An Approach for Detecting Power Peaks during Testing and
Breaking Systematic Pathological Behavior

David Trillaf#, Carles Hernandez!*, Jaume Abella’, Francisco J. Cazorlaf
 Barcelona Supercomputing Center (BSC). Barcelona, Spain
¥ Universitat Politécnica de Catalunya (UPC). Barcelona, Spain
* Universitat Politecnica de Valencia (UPV). Valencia, Spain.

Abstract—The verification and validation process of embedded
critical systems requires providing evidence of their functional
correctness and also that their non-functional behavior stays
within limits. In this work, we focus on power peaks, which may
cause voltage droops and thus, challenge performance to preserve
correct operation upon droops. In this line, the use of complex
software and hardware in critical embedded systems jeopardizes
the confidence that can be placed on the tests carried out during
the campaigns performed at analysis. This is so because it is
unknown whether tests have triggered the highest power peaks
that can occur during operation and whether any such peak
can occur systematically. In this paper we propose the use of
randomization, already used for timing analysis of real-time
systems, as an enabler to guarantee that (1) tests expose those
peaks that can arise during operation and (2) peaks cannot occur
systematically inadvertently.

I. INTRODUCTION

In embedded critical systems, the Verification & Validation
(V&V) process builds not only on collecting evidence about
their correct functional behavior, but also about their non-
functional behavior including timing, power and temperature
among other concerns. Due to economical and practical reasons,
industry often relies on measurement-based approaches to
derive such evidence [24].

The increasing performance needs in embedded critical
systems are satisfied at a reasonable cost by using advanced
(complex) hardware platforms. In those platforms, deriving test
cases that trigger worst-case conditions becomes increasingly
difficult for end users. For power verification, defining appro-
priate test cases and input vectors is critically important to
identify whether (high) power peaks can occur and whether
they can occur systematically [13]. Power peaks may lead
to sporadic or frequent voltage droops that need lowering
speed or stalling execution to preserve correctness [12], [28],
[4], hence impacting timing of tasks in general, and real-time
tasks in particular. For instance, power peaks may depend on
the simultaneous occurrence of a number of events in cores,
caches and on-chip interconnects, whose fine-grain control
cannot be practically exercised. Thus, by analyzing power
traces, end users are generally unable to tell whether higher
power peaks can occur and, if so, whether they could occur
systematically. The feasibility of triggering worst-case power
scenarios determines whether real-time tasks, and especially
those with some form of criticality (e.g. due to safety or
security), can be successfully verified or not.

Recently, injecting randomization at hardware and software
level has been proposed as a means to facilitate timing analysis
of critical real-time tasks [18], [25] by (1) breaking systematic
pathological timing behaviors, so that increasingly higher
execution times have rapidly decreasing probabilities, and
(2) making bad (long) execution times not to occur during
test campaigns with probabilistically low bounds. The latter
simplifies deriving the probability of occurrence of high
execution times, i.e. those beyond the maximum observed
execution time, with statistical means such as Extreme Value
Theory, EVT [20].

However, to our knowledge the applicability and the spe-
cific application process of time-randomization solutions to
mitigate power peaks and reduce the cost of power testing
campaigns have not been explored. To cover this gap, we
explore whether the randomization injected in time-randomized
processors (TRP) [18] can be used in embedded systems to
expose pathological worst-case power profiles and break their
systematic occurrence, so that their impact is limited and can
be properly accounted for. In particular, the contributions of
this paper are as follows:

1) We identify pathological and systematic worst-case
power dissipation profiles that may remain hidden during
testing and occur during operation. We show how
time-deterministic behavior of processors challenges, in
general, identifying whether power measurements in the
test campaigns expose relevant power peaks.

2) We make an extensive assessment of how time-
randomized features in TRP contribute to the power
dissipation variability by making power peaks manifest
during testing and by mitigating their systematic occur-
rence.

3) Finally, the use of TRP, simplifies the use of statistical
black-box techniques to bound probabilistically the
frequency and magnitude of peak instantaneous power
demand events.

