d:—’]

5 .1 0
- X —\ o) 38
P(Xxy XN)SX;‘JZII('; E,(ZK)' o (5C). (38)
i

No

These expressions can be optimized over the Chernoff
parameter. Performing this optimization gives

RS> d:]'m

Ny nen

(39
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where L, is the length (diversity order) of the error event path
corresponding to X, i.e., the number of elements in 1. Thus,
A, is a function of the distance structure of each individual
error event, and not the ensemble. This could explain the fact
that the transfer function bounds for the case of no CSI be
approximately 1-1.5 dB weaker than the corresponding transfer
function bounds for ideal CSIL

B. Postdetection diversity incoherent systems (TCM-MDPSK)

In this case, the nth element of the interleaved trellis coded
symbol sequence Xy, namely x,, is the phasor representation of
the MPSK coded symbol A¢, assigned by the mapper in the
nth transmission interval. It can be written as

(40)
Before transmission over the channel, the mapper output
symbol sequence, X, is differentially encoded producing the

sequence L. In phasor notation, the MDPSK coded symbol in
the nth transmission interval can be written as

Bn™ Pp1 X, = V2Es ej(¢n—l+A¢n)= V2Es ej¢n "

and the transmitted bandpass signal is

br(0)= Re{p(r)e’*} =R€{E By hp(t-kT) e’“’°'}
k

(41)

42)

Assuming a K branch diversity system and the use of an
ideal automatic frequency control (AFC), that is, a perfect
compensation of frequency offsets between emitter and
receiver local oscillators, the complex envelope of the received
signal and the signal at the output of the reception filter in the
kth receiver (k=1, 2, ..., K) can be expressed as

(1) = %, () p (1) +v (1) 43)
and

AORAO) WL BINOREROIVG RO

respectively. In a postdetection diversity receiver, including the
differential detection function [12], each branch input signal is
multiplied by its delayed replica, with the time delay ¢,=T for
differential detection and lowpass filtered. Thus, the complex
envelope of the resultant signal at the output of the lowpass
filter is

8e(0) =X, (DXt - D (D (1 =T) + 3, (£ - T f (2 - T, (1)
(D p (O n (-T) +n (D) ng (t-T).

45)

Assuming that the fading is slow varying enough that
X (t-T)=p,2(?) and that for high signal to noise ratios the
last component of (45) can be neglected, then,

M
OEDMIHOIMOIKGS» 46)
k=1

1O wi(E-T) my (1) + 1, (8) (DO M (t-T)]  (MRC).

This equation shows that the signal and noise contributions at
the combiner output are both weighted by a factor equal to the
absolute value of the fading. This weighting factor is that
necessary to produce predetection MRC [1]. Hence, this can be
termed postdetection MRC.

If a limiter giving unity amplitude is used in the
feed-forward signal path of the postdetection diversity receiver
[12], then, for high signal to noise ratios, the combiner output
can be approximated by

M
20« ——= 3" [0 () G- T)
2E_ k=1 (EGC).
+e VO ple-Ty (1) + O () ni(-T))
)

In this case, the weighting factor is unity for all branches and
hence this can be termed postdetection EGC. Since this system
can use mixers instead of multipliers, postdetection EGC can
easily be built and is considered to be more practical.

The postdetection diversity receiver can also be used to
implement a postdetection selection combining (SC) diversity
scheme. Postdetection SC is the simplest system and selects
the demodulator output associated to the branch having the
largest input signal envelope, that is, the combiner output is
given by

() =w () w, (t-T)
(Wi (D) >|w, (D| Y g#k, gell,...,K]

(SC). 4%

The combiner output is sent to the demodulator to obtain
in-phase and quadrature channel outputs. After filtering, these
signals are sampled by an A/D converter. Assuming a perfect
clock recovery, the complex sample at the deinterleaver output,
that is, the nth element of the output sequence Y,
corresponding to the input sequence X, will be given by

K
yn = E wl:,n -1 Wk, n (MRC) (49)

k=1
5 Wi 50
y, =y —krllkr  (EGC) 50

k=1 |wk,,‘|

yn=w;,n—lwk,n (SC) * (51)
Using these quantized symbols, the trellis decoder,

implemented as a Viterbi algorithm with a metric depending
upon whether or not channel state information (CSI) is
provided, detects the transmitted sequence based on maximum
likelihood estimation.

