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Abstract. Dry granular flows are very common both in many natural phenomena 
(flow-like landslides) as well as in industrial processes. To model granular flows in the 
framework of continuum mechanics, a key issue is the formulation of a suitable 
constitutive model, capable of capturing the complex rheological behaviour of the 
granular material in a wide range of strain rates. In this contribution, a physically 
based model capable of reproducing the behaviour of granular materials in different 
flow regimes is briefly summarized.  Both the stress tensor and the dissipated energy 
are calculated as the sum of a quasi-static and a collisional contribution: the former 
one is modelled by employing an elasto-plastic model incorporating the critical state 
concept, whereas the latter stems from the kinetic theory of granular gases. The 
constitutive model has been implemented in the MPM research code Anura3D and 
applied to the simulation of the collapse of a dry granular column. The results show 
that the model can deal with the phase transition between the solid- and the fluid-like 
behaviour. The evolution of the state variables, the state of stress and the energy 
contributions is investigated in details.  
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1 INTRODUCTION 
Flows of dry granular materials characterizes many natural and industrial processes. An 

important feature of granular materials is that, depending on the strain rates and the grain 
packing, they may behave like a solid, a liquid or a gas. Two different particle interaction 
mechanisms can be identified in granular materials: (i) enduring frictional contacts among 
grains involved in force chains and (ii) inelastic collisions. At high particle concentrations and 
slow strain rates (quasi-static regime), the first mechanism prevails and the material behaves 
like a solid, where force chains span the entire domain. At low concentrations and very high 
strain rates (collisional regime), the second mechanism prevails and the material behaves like 
a granular gas. In between these two conditions, both mechanisms are relevant, the material is 
in the “transition regime” and behaves like a granular liquid. 

The Discrete Element Methods (DEM) is commonly employed to study the flow of 
granular materials because it is capable of automatically take into account large displacements 
as well as the granular nature of the material: however, this approach becomes inefficient for 
high numbers of grains. Large-scale phenomena are more often studied with continuum 
methods that apply a macroscopic approach. A key issue in this problem is the definition of a 
constitutive relationship suitable for reproducing the transition form a solid- to fluid-like 
behaviour of the material.  

In the literature, quasi-static and collisional conditions are often tackled by employing 
different approaches. The constitutive models proposed within the soil mechanics community, 
consider only the quasi-static regime disregarding the effect of collisions among grains. The 
collisional regime has been largely studied in the context of kinetic theories of granular gases, 
where the granular temperature is introduced as a state variable measuring the degree of 
agitation of the system. To reproduce the intermediate regime, several constitutive models 
have been proposed in the literature [2,1]; however many of them considers only steady state 
conditions. 

This paper investigates the potentialities of a recently proposed constitutive model [3] in 
the simulation of dry granular column collapse with the Material Point Method (MPM). The 
constitutive model, summarized in  Section 2, is based on kinetic theory and critical state 
elasto-plasticity; it can capture the mechanical response of a granular material under a wide 
range of strain rates. The unique state variables of this constitutive model are the granular 
temperature T and the void ratio e, which govern the solid-to-fluid phase transition. 

MPM is a point-based method specifically developed for large deformations of history 
dependent materials. It simulates large displacements by means of Lagrangian points moving 
through an Eulerian grid [4]. A brief introduction of the method is provided in Section 3, 
followed by a description of the numerical model used for the presented simulations. 

Section 4 discusses the results of the column collapse problem; in particular, we focus on 
the energy dissipation mechanisms and the phase transitions.  

2 THE CONTINUUM APPROACH FOR GRANULAR FLOWS 
The constitutive model considers an assembly of identical spherical particles of diameter d 

and density p. For the sake of simplicity, inherent and/or induced evolving anisotropy are 
disregarded. This discontinuous medium can be described, in the framework of continuum 
mechanics, by writing the field equations, derived from the conservation laws of mass, 
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momentum and energy as it follows: 
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where D/Dt denotes the material time derivative, e = void ratio, u = vector of the macroscopic 
mean velocity, f = vector of the external forces per unit volume,  = stress tensor, E = specific 
internal stored energy, q = vector of the energy flux per unit area and unit time,    = strain rate 
tensor and  = dissipated energy. In this paper, for the sake of simplicity, the energy flux q is 
disregarded. 