The rest of the paper is organized as follows: In Section II
we explain the background knowledge about validation, EVT
and TRP. In Section III we present the challenges in power
validation, and we explain its impact and how typically
manufacturers deal with this issue. In Section IV we describe
and explain the effects that TRP have on power dissipation

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works. DOI 10.1109/DSD.2019.00083

and discuss how this helps in the detection and mitigation of
systematic behaviors. We evaluate experimentally the impact
of using TRP in power dissipation behavior in Section V. We
discuss other related work in Section VI and finalize this paper
with the conclusions in Section VIIL.

II. BACKGROUND

In this work we aim at leveraging the randomization solutions
devised for probabilistic timing analysis to deal with peak power
concerns. In this section we introduce the relevant concepts of
those timing analysis approaches.

A. Measurement-Based Probabilistic Timing Analysis (MBPTA)

MBPTA [6], [1], [25], [22] is a probabilistic framework to
derive probabilistic timing bounds for real-time tasks. MBPTA
builds upon two central elements: a platform with specific
support to simplify reliable statistical analysis, and a statistical
Worst-Case Execution Time (WCET) estimation tool. MBPTA
requires that execution time sampling during the analysis phase
of the system is representative (and a reliable bound) of the
system behavior during operation [6], [1]. For that purpose,
some components are time-randomized to relieve the end user
from having to exercise any low-level control on the platform
timing, and instead let randomization expose corner cases.

The main time-randomized processor components are cache
placement and replacement policies [16], [17], [14], as well
as arbitration policies for shared resources (e.g. NoCs and
memory controller) [15], [27]. For instance, by randomizing
cache placement, whether two addresses are placed in the same
or different sets is a probabilistic event and hence, the impact
of cache conflicts is probabilistically captured by sampling
different (random) placements. In the case of caches, hardware
support includes a hash module to randomize placement whose
input are the address accessed and a random seed. Since
each random seed leads to a fixed-but-random placement,
placement is deterministic as long as the seed is not changed,
thus allowing to access cache contents normally, but changes
randomly by changing the random seed. Thus, the seed is
changed across runs so that end-to-end execution times are
random and independent. Software support can also emulate
the same behavior by either placing objects in random memory
locations at binary load time [17] or by randomizing their
placement in the binary itself [19].

B. Statistical Analysis

MBPTA builds upon Extreme Value Theory [20] to predict
the probabilities of high execution times (probabilistic WCET,
pWCET, estimation). Based on an execution time sample,
an appropriate use of EVT [6], [1], [25] allows delivering
reliable exceedance probability bounds for high execution times,
including values above those observed. MBPTA-CV implemen-
tation [1] in particular, (1) tests whether measurements in the
execution time sample can be regarded as independent and
identically distributed (i.i.d). This holds probabilistically for
any MBPTA-compliant platform and hence, samples converge

[ISimple
DCompIex

Samples

6 8

Fig. 1. Experiment showing the increase in power variability as processor
complexity increases.

statistically to these properties. Then, MBPTA-CV tests (2)
whether the pWCET can be reliably upper-bounded with an
exponential distribution. As for i.i.d. properties, this property
holds for the distribution sampled, so eventually the sample
will also meet the statistical property. MBPTA-CV (3) imposes
the use of a sample sufficiently large so that the number of high
values is sufficient for a very tight pWCET estimation (typically
between few hundreds and few thousands of measurements).
Finally, MBPTA-CV (4) delivers a pWCET distribution fitting
an EVT distribution with £ = 0, thus with exponential slope.

The key advantage of the use of EVT, as part of MBPTA,
is that it is a black-box method that can be applied on any
sample. However, the obtained distribution is relevant only
for the system sampled. In the case of embedded systems,
this implies that execution conditions used during analysis
match (or upper-bound) those during operation, which is a
too demanding constraint in the general case, especially for
increasingly complex hardware and software. The use of time-
randomization (in the case of timing) allows guaranteeing
representativeness of analysis conditions w.r.t. operation ones,
and thus, simplifies obtaining reliable pWCET estimates.

