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Abstract. The original numerical scheme is developed for vortex sheet intensity compu-
tation for 3D incompressible flow simulation using meshless Lagrangian vortex methods.
It is based on tangential components of the velocity boundary condition satisfaction on
the body surface instead of widespread condition for normal components. For the body
triangulated surface the corresponding integral equation is approximated by the system
of linear algebraic equations, which dimension is doubled number of triangular panels.
Vortex layer intensity on the panels assumed to be piecewise-constant.

The coefficients of the matrix are expressed through double integrals over the influ-
ence and control panels. When these panels have common edge or common vertex these
integrals become improper. In order to compute them it is necessary to exclude the sin-
gularities, i.e., to split the integrals into regular and singular parts. Regular parts are
expressed by smooth functions, so they can be integrated numerically with high precision
by using Gaussian quadrature formulae. For singular parts exact analytical integration
formulae are derived.

The developed approach allows to raise significantly the accuracy of vortex layer in-
tensity computation in vortex method for flow simulation around arbitrary 3D bodies.

The test problem of flow simulation around the sphere is considered. The exact analyt-
ical solution is known for it, and the developed numerical scheme provides more accurate
results in comparison with ‘classical’ 3D vortex method, especially when non-uniform un-
structured triangular meshes are used for bodies surface representation. It allows to use
arbitrary triangular mesh on body surface and to refine mesh near sharp edges, what is
especially important for flow simulation around bodies with complicated geometry.
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1 Introduction and problem statement

The problem of 3D incompressible flow simulation around immovable body is consid-
ered. The governing equations are Navier — Stokes equations

∇ · �V = 0,
∂�V

∂t
+ (�V · ∇)�V = ν∇2�V − ∇p

ρ∞
,

with boundary conditions

lim
r→∞

�V = �V∞, lim
r→∞

p = p∞, �V (�r, t)
∣∣∣
�r∈K

= �0,

where �V is flow velocity; p — pressure; ρ∞ = const — density; ν — kinematic viscosity
coefficient; �V∞ and p∞ are parameters of the incident flow; K is body surface.

The viscosity assumed to be small, so according to L. Prandtl’s theory it is possible
to take its influence into account only as a cause of vorticity generation on body surface.
So, the flow can be considered inviscid, with vorticity flux from the surface.

The immovable body is simulated by the influence of vortex sheet with unknown in-
tensity �γ(�r, t), which is placed on the body surface, �r ∈ K. The vorticity flux can be
simulated if this vortex sheet is free; it means that at every time step this sheet is split
into separate vortex elements which form vortex wake around the body.

Vortex wake evolution can be simulated by using one of Lagrangian vortex element
methods [1, 2].

Vorticity flux simulation is one of the most important problems is vortex sheet intensity
computation. There are two fundamental approaches, which are based on elimination of
the limit values of normal or tangential velocity components on the body surface [3].
These approaches can be called “N -scheme” and “T -scheme”, respectively.

The accuracy of N -scheme, especially in FSI-applications, when the bodies are movable
and deformable, sometimes is not enough for practice. In 2D-case T -scheme allows to
obtain much more accurate results, but it requires the usage of more precise integration
schemes [3]. Such schemes are constructed and investigated by authors for 2D-case [4].

The aim of the present research is development of the numerical algorithm for T -scheme
in 3D case.

2 Integral equation for vortex sheet intensity

Due to the presence of vortex sheet on the body surface, velocity field, which can be
expressed by using generalized Biot — Savart law, has jump discontinuity, and its limit
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value from body side is

�V−(�r, t) = �V∞ +
1

4π

∫

S(t)

�Ω(�ξ, t)× (�r − �ξ )∣∣�r − �ξ
∣∣3 dSξ +

+
1

4π

∫

K

�γ(�ξ, t)× (�r − �ξ )∣∣�r − �ξ
∣∣3 dSξ −

�γ(�r, t)× �n(�r )

2
, �r ∈ K.

Here S(t) is vortex wake region; �Ω(�ξ, t) = curl �V (�ξ, t) is vorticity distribution in S(t),
which assumed to be known; �n(�r) is unit outer normal vector to body surface K.

In order to satisfy the boundary condition on the body surface, vortex sheet intensity
should satisfy the integral equation �V−(�r, t) = �0, �r ∈ K.

As it proved in [3], it is enough to satisfy this equation only for tangent component of
the limit value of velocity field:

�n(�r )×
(
�V−(�r, t)× �n(�r )

)
= �0.