A parallel scheme is assumed, which implies that E is calculated as the sum of the specific 
elastic stored energy Eq and the kinetic fluctuating energy Ec 

        (4) 

 results by the sum of the energy dissipated by force chains q and the energy dissipated by 
inelastic collisions c 

        (5) 

 is given by the sum of a quasi-static contribution c, associated with long elapsing frictional 
contacts among grains involved in force chains, and a collisional contribution q, associated 
with inelastic collisions among grains. 

        (6) 

2.1 Quasi static contribution 

In this paragraph the quasi-static contributions, Eq, q and q are derived on the basis of 
standard perfect elasto-plasticity incorporating the critical state concept  

The main ingredients are  
 Strain rate additivity:           ,where e and p stand for the elastic reversible and 

the plastic irreversible contribution, respectively 
 The specific hyperelastic stored energy (Gibbs energy function) [5]: 

)1(3)2)(1(1

2
0

nk
p

nnkp
pE q

n
a

n

q 



 



 
(7) 

where  
5.02

0 2
:)1(

9 






 


g
nkp

p qqq ss
 

(8) 

pq = mean quasi-static stress, sq = deviatoric stress tensor, k and g are two 
macroscopic material dimensionless constitutive parameters associated with the 
bulk and shear stiffness respectively, n = non-dimensional constant and pa = 
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atmospheric pressure. 
 A yield locus f(q)=0, of the Lade and Duncan type, together with the consistency 

rule     . f  has been defined on the basis of DEM simulations [6–8] and its size 
depends on the triaxial compression stress ratio Mc.  

 The critical state locus equation G1(pq,e)=0, function pq and e, defined on the basis 
of DEM simulations [9]. G1 is affected by the particle Young modulus Ep, by the 
critical void ratio ec (representing the critical state void ratio for pq=0) and by the 
material parameter aL. 

 The plastic potential g(q,e)=0, evolving with e and q, in order to incorporate the 
critical state into the model [10,11]. g is affected by Ep and by , which is a macro-
parameter influencing the rapidity in achieving the critical state locus [3]. As a 
consequence, the flow rule, necessary to compute the plastic strain rate pε , is non-
associated. 

 An extended consistency rule,      , which imposes that the critical state locus 
cannot be abandoned once is reached (critical regime)[3]. In fact, the basic idea of 
the model is that      0 represents an attractor locus for the material. 
Therefore, condition      , implies that under the critical regime, the void ratio 
evolution is governed by the mean quasi static stress via the critical state locus 
definition. In this regime, the plastic volumetric strain rate does not obey the flow 
rule but is computed by depurating the total volumetric strain rate of the elastic 
component. 

 
For the sake of brevity, the analytical expression of f, g and G1 are here omitted, but can be 

found in [3,16]. 
According to the previous assumptions it is now possible calculate the plastic dissipated 

energy as 
p

qqE εσ :   (9) 

and the quasi static stress tensor 
p

qq εDσ   
(10) 

where Dq(q,e) is the quasi-static stiffness fourth order tensor, depending on the quasi 
static stress tensor q and the void ratio e. The details of the derivation of Dq are reported in 
[3,16]. 

2.2  Collisional contribution 

The collisional contributions Ec, c and c are function of both the void ratio e and the 
granular temperature T. In particular, according to kinetic theories of granular gases [12], the 
fluctuating kinetic energy is  
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The expression of the energy dissipated by inelastic collisions c is based on the extended 
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kinetic theory [13], modified by Berzi and Jenkins [14], to take into account the role of 
particle stiffness on collisions. Its expression is reported in [14] and it is affected by p, d, the 
normal and effective coefficient of restitution [15] n and eff, respectively. 

The collisional stress tensor is modelled according to the kinetic theory described in [12], 
taking also into account the modification introduced by Berzi and Jenkins [14]. The analytical 
expression of c is given by 

vv
c hεΦσ  :  

(12) 

In  Equation 12 v(e,T) and hv(e,T) are a fourth-order and a second-order tensor, 
respectively. They are affected by s, d, Es, n and a material constant em and their analytical 
form can be found in [16]. 

2.3 The visco-perfect-elasto-plastic constitutive relationship 
According to Equation 6, the stress tensor is the sum of the quasi static and collisional 

contributions. To this purpose, the quasi-static contribution is expressed in finite form by 
integrating in time Equation 10 

qqq t σεDσ ˆ:    
(13) 

where t is the integration time step and     is the quasi-static stress tensor calculated at the 
previous time step. 