III. CHALLENGES OF POWER VERIFICATION IN COMPLEX
PROCESSORS

A. Power Delivery Network Sizing

Power Delivery Networks (PDN) in processors are typically
designed to serve enough power ”in most cases”, but due to
efficiency reasons, they are not designed to meet the power
requirements in the absolute worst case, since it may occur only
occasionally. For instance, Figure 1 shows the power profile
of an arbitrary benchmark running in a simple and a more
complex processors (see details in Section V). We observe
that power variation is significant and the relative difference
between the absolute worst case observed and the typical case

is large, and it increases in absolute terms for increasingly
complex designs. Thus, sizing PDNs for the absolute worst
case would result in a waste of resources.

Overall, instantaneous power demand may surpass the
capacity of the PDN, thus leading to a scenario where circuits
become underpowered during relatively short time intervals,
until the power demand decreases. In such scenario, voltage
decreases to levels where correct operation cannot be preserved
— often referred to as voltage droops — and actions such as
decreasing operating frequency must be taken to decrease power
demand and preserve correct operation [12], [28], [4]. While
the effect of droops is relatively small in high-performance
systems, in critical systems their impact on metrics like worst-
case timing and power budgeting can be high.

B. Critical Real-Time Systems Verification

Processor verification is typically performed using power
viruses [7] to characterize the corner power cases of the
processor, size its PDN and accommodate mechanisms able
to detect overly high power consumption and throttle (or even
stop) operation to preserve processor physical integrity. For
embedded critical (real-time) systems verification, processor
integrity is not a concern, since appropriate means have already
been set by the chip manufacturer. However, voltage droops as
well as overly high sustained power dissipation may lead to
performance issues due to, for instance, performance throttling.
Authors in [28] show that a usual solution would be decreasing
operating frequency down to its minimum (e.g. 1/32 of its
maximum value) and increase it progressively as long as power
demand does not exceed affordable limits. Hence, assessing
during system analysis phases whether power peaks can occur,
their magnitude and their frequency is critically important to
evaluate whether timing bounds will be respected. However,
end users often lack the knowledge of how power peaks arise
in a specific processor, and lack the means to assess whether
applications can trigger them. This may jeopardize the complete
timing verification of the system if the impact of voltage droops
is not properly accounted for during testing.

C. An Illlustrative Example

Let us consider a simple example with two programs running
simultaneously in different cores of a multicore processor.
Figure 2 shows their joint power profile, with power measured
every 43ns (see Section V) and the x-axis showing each of
these observations over time. The two programs iteratively
spend some time performing local (in core) computations,
followed by a period of sustained memory write operations.
As shown, frequent power peaks due to memory accesses
interleave accesses of both programs and stay below 1.4W.

In a second experiment, we modified one of the benchmarks
introducing few delays in between their memory accesses, thus
effectively decreasing its average power dissipation and without
impacting its individual maximum power dissipation. As shown
in Figure 3, the time alignment of the power peaks changes
slightly and, despite the overall average power dissipation

decreases, the power peaks increase in magnitude, being above
1.4W sustainedly. If the PDN of this processor could only
afford up to 1.4W of power, we would move from a scenario
with no voltage droops to a scenario with systematic droops.
And potentially, the latter scenario could not occur during
testing, which would lead to the risk of missing deadlines
systematically due to frequent unforeseen voltage droops.

In this particular example, we first created the two programs
and run them without any specific synchronization. Then, since
the platform used is a performance simulator, we had access
to the internals of the architecture and could debug why some
events were not occurring simultaneously and applied reverse
engineering to cause a pathological systematic behavior where
events align perfectly and lead to higher power peaks. However,
in the general case this is not doable. In fact, we repeated the
same experiment modelling a more complex processor with 4
cores instead of 2, allowing multiple memory requests in flight
and increasing store buffers and, despite having full access to
the architecture in the simulator, we were unable to exercise
the control needed to synchronize events. Figure 4 shows the
power profile of the execution of four benchmarks in the 4
cores and, as shown, some peaks occur from time to time, but
it is unclear whether higher peaks can occur and whether they
can occur systematically.