It leads to the integral equation of the 2-nd kind

�n(�r )

4π
×

(∫

K

�γ(�ξ, t)× (�r − �ξ )∣∣�r − �ξ
∣∣3 × �n(�r )dSξ

)
− �γ(�r, t)× �n(�r )

2
= �f(�r, t), �r ∈ K, (1)

where

�f(�r, t) = −�n(�r)×

(
�V∞ +

1

4π

∫

S(t)

�Ω(�ξ, t)× (�r − �ξ )∣∣�r − �ξ
∣∣3 dSξ

)
× �n(�r )

is known vector function.

3 Integral equation discretization

In order to find approximate solution of integral equation (1), which kernel is un-

bounded when |�r − �ξ | → 0, the following assumptions can be made:

1. Body surface is triangulated into N flat cellsKi with areas Ai and normal vectors �ni,
i = 1, . . . , N .

2. The unknown vortex sheet intensity on the i-th cell is constant vector �γi,
i = 1, . . . , N , which lies in the plane of the i-th cell, i.e. �γi · �ni = 0.

3. The integral equation (1) is satisfied on average over the cells.
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According to these assumptions the discrete analogue of equation (1) can be derived:

1

4πAi

N∑
j=1

∫

Ki

(∫

Kj

�ni ×
(
�γj × (�r − �ξ )∣∣�r − �ξ

∣∣3 × �ni

)
dSξ

)
dSr −

�γi × �ni

2
=

=
1

Ai

∫

Ki

�f(�r, t)dSr, i = 1, . . . , N. (2)

To write down (2) in form of linear algebraic system we should choose local orthonormal

basis on every cell (�τ
(1)
i , �τ

(2)
i , �ni), where tangent vectors �τ

(1)
i , �τ

(2)
i can be chosen arbitrary

and �τ
(1)
i ×�τ

(2)
i = �ni. So �γi = γ

(1)
i �τ

(1)
i +γ

(2)
i �τ

(2)
i and we can project (2) for every i-th panel

on directions �τ
(1)
i and �τ

(2)
i :

1

4πAi

�τ
(1)
i ·

(
N∑
j=1

γ
(1)
j �ν

(1)
ij +

N∑
j=1

γ
(2)
j �ν

(2)
ij

)
− γ

(2)
i

2
=

b
(1)
i

Ai

,

1

4πAi

�τ
(2)
i ·

(
N∑
j=1

γ
(1)
j �ν

(1)
ij +

N∑
j=1

γ
(2)
j �ν

(2)
ij

)
+

γ
(1)
i

2
=

b
(2)
i

Ai

.

(3)

Here

�ν
(k)
ij =

∫

Ki

(∫

Kj

�τ
(k)
j × (�r − �ξ )∣∣�r − �ξ

∣∣3 dSξ

)
dSr, b

(k)
i =

∫

Ki

�τ
(k)
i ·�f(�r, t) dSr, k = 1, 2; i, j = 1, . . . , N.

Algebraic system (3) has infinite set of solutions; in order to select the unique solution
we should satisfy additional condition for total vorticity (integral from the vorticity over
the body surface) ∫

K

�γ(�r, t)dSr = �0,

which can be written down in the following form:

N∑
i=1

Ai

(
γ
(1)
i �τ

(1)
i + γ

(2)
i �τ

(2)
i

)
= �0. (4)

System (3)-(4) is overdetermined, it should be regularized, for example, by introducing

the ‘regularization vector’ �R =
(
R1, R2, R3

)T
:
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1

4πAi

�τ
(1)
i ·

(
N∑
j=1

γ
(1)
j �ν

(1)
ij +

N∑
j=1

γ
(2)
j �ν

(2)
ij

)
− γ

(2)
i

2
+ �R · �τ (2)

i =
b
(1)
i

Ai

,

1

4πAi

�τ
(2)
i ·

(
N∑
j=1

γ
(1)
j �ν

(1)
ij +

N∑
j=1

γ
(2)
j �ν

(2)
ij

)
+

γ
(1)
i

2
+ �R · �τ (1)

i =
b
(2)
i

Ai

,

N∑
j=1

Aj

(
γ
(1)
j �τ

(1)
j + γ

(2)
j �τ

(2)
j

)
= 0, i = 1, . . . , N.

(5)

Numerical computations show that system (5) is well-conditioned; its dimension is 2N+3.

4 Matrix coefficients calculation

The main problem for practical usage of the suggested approach is coefficients �ν
(k)
ij

calculation for system (5):

�ν
(k)
ij = �τ

(k)
j ×

∫

Ki

(∫

Kj

�r − �ξ∣∣�r − �ξ
∣∣3dSξ

)
dSr = �τ

(k)
j × �Iij, k = 1, 2, i, j = 1, . . . , N (6)

Integral �Iij is calculated over triangular cellsKi andKj, where i-th cell we call ‘control’,
j-th cell — ‘influence’ cell.