In the predetection diversity MRC coherent system, CSI is
provided through the local signal ,’(f) (see expression (18))
used in the detection process. Thus, comparing the system
model for predetection MRC and postdetection MRC and SC
diversity schemes, it can be noticed that in the last case a
measure of CSI is provided by the delayed replica of the input
signal. For the postdetection EGC scheme a measure of CSI
could be obtained from envelope detection of the received
signal. In all these cases, the optimum (maximum-likelihood)
metric depends on the joint two-dimensional (amplitude and
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phase) statistics of a received sequence and is quite
complicated to implement [4]. Assuming a soft Viterbi
decoding based on the much simpler Gaussian metric [13], i.e,

MY, %,32,)= -|v,~2E,x,[*  (MRC) (52)

g 1.4 2
m(y'l’ xﬂ;zn)z - yn—zE-‘kz_; lwk,nlxn (EGC) (53)
m(y,, x,32,)= -|y,-2E,x, [} (SO, (54)

the following expressions for the average bit error probability
upper bound can be obtained (Appendix C),

P(X\~X,)
E -K
<min L] 1+df[210 ’(1—4;\0)-(210)2] (MRC)
A:0 nen NO
(55)
sy 1
P(XN-'XN)ST:?;E
_ 56
ol (_1),K(Kil) (56)
o> (50).
i=0 E
1+1‘+d§[210 ‘(1—410)—(1+i)(210)z]
Nﬁ

Optimizing (55) over the Chernoff bound parameter we get,

P,< Y ¥ ¥ aX,, %) p(Xy)

N=L, Xy )fN

2 x  (MRC) 7

A 1-y
2H

neny d2
1-y2[1-—2

10°
£ --Simulation
= —TF Bound
@ 10" B —Uncoded QPSK
=
-2
& 10
&
&
e 103
-]
8
§ 10
S
< 10°

10°¢
0 5 10 15 20 25 30

Eb/No (dB)

Fig. 8. BER vs E/N,. Eight-state trellis code, Postdetection EGC
K=1,23.
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Fig. 9. BER vs E/N,. Eight-state trellis code, Postdetection SC
K=123.

where 7= (E/N)/(1+(E/N,)). The result in (56) cannot be
optimized over A independent of the index #n, and thus, for this
case, we first must compute the average bit error probability
and then optimize over the Chernoff parameter.

For the postdetection EGC scheme, evaluation of the
expectation required in (C.6) is cumbersome. However, at
signal-to-noise ratios of practical interest, the combiner output
signal can be approximated by (47), and thus applying the
same method used in the analysis of predetection diversity
coherent systems with CSI, we get

P,<Y Y Y a(X,, X)) p(Xy)

N=L, Xy X,
(EGe) . (59)
. _
2 én ey 8N,

For large E/N,, the average bit error probability bounds for
postdetection diversity MRC and EGC TCM-MDPSK systems
simplify to an expression which is identical to (30) except for
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a scale factor of one half over the E/N, ratio. Thus, roughly
speaking, we can conclude that the BER performance of
postdetection diversity MRC and EGC differentially coherent
systems with CSI and a Gaussian decoding metric is 3 dB
poorer than that of the corresponding predetection diversity
coherent systems with ideal (perfect) CSI and a Gaussian
decoding metric. The numerical resuits in Figs. 7 and 8 may
assist the reader in assessing the accuracy of this assertion. The
asymptotic average BER for the postdetection diversity SC
TCM-MDPSK scheme can be upper bounded by

P <min ¥ ¥ ¥ a(X,, %) p(Xy)

A20 N=L, Xy X,

K (1-d2 24" (59)

I1

A
2}!61]

2 E.f ‘
d?2h, v (1-44,)

The numerator of (59) has little effect on the optimization
process, thus maximizing the denominator gives (Ag),,~1/8.
Although this is not the optimum value of A, for (59), we use
it nevertheless (resulting in a looser upper bound) to arrive at
a result in a desirable form. Thus, substituting it in (59) we

obtain
2 K-1
- K!|1- 4 ]
5 1 16
Pysy 33 aXyXp(Xy) o [l ———5—
N=L, Xy x“N nen E 2
*d
8N, "
(60)

The primary difference between this expression and that
obtained for predetection diversity SC coherent systems is the
manner in which it depends on both the distance structure of
the trellis code and the number of antennas in the space
diversity array. In fact, by considering only the shortest error
event paths (which dominate the average BER performance at
high SNR’s) we conclude that, for K=2, the BER performance
of eight-state postdetection diversity SC incoherent system
2.55 dB poorer than that of the corresponding predetection
diversity coherent system. For K=3, the incoherent system
differs from the coherent one in 2.40 dB for the eight-state
trellis-code. This asymptotic tendency can be assessed by
comparing theoretical upper bounds and Monte-Carlo simu-
lation results presented in Fig. 9 with those shown in Fig. 4.