In summary, in complex hardware with time-deterministic
behavior it cannot be assessed whether tests trigger the highest
power peaks and whether those can occur systematically. This
jeopardizes the confidence that can be obtained from test
campaigns with uncertainty on the risk of deadline violations
due to voltage droops since they cannot be bound reliably.

IV. TIME-RANDOMIZATION FOR POWER ANALYSIS

Power variation is highly correlated with the same events
that create timing variation, which include cache hits/misses,
arbitration delays in shared resources, variable delays in queues,
etc. Time-randomization, either implemented by hardware or
software means [18], allows exploring, for timing analysis
purposes, the different outcomes of those events enforcing
probability distributions that hold during analysis and operation.
In this section, we analyze how time-randomization serves also
the purpose of exploring power peaks, either in frequency or
in magnitude, as well as the limits of time-randomization.

A. Event Alignment

Power peaks emanate from the simultaneous occurrence of
multiple high-power events. Next we review how events relate
to each other and the influence that time-randomization may
have on them:

Potentially aligned events. Some events may align under
certain conditions, such as those shown in Figures 2 and 3.
By introducing time-randomization at a fine granularity (by
making arbitration delays vary by few cycles, and making
some cache hits become misses and vice versa) the power-
hungry events that might concur are enforced to concur with
some probability. This contrasts with the scenario drawn for

\
l MAARRRRRELERD

| muwuﬁmm

— —
o = o

Watts

o

vuuyuby Uy

LI

44444 U

\ | |
H KAARRRRRERARRD

mu”uﬁummt

I

U uuul

0 200 400 600

800

1000 1200 1400 1600

Fig. 2. Power profile on a conventional (simple) architecture when running two unsynchronized benchmarks.

Watts

o =
© =N A

I
Ju{ I

I

Il
LML

I
Ll

[Tt

Ll I

H

L U LIl

|

|
U

U

1000 1500

Fig. 3. Power profile on a conventional (simple) architecture when running two synchronized benchmarks.

]

500 1000

Watts

1500

T

MM il

3500

Il ‘L

3000

J
U

2000 2500

Fig. 4. Power profile on a conventional (complex) architecture when running four benchmarks.

time-deterministic platforms, in which events may never (or
frequently) align with specific tests, and whose behavior can
change completely during operation simply because the initial
state of the processor or memory varies subtly. Overall, time-
randomization allows making a probabilistic argument on the
appearance of such type of events, and more importantly, make
them not occur systematically.

Figures 5 and 6 show the same experiments done for Fig-
ures 2 and 3, but carried out on a time-randomized platform. In
particular, random placement and replacement caches as well as
random bus and memory controller arbitration are implemented,
as detailed later in Section V [18]. As shown, both power
profiles show those peaks occurring when power-hungry events
align, but they do not occur systematically. Moreover, power
profiles are probabilistically almost identical among them
since event alignment occurs with similar probabilities across
experiments. Therefore, power peaks are naturally exposed and
can be accounted for conveniently.

Never aligned (or nonexistent) events. Some events may
never align in time-deterministic systems because, for instance,

the initial conditions that trigger their alignment never occur
during operation. In this case, the difficulties emanate from the
fact that, upon not observing their alignment, end users lack
information on whether they can never align, whether tests
simply failed to align them (as in Figure 2), or even whether
higher peaks exist. Time randomization, instead, will make
those events align with a probability, so they are observed and
accounted for (perhaps pessimistically). Instead, when time
randomization does not make them align, then confidence is
gained that they cannot align with high probability.

It may also occur that time randomization causes some high-
power events that would not occur without time randomization
(e.g. causing few additional cache misses). While this effect
is known to be very low since time-randomization degrades
performance negligibly in the average case [18], it may lead to
some pessimism due to triggering peaks that would not exist
ever without time randomization.