4.1 The general approach

The inner integral in (6) over the influence cell Kj

�Jj(�r ) =

∫

Kj

�r − �ξ∣∣�r − �ξ
∣∣3dSξ (7)

can be calculated exactly. There is well-known way for analytical calculation of integral

(7) via considering of the integral from
∣∣�r − �ξ

∣∣−1
with respect to �ξ over the triangle Kj:

�Jj(�r ) =

∫

Kj

�r − �ξ∣∣�r − �ξ
∣∣3dSξ =

∫

Kj

∇ξ
1∣∣�r − �ξ

∣∣dSξ = −
∫

Kj

∇r
1∣∣�r − �ξ

∣∣dSξ = −∇r

(∫

Kj

1∣∣�r − �ξ
∣∣dSξ

)
.

The last integral is very usual in potential theory, analytical expression for it can be
found, for example, in [5]. However, that expression is cumbersome and it also should be
differentiated with respect to components of vector �r.

Using computational software of symbolic mathematics Wolfram Mathematica and
Handbook of integrals [6] it is possible to integrate (7) straightforwardly if vectors
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�sk = �r
(j)
k − �r, k = 1, 2, 3, are only known, where �r is point for which integral (7) is

calculated, �r
(j)
k are vertices of Kj triangular cell. Denoting

�e
(j)
k =

�sk+1 − �sk∣∣�sk+1 − �sk
∣∣ =

�r
(j)
k+1 − �r

(j)
k∣∣�r (j)

k+1 − �r
(j)
k

∣∣ , �σk =
�sk∣∣�sk
∣∣ , k = 1, 2, 3,

and assuming all the indices to be calculated using a modulus of 3, we obtain

�Jj(�r ) = Θj�nj + �Ψj × �nj, j = 1, . . . , N,

where

�Ψj =
3∑

k=1

ln

( ∣∣�sk
∣∣∣∣�sk+1

∣∣
1 + �e

(j)
k · �σk

1 + �e
(j)
k · �σk+1

)
�ek,

and Θj is solid angle subtended by triangular cellKj which can be calculated, for example,
by using the formula [7]

Θj = 2arctan

(
�s1�s2�s3∣∣�s1

∣∣ · ∣∣�s2
∣∣ · ∣∣�s3

∣∣+ (
�s1 · �s2

)∣∣�s3
∣∣+ (

�s2 · �s3
)∣∣�s1

∣∣+ (
�s3 · �s1

)∣∣�s2
∣∣
)
,

here �s1�s2�s3 denotes the scalar triple product of the vectors.
The outer integral in (6)

�Iij =

∫

Ki

�Jj(�r ) dSr (8)

can’t be simply expressed analytically in elementary functions, so the suitable way for its
computation is Gaussian quadrature formula usage:

�Iij =

∫

Ki

�Jj(�r ) dSr ≈ Ai

NGP∑
p=1

ωp
�Jj(�ηp ),

where NGP is number of Gaussian points; ωp are weight coefficients; �ηp are positions of
Gaussian points. Values of ωp and �ηp for different values of NGP can be found, for example,
in [8].

It works perfectly if influence and control cells are far one from the other; numerical
experiments show that it is enough to use the corresponding quadratures with small
number of points (NGP = 1 . . . 4).

However, for cells which have common edge or common vertex (such cells we call ‘neigh-
boring cells’) the corresponding integral is improper, so Gaussian quadratures become
unsuitable. Direct numerical computation of improper integral is non-trivial problem, so
for such cases semi-analytical approach is developed.
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If the cells have common edge or common vertex, we need to exclude the singularity
from the �Jj(�r ) and write it down as sum of two terms:

�Jj(�r ) = �J reg
j (�r ) + �J sing

j (�r ).

where �J reg
j (�r ), which has the form

�J reg
j (�r ) =

(
Θj(�r )−Θ sing

j (�r )
)
�nj +

(
�Ψj(�r )− �Ψ sing

j (�r )
)
× �nj,

has no singularities and can be easily integrated numerically with high accuracy by using
Gaussian quadrature formulae

∫

Ki

�J reg
j (�r ) dSr ≈ Ai

NGP∑
p=1

ωp
�J reg
j (�ηp).

For the improper (singular) integral
∫

Ki

�J sing
j (�r ) dSr =

(∫

Ki

Θ sing
j (�r ) dSr

)
�nj +

(∫

Ki

�Ψ sing
j (�r )dSr

)
× �nj

exact analytical formulae are derived, which are shown below.