IV. IMPROVED UPPER BOUND FOR MRC SCHEMES

The bounding procedures used in the previous section,
although readily determined, produce a relatively weak upper
bound, even at high signal-to-noise ratios. Therefore, it seems
that there is still place for further improvement if more
involved formulation is adopted. In this section we present a
new asymptotically tight upper performance bound for
predetection (PRE) and postdetection (POST) diversity MRC
schemes, based on the exact calculation of the pairwise error
probability. In the case of predetection diversity we assume
perfect Channel Side Information.

Substituting (25) and (52) into (4) gives

(61)

where C;=1 or 2E, for predetection and postdetection schemes,
respectively, F, is given by expression (C.4) and

xIc n
(PRE)
Xk,nxn + nk,n
‘xk,n—lxn—l a1

Xk,nxn + nk,n

U,,- (62)

(POST)

In a Rayleigh fading channel, y,, and n,, are zero-mean
Gaussian distributed random variables and U, , is a zero-mean
Gaussian  vector. Furthermore, assuming a perfect
interleaving/deinterleaving process and an antenna spacing such
that the individual signals are uncorrelated, U, , ;, U, U, .,
and U, , will be independent zero-mean Gaussian vectors and
thus, fin (61) will be a double sum of independent quadratic
forms of zero-mean Gaussian random variables. The pdf of f
is not an elementary function but its characteristic function is
given by [14, appendix 4B] as

G =11 l'KI : 63)
nen k<1 det(I -jt2C,R; ,F,)
where
E{exp(i UI:,: Fn Uk,n) lxn’ pk.n}
(64)

i exp(- A E{U; 7} F,(1+2AR; F,) " E(U, })
det(I+2AR; F,) '

By solving the determinant in (63) we obtain

K (1-t,
Gf(t)=HH( :

)'l(t—tnz)—l (PRE)  (65)

nen k=1 4E N,d:
X t—tnl - t_th -
Gf(t) = H kr‘[l ( ) (E > (POST) 66)
nen k=
16E§N§[2—’ + 1}1:
N,

where
tnl,nZ = (67)
L (POST)

8N;

(68)
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The pairwise error probability can be expressed in terms of
G(j?) as [14, appendix 4B}

N -1 resje G.(Jt)
P(X,~X,) = Pr(f=0 1Xy) = 7a7 f._f,-e ff dt (69)

where ¢ is a small positive number. Substituting (65) and (66)
in (69) and closing the path of integration with a semicircle of
radius R—eo we have that, except for a finite number of poles,
the function G(jt)/t is regular in the region bounded by the
closed path. Thus, based on the theorem of residues from the
theory of functions of a complex variable, the integral in (69)
can be solved in closed form using the contour integration
method.

This method, although mathematically simple, is not
considered a practical approach for evaluating functions with
a large number of poles of high order; so, we apply an upper
bounding procedure similar to that proposed by McKay et al.
[5]. First, m of the most dominant error events, in terms of
asymptotic contribution to P,, are selected from the code
trellis. Their associated exact pairwise error probabilities are
next calculated using the contour integration method. The
pairwise error probability for all remaining error events is
upper bounded by the weaker bounding procedures described
in Section II. All these pairwise error probabilities are
augmented with terms Z***, summed, and finally, the average
bit error probability upper bound is obtained by performing the
differentiation indicated in (11). Obviously, the greater the
number of error events considered in the set of "most dominant
error events” the tighter the upper bound will be, but at the
expense of increasing the complexity in finding the residues
corresponding to the poles of the G(jt)/t function.