Systematically aligned events. Some events may be highly
aligned leading to systematic power peaks. If randomization
may unalign them, it will allow reducing their impact due to

Watts

o
® =N »

L

i

A0

l“ } H f

[1
e

0 400

800

1000 1200 1400 1600

Fig. 5. Power profile on a time-randomized (simple) architecture when running two unsynchronized benchmarks.

— —

e
I HMMM | uM’ | ‘Jw

Watts

o=y
o =N A

——
,—

I

i

500

1000 1500

Fig. 6. Power profile on a time-randomized (simple) architecture when running two synchronized benchmarks.

Watts

500 1500

1000

Fig. 7. Power profile on a time-randomized (complex) architecture when running four benchmarks.

voltage droops. Instead, if they cannot be unaligned because
their occurrence is caused by events with no practical variability
(e.g. sustained floating point operations), then randomization
brings no quantitative difference. Yet, randomization brings
confidence on the fact that high power peaks are observed
during testing, so that their worst impact can be reliably
predicted.

Overall, while time-randomization will have little influence
in the average power dissipation and average number of power
peaks across programs, it has two key advantages:

1) It guarantees probabilistically that peaks that can occur
during operation are observed during testing.

2) If systematic behavior can be broken, it is effectively
broken, thus allowing to account for peaks probabilis-
tically without having to resort to overly pessimistic
assumptions.

B. An Illustrative Example

For the sake of completeness, we have also repeated the
experiment on the complex processor with time-randomization.
As shown in Figure 7, power peaks are naturally exposed. In

il

A

2000 2500 3000 3500

fact, some peaks are clearly higher than those observed in
the time-deterministic setup. Thus, time-randomization allows
accounting for their occurrence. Instead, in the case of time-
deterministic platforms, it is unknown whether they can occur
in practice and, if so, whether they can do it systematically,
thus defeating any confidence had on the test campaign.

C. On Predicting Power Peaks

With time-randomized platforms we can use power measure-
ments to predict both (1) peaks magnitude and (2) frequency.
For that purpose, we build on the MBPTA-CV method, given
that the properties needed for its input data are preserved:

e i.i.d.: MBPTA-CV inherits from the use of EVT the need
for i.i.d. input data. While power measurements are not
fully independent in practice at any time granularity, they
quickly become independent since processor events last
typically up to some tens of nanoseconds, which is the
same order of magnitude of peaks duration to cause
voltage droops. Hence, measurements at short distance are
already independent. Moreover, EVT, in practice, does not
need i.i.d. measurements but i.i.d. maxima which means

that dependencies across those values not belonging to
the upper-tail of the distribution are irrelevant [22]. In
any case, input samples passed to MBPTA-CV need to
be tested against i.i.d. statistical properties for a reliable
use of MBPTA-CV.

o Exponentiality. MBPTA-CV fits exponential tails, thus
discarding heavy tails. This is only a reliable choice for
distributions that have a maximum value, despite such
maximum can be unknown. In the case of power, either
due to temperature limitations or due to power supply
limitations, a maximum power is known to exist and
hence, the premise for the use of MBPTA-CV holds.

We identify two different ways of using MBPTA-CV in the
context of power verification:

o High power peaks determination to retrieve either the
highest power value that could occur with a meaningful
probability (e.g. that could only be exceeded with a
probability below 10~!? per time unit). Also whether
a particular power value could be exceeded with a
probability higher than a given threshold (e.g. whether a
peak causing a voltage droop occurs with a probability
above 10~'2 per time unit). Note that the time unit relates
to the granularity at which voltage droops may occur (e.g.
a peak of few picoseconds would be irrelevant).

o Estimating the number of times that a given threshold is
exceeded. By measuring the number of times the threshold
is exceeded in each run of the program or the workload, we
can estimate the highest number of peaks we can expect
whose exceedance probability is below a given threshold
(e.g. how many power peaks we can expect so that a
higher number of peaks is expected less than once every
10'2 runs). In this case, by using an upper-bound of the
time to recover from a voltage droop (e.g. 100ns), we can
increase the WCET estimate accounting for the maximum
number of peaks expected (e.g. 50 peaks) multiplied by
the recovery time for any such peak.