4.2 Neighboring cells with common edge

If cells Ki and Kj have common edge with directing unit vector �e3, as it is shown in
fig. 1, singular terms have the following form (hereinafter upper index (j) in unit vectors

�e
(j)
1 , �e

(j)
2 and �e

(j)
3 is omitted):

Θ sing
j (�r ) = 2

(
arctan

�b�e2 �e3

|�b |(1− �e2 · �e3)−�b · (�e2 − �e3)
− arctan

�a�e1 �e3
|�a |(1− �e1 · �e3) + �a · (�e1 − �e3)

)
,

�Ψ sing
j (�r ) = �e3 ln

|�a | · |�c | − �a · �c
|�b | · |�c | −�b · �c

+ �e1 ln
|�a |+ �a · �e1

|�c |
+ �e2 ln

|�b | −�b · �e2
|�c |

,

where
�c = �r

(j)
1 − �r

(j)
3 , �a = �r

(j)
1 − �r, �b = �r

(j)
3 − �r,

Expression for Θ sing
j , as well as all scalar multipliers of �Ψ sing

j can be integrated analyt-
ically over the cell Ki, an finally we obtain:

∫

Ki

Θ sing
j (�r ) dSr = −2Ai

(
q0(ξ, α, β, µ, γ, λ) + q0(ξ, β, α, σ, δ, θ)

)
,

∫

Ki

�Ψ sing
j (�r ) dSr = Ai

(
q12(ξ, α, β, µ, γ, λ)�e1 + q12(ξ, β, α, σ, δ, θ)�e2 + q3(α, β)�e3

)
.
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Figure 1: Cells Ki and Kj in case of having common edge

Here auxiliary functions q0, q12 and q3 have the form

q0(ξ, α, β, µ, γ, λ) = arctan
sin ξ sinα sin γ

1− cosα + cos γ + cosλ
+

+
sin γ sin ν

sin2 µ sinα

((
cos β sin γ − sin β cos γ cos ξ

)
arctan

sin ξ sinα sin γ

1 + cosα− cos γ + cosλ
+

+ sin ξ sin β
(
cos2

µ

2
ln

cos β/2

sin ν/2
+ sin2 µ

2
ln

sin β/2

cos ν/2
+ ln

cosλ/2

sin γ/2

))
,

q12(ξ, α, β, µ, γ, λ) =

= −3

2
+

1

sinα sin2 µ

(
ln(1 + cosλ) sin β(cos ν + cosµ cosλ) +

+ ln(1− cos γ) sin ν(cos β + cos γ cosµ) +

+ ln
sin β

sin ν
sin β(1− cosµ)(cos ν − cosλ)−

− sin ν sin β
(
−2 sin ξ sin γ arctan

sin ξ sin γ sinα

1 + cosλ− cos γ + cosα
+

+ (sin γ cos β cos ξ − sin β cos γ) ln
1− cos ν

1 + cos β

))
,

q3(α, β) =
sin ν

sin β
ln
(
tan

α

2
tan

ν

2

)
+

sin ν

sinα
ln
(
tan

β

2
tan

ν

2

)
+ ln

(
tan

α

2
tan

β

2

)
.

Here α and β are the angles of the triangle Ki, which adjoin the common edge of the cells
Ki and Kj, ν = π − α − β; γ and δ are the angles of the triangle Kj, which adjoin the
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common edge; ξ is the angle between the planes of the cells Ki and Kj; angles σ, µ, λ
and θ can be calculated by using formulae

σ = π − arccos(cosα cos δ + cos ξ sinα sin δ),

µ = π − arccos(cos β cos γ + cos ξ sin β sin γ),

λ = π − arccos(cosα cos γ − cos ξ sinα sin γ),

θ = π − arccos(cos β cos δ − cos ξ sin β sin δ).

4.3 Neighboring cells with common vertex

If cells Ki and Kj have common vertex, for example as it is shown in fig. 2, the regular

part �J reg
j (�r ) has the following form (the previous denotation is used):

Θ sing
j (�r ) = −2

(
arctan

�b�e∗∗ �e0

|�b |(1 + �e∗∗ · �e0) +�b · (�e∗∗ + �e0)
− arctan

�b�e∗ �e0

|�b |(1 + �e∗ · �e0) +�b · (�e∗ + �e0)

)
,

�Ψ sing
j (�r ) = −

(
�e∗∗ ln

|�b |+�b · �e∗∗√
Aj

− �e∗ ln
|�b |+�b · �e∗√

Aj

)
,

where �b = �r
(j)
c − �r; �e0 is unit vector of intersection line of the planes of the cells Ki and

Kj; �e∗ and �e∗∗ are unit vectors of sides of cell Kj, as it is shown in fig. 2.