In deriving this improved upper bound for the eight-state
Ungerboeck’s code in Rayleigh fading, error events having
diversity two and three have been considered in the set of
“most dominant error events". The obtained results have been
plotted in Fig. 10. We observe that for low average bit error
rates this upper bound, which is dominated by the pairwise
error probabilities calculated using the contour integration
method (the other error events have little effect in this region),
achieves considerable improvement over the standard transfer
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function bounding techniques described in Section IIL
However, only marginal improvement is achievable at high
average bit error rates, since the peak singularity occurring in
the transfer function bounding techniques dominates the bound
in this region.

V. CONCLUSIONS

In this paper, the bit error rate (BER) performance of
predetection diversity trellis coded multilevel phase shift
keying (TCM-MPSK) and postdetection diversity trellis coded
multilevel differential phase shift keying (TCM-MDPSK),
transmitted over a Rayleigh fading channel has been presented.
Novel analytical upper bounds using the transfer function
bounding technique have been obtained and illustrated by
several numerical examples. A new asymptotically tight upper
bound for the Maximal Ratio Combining (MRC) diversity
schemes has been also derived. In order to analyze practical
TCM schemes (four or more states), only trellis codes holding
uniform error property (UEP) and uniform distance property
(UDP) have been considered, enabling the encoder transfer
function to be obtained from a modified state transition
diagram, having no more states than the encoder itself,
Monte-Carlo simulation results, which are more indicative of
the exact system performance, as well as the BER performance
of QPSK and QDPSK reference systems have been also given.
Theoretical and simulation results have shown that a
substantial reduction in the average BER due to Gaussian noise
can be obtained in a Rayleigh fading environment if space
diversity is used in conjunction with trellis coding techniques.
BER performance analysis has also shown that, regardless of
the number of antennas in the diversity array, postdetection
diversity systems using MRC, EGC and SC have a
performance degradation of at most 3 dB, compared to the
corresponding predetection diversity systems.

APPENDIX A

Substituting (25), (26) and (27) into (4) gives

f= 'pznin_xnz
n=1 k=1( k ! | (MRC) (A1)
+2]Re{X1:n”k,,,(x,. xn)‘})
N X K
f:EEE( pknpmn‘xn_xnlz (A2)
n=1 k=1 m=1 (EGC)

N
F=Y (-piat,-x, +2Re{p, . m, (%, -x,)})  (5C)

n=1
(A.3)

By conditioning on the fading, clearly f is a Gaussian random
variable with mean p and variance ¢ which can be shown to
be given by
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N K
2E,Y. Y pi.d:  (MRC)
n=1 k=1
N K 2
Ad
- ang (e won o
n=1\k=1
N
-2E,Y o} .d- (5C)
n=1 ’
N .4 2 2
8EN,Y, Y Pindy (MRC)
n=1 k=1
N K 2 AS
o? = 8KESNOE[E p,“,) 4 (E6cy A
n=1 \k=1
N
8EN,Y pi..dn (5C)
n=1

where d,? is the normalized squared Euclidean distance defined
as

dZé |xn_‘£n l2

(A6)
" 2E,

2 [1 —cos($"—¢")] .

Thus, the conditional exact pairwise error probability will be
given by

N 1 m
P(xN~XN|pl,N,...,pK,N)=7e:fc(———

(A7)
)

By defining the random variable

K
kE P (MRC)
=1
R, =1 1 X (A.8)
EE P, (EGC)
k=1
max(pl,n’pl,n""’pl(,n) (SC)

and conditioning the pairwise error probability on R, we get

, 1 E, & 22| (A9)
P(XN..XN |RN)=~2—e’fc "—470'; R" dn .

In order to evaluate the average bit error probability, we
must first evaluate unconditional pairwise error probabilities by
averaging (A.9) over the pdf of R,. This would require the
evaluation of multiple integrals and could be achieved using
numerical techniques, but is not considered a practical
approach. In order to overcome this problem, the inequality
erfc x < exp(-x*) can be used to bound (A.9) in product form
as

P(Xy-Xy | Ry)< (A.10)

nen

E
LT exp|-—2 R?&
2 4N,

where 1 is the set of all n such that x#£,. Thus, the
unconditional pairwise error probability upper bound is
obtained by averaging (A.10) over the pdf of R,. Since we
have assumed that the interleaving/deinterleaving makes the
R,’s independent, then the average over Ry can be computed
as the product of the averages. Furthermore, since all R, are
independent Rayleigh r.v.’s, the pdf of R, can be expressed as

R R? s \IK-1
K " exp| -—=— || 1 -exp| -—= (8C)
2 2
Ox 203 20 (ALD)
P(R)=
K-1
1 R, R, R:
S - exp| -— | (MRC).
K- 62| 242 202

For EGC, a good approximation can be obtained using the
pdf of MRC, by replacing o' by og¥ec [2] where

= K/{(2K- 1)”}“” Averaging (A.10) over (A.11) leads to
expresswns (28)-(29).