From Equation 12 and Equation 13, the total stress tensor reads 

cεDσ  :vep  (14) 

where Dvep (q,e,T) is the visco-elasto-plastic fourth-order tensor 
vqvep t ΦDD   (15) 

and c(   ,e,T) is a second-order tensor given by 
v

q hσc  ˆ  (16) 

According to this model, different flow regimes can be defined.  
1. The visco-elastic regime, when f<0 or f=0 and   =0 
2. The visco-ealsto-plastic regime, when f=  =0       
3. The critical regime: when f=     =0       
4. The collisional regime: when f=     =0       
The description of these regimes and the analytical expression of Dvep and c for each 

regime is reported in [3]. 

3 THE NUMERICAL MODEL 
MPM has been developed to overcome the difficulties arising when simulating large 

deformation problems with Lagrangian FEM. In the last 10 years the number of applications, 
ranging from solid to fluid mechanics, has been significantly increasing. In the field of 
geomechanics it has been used to study a number of problems such as slope stability [18,17], 
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granular flow propagation [19,20], soil penetration problems [22,23,21], soil erosion and 
sedimentation [24,25].  

MPM uses two level of discretization. On one hand, the continuum body is discretized by 
means of a set of material points (MP) that carry all the information of the continuum 
(density, velocity, stresses, state parameters etc.). On the other hand, the spatial region where 
the body move through is discretized by a finite element mesh that allows to solve the 
discretized governing equation of motion. Large deformations are simulated by MP moving 
through a fix mesh as shortly summarized in Figure 1.  

The constitutive model is implemented as a user defined model in the MPM dynamic 
explicit research code Anura3D (www.anura3d.eu)[26]. The constitutive equations are 
integrated explicitly; in particular, a Dormand-Prince method with substepping and correction 
for yield surface drift is applied for the quasi-static stresses [27]. 

The specific collisional dissipated energy and the plastic dissipated energy are integrated 
by means of the mid-point rule. The kinetic fluctuation energy and the elastic stored energy 
are computed with equations (11) and (7), respectively, at the end of the time step as function 
of the updated stress state and granular temperature.  

The simulated 2D column collapse problem considers a 0.1m-high, 0.1m-long column 
(aspect ratio a=l/h=1). The model is 0.005m-wide. 

The mesh is structured and counts 5610 tetrahedral elements (Figure 2). The bottom of the 
mesh is fully fixed, while roller boundary conditions are applied on the other surfaces. 10 MP 
are initially placed inside each active element for a total number of 14400 MP. 

Stresses are initialized with horizontal coefficient at rest K0=0.5. The material parameters 
are summarized in Table 1. 

 
Figure 1 Computation scheme of MPM: a) interpolate state variables to the grid nodes, (b) solve the governing 

equations of motions at the nodes, (c) update MP velocity, strain, stress etc., (d) update MP housekeeping. 
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Figure 2 Geometry and discretization of the numerical model 

Table 1 Material properties and initial state variables 

Grain diameter d [m] 0.002 
Grain density s [kg/m3] 2532 
Grain Young modulus Ep [Pa] 3e+08 
Normal restitution coefficient n 0.879 
Parameter of collisional functions em 1.5 
Critical void ratio ec 0.709 
Parameter of CSL aL 0.56 
elastic constant related to bulk modulus K 380 
elastic constant related to shear modulus G 48 
Parameter of plastic potential  0.35 
Stress ratio under triaxial compression Mc 0.9 
Effective restitution coefficient eff 0.59 
Initial void ratio e0 0.71 
Initial granular temperature T0 [m2/s2] 1e-15 
 

4 RESULTS  
The collapse of a granular column is a well-established experiment that consists in 

releasing a column of granular material by removing its lateral support on to a flat surface. 
The column then fails and some of its mass flows on to the flat surface before it is deposited. 

Figure 3 shows the deviatoric strains at the material points (MP) at different time instants, 
from which the development of the failure surface can be noted. The failure surface defines 
the boundary between a static cone with small strains (bottom left, blue MP) and a mobilised 
mass (top right, red MP). During the collapse, the mobilised mass slides along the failure 
surface and crumbles upon the base. The friction between the mobilised mass and the static 
region or the boundary, as well as the collisions between grains, dissipate energy and slows 
down the mobilised mass until static conditions are reached. 