V. QUANTITATIVE ASSESSMENT

In this section we show a practical application of time-
randomized platforms together with MBPTA-CV for power
verification.

A. Experimental Setup

For controllability purposes, as needed for the examples
in Sections III and IV, we evaluate our proposal using two
connected simulators. We use an enhanced version of the
microarchitectural simulator SoCLib [23], a cycle accurate
performance simulator. We connected SoCLib to McPAT [21],
a power simulator that uses access counts and processor
configuration parameters to estimate power dissipation. We
have configured McPAT to simulate a processor with usual
characteristics for critical real-time systems: 700 MHz operating
frequency, 90nm process technology, and 0.9V. However, our
methodology is orthogonal to the specific parameters used. The

[Memory Ctrl.]
A
L2 Cache
4 : i 'd ;
dcache |> |« dcache
1 1 1 1
F D R E M Ex W B F D R E M Ex W
p T 4
1 1 1 T
F D R E M Ex W F D R E M Ex W

Fig. 8. Simplified block diagram of the NGMP Architecture

power sample rate is set to 30 cycles, effectively meaning every
43 ns. Finer sample rates have not been considered due to the
intrinsic limits of the power model, which fails to spread power
dissipation of an event across multiple cycles, thus creating
anomalies at too fine rates (e.g. every cycle).

As processor model we use the Cobham Gaisler NGMP [2],
a multicore processor for future space missions of the European
Space Agency (ESA). The multicore, shown in Figure 8, is
composed of 4 cores, with 16kB 4-way L1 Caches and a shared
256KB 4-way L2 Cache (it can be partitioned across cores),
all with 32B lines, connected through a bus interconnect. The
cores have 7-stage in-order pipelines. For the examples in
Sections III and IV, we use a simple version with only 2 cores,
2-entry store buffers and up to one outstanding core request
(L1 cache miss). For the complex version, we use the full
4-core setup with 8-entry store buffers and up to 6 outstanding
core requests (typically non-blocking store operations).

The time-randomized setup uses random modulo placement
L1 caches, random hash placement L2 cache, random replace-
ment in all caches, and random permutation arbitration in the
bus and memory controller [14]. The time-deterministic setup,
instead, uses modulo placement and LRU replacement caches,
and round-robin bus and memory controller arbitration.

Apart from the benchmarks used for the previous examples,
we use the EEMBC Automotive reference benchmark suite [26],
which includes a number of representative applications for
critical real-time systems.

B. Power Verification

First, we evaluate the highest power peak expected. Whether
this analysis needs to be done at chip level (so for the full
workload) or at core level (so for each benchmark individually)
relates to the organization of the PDN, and so the region where
voltage droops can occur. For instance, in the case of a multi-
core with an independent PDN for each core, it might be more
appropriate for the methodology to require individual per core
analysis of peaks, while with a shared workload or PDN, whole-
system peak analysis might be more suitable. However, this is
irrelevant for the application of the methodology. For instance,

1.5

Power (W)

0.5

0 200 400

I
Il Total Cores
2
[IBus

Il Memory Controller

1000

600 800

Time (Samples)

Fig. 9. Power dissipation over time of 4 different eembc in a randomized hardware

Figure 9 shows the power profile of the whole chip for one run
of a 4-benchmark workload on the time-randomized complex
setup. As shown, the randomized behavior of the power peaks
can be noticed regardless of the integration level.

For simplicity and illustration purposes, the rest of the dis-
cussion is done for individual benchmarks executed in a single-
core. Figure 10 shows the probabilistic power distribution for
aifirf benchmark in xW, in the form of the complementary
cumulative distribution function (CCDF). The red dashed line
corresponds to the actual measurements, the black thick line to
the estimated high power distribution, and the blue thin lines
to the 95% confidence interval. As shown, by having the full
distribution, we can obtain the power value for any exceedance
probability or the exceedance probability for any power value.