APPENDIX B

Substituting (32) into (4) gives

N K
A 2
= 7p ’lxn*x'l
rg k=1 ( . | l (EGC) B.1)
+2Relen, (2,-x,)'})
l 2
f= Pi,nlXn = *n
an( kl l (SC). (B.2)

+ 2Re{e_j"'"" ny (%, - xn)'})

By conditioning on the fadmg, f becomes a Gaussian random
variable with mean p and variance o° given by

SEY Y b, (EGO)
b= n=1Nk-l (B3)
-2E.Y py . d (SC)
n=1
N
8KEN,Y. d: (EGC)
o? = " (B.4)
8EN, Y. d2  (SC).
n=1

Thus, using expression (A.8), the conditional exact pairwise
error probability is given by
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P(Xy-Xy |Ry)= — erfc 2ot

1 T
2 N
16EN, Y d:
n=1

In order to express the pairwise error probability in product
form we can upperbound (B.5) by using the Chernoff bound
[31, [8]. In this case, the conditional pairwise error probability
can be bounded as

. (B.5)

P(Xy~Xy,|R )smm—HHexp[ lp”2Ed]

120 2 pey k=1 (EGC)
-E{exp[Z).Re{eij""""nk'"(f,, —xn)*}] | %, pk,n}
(B.6)
P(X,y-Xy|R, )smln II exp[ Ap, ,2E d})
20 2nn 50
E{exp[22Re{e**n, (%,-x,)'}]Ix,) ®.7)

where the E operator denotes statistical expectation over the
additive noise and A is the Chernoff parameter to be optimized.
Evaluating the expectation required in (B.6) and (B.7) yields
nlR,)

P(X,-X, ]R)smm [1 b (B.3)

nen

D being the Bhattacharyya distance defined as D = exp(-
E/AN,), and

c2(xn»f,, IR,) =4lod:(\/I?Rn - K},O) (EGc) B9)

c?(x,.%, | R,) =4Aods(R, -1o) (SC) (B.10)

n>

where Ay=2AN,. Expression (B.8) cannot be optimized over A
independent of the index n. Thus, we must first average over
the fading distribution. By using (A.11) we obtain (33) and
(34).

APPENDIX C

Substituting (52), (53) and (54) into (4) and taking into account

that |x,| = |%,|, we obtain
N
> kE 2E,U;"F,U,, (MRC)  (©CD
n=
N K K o
-y Y Y 25 il ey, meey<?

n=1 k=1 m=1 |Wk ,,|

N
f=Y 2E U F.U,, (50 (C3)
n=1

where superscripts * and 7 denote complex conjugate and
matrix transpose and
w

krll o (C4)

wk, n

Then, conditioning on the fading, the pairwise error probability
has the Chernoff upper bound

K
P(X,~X, | R,) < min 1
220 2 péq k-1 (MRC) (C.5)
E{exp(2Esl U hF U, | %,, p,m)}
1 K K
P(XN XN|RN)smin5 1111
A20 nen k=1 m=1
(EGC)
‘E ‘wm»"l =T
exp(2E A —=2L U, F, U, |%,P% 0P
W, n ' ’ ’
(C.6)
5 .1
P(X,~X, | Ry) <min— ]
20 < nen (SC) (C.7)

E{exp(ZE:A UihF, U, | x,, pk,n>}

Manipulating these expressions [14], (C.5) and (C.7) lead to
P(X,~X,IR,) smin%r[ (Kexp(-ERZ) (MRC) (C3)
A20 nen

P(Xy~%y|Ry) smin =[] Cexp(-£RZ) (SO (€9
Ax0 nen
with
A 22 d(1-aa
‘- 1 . °N, { o) (C.10)
1-(220)d? @A

where Aj=AN, and d,>=| %,-x, | 2. Averaging each term in the
products of (C.8) and (C.9) over the corresponding pdf’s in
(A.11) leads to expressions (55) and (56).
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