Figure 2: Cells Ki and Kj in case of having common vertex

These expressions also can be integrated analytically over the cell Ki:∫

Ki

Θ sing
j (�r ) dSr = −2Ai

(
q4(δ∗∗)− q4(δ∗)

)
,

∫

Ki

�Ψ sing
j (�r ) dSr = −Ai

(
q5(δ∗∗)�e∗∗ − q5(δ∗)�e∗

)
.

9

711



Ilia K. Marchevsky and Georgy A. Shcheglov

The auxiliary functions q4 and q5 are the following:

q4(δ) =
1

sinψ sinκ

(
sinµ sin(ν + ψ) arctan

sin ξ sin δ/2

cos ξ sin δ/2 + cos δ/2 cot(ν + ψ)/2
−

− sin ν sin(µ− ψ) arctan
sin ξ sin δ/2

cos ξ sin δ/2 + cos δ/2 tan(µ− ψ)/2
−

− sinµ sin ν sinψ sin δ

D

(
2(cos ξ cos δ − cotψ sin δ)ω +

+ sin ξ
(
ln
(1 + cosλ

1− cos θ

sin ν

sinµ

)
+ cosσ ln

(
tan

ν

2
tan

µ

2

))))
,

q5(δ) = −3− ln 2

2
+

sinµ sin(ν + ψ) ln(1− cos θ)− sin ν sin(µ− ψ) ln(1 + cosλ)

sinκ sinψ
+

+
1

2
ln

sin ν sinµ

sinκ
− cos ν sinµ

sinκ
ln sin ν − cosµ sin ν

sinκ
ln sinµ−

− 2 sin ν sinµ

D sinκ sinψ

(
sin δ

(
sinψ cos δ cos ξ − cosψ sin δ

)
ln

1− cos θ

1 + cosλ
−

− sinψ
(
sin δ cosψ cos ξ − cos δ sinψ

)
ln
(
tan

ν

2
tan

µ

2

)
+

+sinψ
(
2ω sin δ sin ξ− 1

2

((
1− sin2 δ(1+cos2 ξ)

)
sin 2ψ− sin 2δ cos 2ψ cos ξ

)
ln

sin ν

sinµ

))
.

Here we denotes for simplicity

D = 2 sin2 ψ + sin2 δ
(
sin2 ξ + (1 + cos2 ξ) cos 2ψ

)
− sin 2δ sin 2ψ cos ξ,

ω = arctan
sin ξ sin δ sinκ/2

cos ξ sin δ sin(ν + ψ + κ/2) + cosκ/2− cos δ cos(µ− ψ + κ/2)
.

Here κ is the angles of the triangle Ki, which adjoins the common vertex of the cells
Ki and Kj; µ and ν are the other angles of cell Ki; ξ is the angle between the planes
of the cells Ki and Kj; ψ is the angle between �e0 and the side of triangle Ki, which is
opposite to common vertex; δ∗ and δ∗∗ are the angles between �e0 and vectors �e∗ and �e∗∗,
respectively; angles σ, λ and θ can be calculated by using formulae

σ = π − arccos
(
cosψ cos δ + cos ξ sinψ sin δ

)
,

λ = π − arccos
(
cos δ cos(µ− ψ)− cos ξ sin δ sin(µ− ψ)

)
,

θ = π − arccos
(
cos δ cos(ν + ψ) + cos ξ sin δ sin(ν + ψ)

)
.
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5 Numerical experiment

The developed semi-analytical numerical scheme makes it possible to use arbitrary
triangular surface mesh even of very low quality. The corresponding linear system is
being solved by using Gaussian elimination procedure. In the numerical examples shown
below Eigen library, developed for C++, has been used [9]. In fig. 3 the results are shown
for some test cases: flow around the sphere (with close to uniform mesh), flow around a
weight (with mesh cells of very different size) and flow around a fish model (some mesh
cells are very long and narrow). Red lines in the centers of cells shows the direction of
vorticity in vortex sheet.

Figure 3: Vortex sheet on the sphere (number of panels N = 2814); on the weight (N = 636) and on
the fish (N = 3194)
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6 Conclusions

The derived formulae for �Iij makes it possible to construct numerical procedure for
solving of the discrete analogue of the integral equation for vortex sheet intensity calcu-
lation in the framework of ‘tangent’ approach. It allows to use arbitrary triangular mesh
on body surface and to refine mesh near sharp edges, that is especially important for flow
around 3D wings simulation. Despite the fact that the dimension of the linear system in
the developed numerical scheme is twice as large then in traditional implementations of
vortex methods, its accuracy is much higher.
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