While estimating the highest power peak for a given program
may have several applications, in the context of critical real-time
system we regard as more relevant estimating the number of
peaks causing a voltage droop, so we focus on the latter due to
limited space. For the sake of illustration, we set the threshold
to determine a high power peak for samples above 95% of the
maximum observed power. Table I shows how many peaks
we observe in one run (execution) on the deterministic setup,
the highest number of peaks per run observed across 1000
runs in the time-randomized setup and the number of peaks
that could only be exceeded up to once every 10'2 program
runs'. The latter is derived using the number of peaks per run
in the time-randomized setup as input for MBPTA-CV. As
shown, the use of time-randomized setups allows us estimating
the highest number of peaks expected, which ranges between
few tens and few thousands of peaks. Then, by multiplying

0ther values, e.g. 10~9, deliver similar conclusions.

=)
S
+q —
3 =
£
= o
Il
8 =
[=]
o
=
d!) l T T T
~ 0e+00 2e+05 4e+05 6e+05
Power (pW)

Fig. 10. Probabilistic curve and empirical sample of power dissipation values
(in uW) for benchmark aifirf.

those peaks by the cost to recover from a voltage droop, the
pWCET estimate can be padded conveniently to account for
the cost of those voltage droops. Instead, the number of peaks
for the time-deterministic setup comes without any guidance
on how to determine whether a higher number of peaks is
possible. In fact, the deterministic nature of such a setup could
lead to arbitrarily higher power peaks due to events aligning
systematically.

VI. RELATED WORK

Power simulators have been used to provide power estimates
despite the inaccuracies of their estimates, since they have been
proven useful to evaluate the practicality of new techniques
and perform comparisons [10], [5]. In our case, we rely
on a particular simulator as a research vehicle to illustrate
the applicability of our approach. However, our proposal is
orthogonal to the source of the power measurements.

TABLE I
MAXIMUM PEAK COUNT FOR THE DETERMINISTIC AND RANDOMIZED
ARCHITECTURES, AND PROBABILISTICALLY ESTIMATED NUMBER OF
POWER PEAKS

EEMBC MAX Det | MAX Rand | Worst Case Number

of Peaks (1012)
a2time 105 113 130
aifftr 148 186 292
aifirf 34 46 77
aiifft 142 181 281
basefp 135 145 160
bitmnp 56 60 87
cacheb 2850 3273 7794
canrdr 69 74 104
idctrn 10 27 93
iirflt 5 84 346
matrix 848 849 1230
pntrch 262 72 124
puwmod 483 489 509
rspeed 99 102 103
tblook 81 94 131
ttsprk 320 374 583

The use of EVT for power analysis has also being explored
in [11]. In particular, this work targets maximum circuit power,
for which worst-case scenarios can be created with appropriate
power viruses. However, such a solution is not enough to
estimate the highest power peak of a task since there is no
way to relate testing data with operation behavior, and thus
cannot be used for the problem considered in our work.

Resonant supply noise has also been deeply studied. Authors
in [3] evaluate the events producing dangerous power peaks in
a multicore, thus allowing to improve chip-wide strategies to
power-up/use cores. Some authors solve the resonant supply
noise problem that these power peaks cause by using a
staggered core activation [8], whereas other works suppress
such supply noise by using active damping circuits [9]. In
any case, those works cannot be used to forecast neither the
frequency nor the magnitude of power peaks caused by user
tasks, as our proposal does.

VII. CONCLUSIONS

Power verification of embedded critical (real-time) systems
is a mandatory step to assess their correct operation. Voltage
droops caused by power peaks may lead to performance losses
to allow recovering from those droops. Unfortunately, to the
best of our knowledge, there is no practical way to estimate
reliably how many such power peaks can occur in complex
processors. In this paper we have presented an approach that,
based on the use of time-randomized platforms, allows exposing
power peaks during testing, breaking systematic behavior and
estimating reliably the number of power peaks occurring during
operation, so that the cost of recovery can be accounted for to
prove that critical real-time tasks can execute timely.