Figure 4 and Figure 5 show the specific collisional dissipated energy and the specific 
plastic dissipated energy, respectively. It can be noted that dissipation due to inelastic 
collisions among particles mainly occurs inside the mobilized mass, while the plastic 
dissipation mainly occurs at the sliding surface. 
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Figure 3 Deviatoric strain at the MP in different time instants 

 
Figure 4 Specific collisional dissipated energy at the MP in different time instants 

 
Figure 5 Specific plastic dissipated energy at the MP in different time instants 
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Integrating the specific energies at the MP, it is possible to obtain the time evolution of the 
collisional dissipated energy, the plastic dissipated energy, the kinetic fluctuation energy and 
the elastic stored energy (Fig. 6). Collisional dissipated energy is significantly higher than the 
plastic dissipated energy, meaning that collisions between grains is a key phenomenon in this 
problem. The kinetic fluctuation energy and the elastic stored energy are very small compared 
to the plastic and collisional dissipation. The kinetic fluctuation energy increases up to a peak 
and then tends to zero under static conditions. 

In addition to the form of internal energy shown in Figure 6, it is also interesting to 
monitor the evolution of the potential energy (EP) and the kinetic energy (EK) of the system. 
There are computed by summing up the potential energy and the kinetic energy of each MP 
according to Equations 17 and 18 respectively: 

       
 

   
   

(17) 

     
   

 

   
      

(18) 

where mp=mass of the MP, vp=velocity, yp=elevation, N=total number of MP, g=gravity 
acceleration. 

The potential energy of the system decreases with time (Fig. 7). This decrement of 
potential energy (EP) obviously coincide with the work of the external forces. The potential 
energy transforms in kinetic energy and internal energy of the system, the latter is partially 
stored and partially dissipate as previously discussed. In contrast, the kinetic energy of the 
system increases up to a peak and then tends to zero. The peak of kinetic energy occurs 
approximately at time          , where      corresponds to the time taken by a single 
particle in free fall to travel from the centre of the column to the base (Fig. 7). 

 
Figure 6 Evolution of internal energy types. 

547



I. Redaelli, F. Ceccato, C.G. di Prisco and P. Simonini 

 10 

 
Figure 7 Evolution of kinetic energy and potential energy of the system  

Figure 8

 

Figure 8 shows the transition between different regimes observed during the column 
collapse. Initially all the MP discretizing the column are in visco-elastic regime (#1), then 
gravity forces and the lack of fixities on the right side induce an increase of the deviatoric 
stress and a volumetric expansion, thus the MP move to the visco-elasto-plastic (#2), the 
critical (#3) and the collisional regimes (#4). This phenomenon interests the most superficial 
MP first, characterized by a lower state of stress, then  propagates to the deeper MP. In other  
words, with the increasing of the deviatoric strain rate, a phase transition is observed. This 
phase transition occurs more rapidly in the areas characterized by al lower state of stress. 
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Figure 8 transitions over different regimes 

5 CONCLUSIONS  
This paper explores the potentialities of a recently proposed constitutive approach for the 

simulation of dense granular flows considering a column collapse problem. A parallel scheme 
is assumed, in which the stresses, the dissipated energy and the energy flux are assumed to be 
obtained by linearly adding a collisional and a quasi-static contribution. The first contribution 
stems from the kinetic theory of granular gases. For the latter contribution, an elasto-plastic 
model based on critical state theory has been adopted. In the solid-to-fluid phase transition, a 
key role is played by the void ratio and the granular temperature, the unique state variables of 
the model. This innovative constitutive approach is implemented in the MPM code Anura3D.  

The energy dissipation mechanisms are a key issue in predicting the collapse behaviour 
and the run-out distance; and they are primarily controlled by the constitutive model. The 
results showed that significant amount of energy is dissipated by inelastic grain collisions, 
especially within the mobilized mass. This contribute is fundamental in the description of the 
phenomenon and should not be neglected. Plastic dissipation mainly occurs at the sliding 
surface and at the bottom of the mesh. This contribute is controlled by the elastoplastic law 
applied for the computation of quasi-static stress. 

This paper has investigated in details the column collapse (flow inception) in which, 
according to the introduced constitutive model, the MP experience a transition between 
different regimes: visco-elastic, visco-elastoplastic, critical and collisional. In other words, the 
transition from a soild to a fluid state is well captured by the model.  

For the sake of brevity, the deposition phase has not been investigated and it will the 
subject of future research. Future developments must also include the role of granular 
temperature diffusion within the granular mass. 
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