ACKNOWLEDGEMENTS

This work has been partially supported by the Spanish
Ministry of Economy and Competitiveness (MINECO) under

grant TIN2015-65316-P, the European Research Council (ERC)
under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 772773), and the
HiPEAC Network of Excellence. MINECO partially supported
Jaume Abella under Ramon y Cajal postdoctoral fellowship
(RYC-2013-14717).

REFERENCES

J. Abella et al. Measurement-based worst-case execution time estimation

using the coefficient of variation. New York, NY, USA, 2017. ACM.

Aeroflex Gaisler. Quad Core LEON4 SPARC V8 Processor - LEON4-

NGMP-DRAFT - Data Sheet and Users Manual, 2011.

[3] R. Bertran et al. Voltage noise in multi-core processors: Empirical
characterization and optimization opportunities. In MICRO, 2014.

[4] K. A. Bowman et al. A 22 nm all-digital dynamically adaptive clock

distribution for supply voltage droop tolerance. IEEE Journal of Solid-

State Circuits, 48(4):907-916, 2013.

D. Brooks et al. Wattch: a framework for architectural-level power

analysis and optimizations. In ISCA, 2000.

L. Cucu-Grosjean et al. Measurement-based probabilistic timing analysis

for multi-path programs. In ECRTS, 2012.

[7]1 A. Joshi et al. Automated microprocessor stressmark generation. 2008.

[8] A. Paul et al. Staggered core activation: A circuit/architectural approach

for mitigating resonant supply noise issues in multi-core multi-power

domain processors. In IEEE CICC, 2012.

J. Xu et al. On-die supply resonance suppression using band-limited

active damping. In ISSCC, 2007.

S.L. Xi et al. Quantifying sources of error in mcpat and potential impacts

on architectural studies. In HPCA, 2015.

N.E. Evmorfopoulos et al. A monte carlo approach for maximum power

estimation based on extreme value theory. TCAD, 2002.

M. S. Floyd et al. Adaptive clocking in the POWERY processor for

voltage droop protection. In (ISSCC), 2017.

K. Ganesan et al. System-level max power (sympo) - a systematic

approach for escalating system-level power consumption using synthetic

benchmarks. In PACT, 2010.

C. Hernandez et al. Random modulo: a new processor cache design for

real-time critical systems. In DAC, 2016.

J. Jalle et al. Bus designs for time-probabilistic multicore processors. In

DATE, 2014.

L. Kosmidis et al. A cache design for probabilistically analysable real-

time systems. In DATE, 2013.

L. Kosmidis et al. Probabilistic timing analysis on conventional cache

designs. In DATE, 2013.

L. Kosmidis et al. Fitting processor architectures for measurement-based

probabilistic timing analysis. Microprocessors and Microsystems, 47:287

- 302, 2016.

L. Kosmidis et al. TASA: Toolchain Agnostic Software Randomisation

for Critical Real-Time Systems. In ICCAD, 2016.

S. Kotz et al. Extreme value distributions: theory and applications.

World Scientific, 2000.

S. Li et al. Mcpat: An integrated power, area, and timing modeling

framework for multicore and manycore architectures. In MICRO, 2009.

G. Lima et al. Extreme value theory for estimating task execution time

bounds: A careful look. In ECRTS, 2016.

LiP6. SoCLib, 2011. http://www.soclib.fr/trac/dev.

Magneti Marelli. System validation, 2018.

K. Palma et al. On using GEV or gumbel models when applying EVT

for probabilistic WCET estimation. In RTSS, 2017.

J. Poovey. Characterization of the EEMBC Benchmark Suite. NCSU,

2007.

M. Slijepcevic et al. pTNoC: Probabilistically time-analyzable tree-based

noc for mixed-criticality systems. In DSD, 2016.

C. Takahashi et al. A 16nm FinFET heterogeneous nona-core SoC

complying with 1SO26262 ASIL-B: Achieving 10~7 random hardware

failures per hour reliability. In (ISSCC), 2016.

1

2

[5

=

[6

=

[9

—

[10]
(1]

[12

[13]

[14]
[15]
[16]
[17]

[18]

[19]
[20]
[21]
[22]
[23]

[24
[25]

[26]
[27]

[28]

