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Abstract. The paper presents some three-dimensional simulation results of granular vortex-
structures in cohesionless initially dense sand during quasi-static plane strain compression. 
The sand behaviour was simulated using the discrete element method (DEM). Sand grains 
were modelled by spheres with contact moments to approximately capture the irregular grain 
shape. The Helmholtz-Hodge decomposition (HHD) of the displacement vector field from 
DEM calculations was used. The variational discrete multiscale vector field decomposition 
allowed for separating a vector field into the sum of three uniquely defined components: curl 
free, divergence free and harmonic. Vortex-structures were strongly connected to shear 
localization. They slightly changed along the specimen depth. They localized in locations 
where shear zones ultimately developed.  
 
1 INTRODUCTION 

Granular vortex-structures defined as the roughly swirling (rotating) motion of several 
grains around a common central point were frequently observed in experiments on granular 
materials [1]-[3] and in calculations using the discrete element method (DEM) [4]-[9]. They 
became apparent in experiments and calculations when the motion associated with uniform 
(affine) strain was subtracted from the actual granular deformation. They are reminiscent of 
turbulence in fluid dynamics, however the amount of the grain rotation is several ranges of 
magnitude smaller (0.01o-0.1o) than the fluid vortex rotation, their life time is also short than 
of eddies in turbulent fluid flow and granular flow is too slow to induce inertial forces 
characteristic for turbulences in fluid. The vortices have been mainly observed in shear zones 
that are the fundamental phenomenon in granular bodies. A dominant mechanism responsible 
for the vortex formation was the breakage of force chains [4], [7]. The collapse of main force 
chains lead to a formation of larger voids and their build-up to a formation of smaller voids 
[7]. Kozicki and Tejchman [8], [9] and Tordesillas et al. [4] showed that shear localization 
may be predicted very early through vortex-structures that means new perspectives for a 
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detection of impending failure in granular bodies (inherently connected with shear 
localization) within continuum mechanics. In continuous and discontinuous numerical 
calculations and laboratory experiments, shear localization is usually identified in granular 
bodies by grain rotations or micro-polar rotations or by an increase of void ratio. 

The aim of the present paper is to present the results of 3D vortex-structures in sand during 
quasi-static plane strain compression by using the Helmholtz-Hodge decomposition (HHD) of 
a vector field [10], [11] calculated by the discrete element method (DEM) [8]. Attention was 
paid to the relationship between vortex-structures and shear localization with respect to the 
location and formation moment. The analyses were carried out with spheres with contact 
moments to approximately capture the irregular grain shape. In order to accelerate the 
computation time, some simplifications were assumed in analyses: large spheres with contact 
moments, linear sphere distribution, linear normal contact model and no particle breakage. A 
three-dimensional discrete model YADE developed at University of Grenoble by Donze and 
his co-workers was applied [12], [13]. The discrete calculations were solely carried out with 
initially dense sand. The innovative point of our calculations are 3D granular vortex-structures 
which have not been calculated in granular materials yet.  

In our previous paper we calculated 2D vortex-structures during a quasi-static passive wall 
translation based on the Helmholtz-Hodge decomposition (HHD) of a vector field calculated 
by the discrete element method (DEM) [9]. The discrete vector field decomposition proved to 
be an objective, universal and effective technique for identifying all 2D vortex-structures 
during granular flow which was directly based on single grain displacement increments (but 
not on displacement fluctuations). The method did not use any additional non-objective 
parameters. However the method did not determine the size of vortex-structures. A strong 
connection between the location of vortex-structures and progressive shear localization was 
found out. The vortex-structures were the precursor of shear localization since they clearly 
concentrated in the area where shear zones ultimately later formed. Thus the ultimate shear 
zone pattern was detected in early loading stages. The vortex-structures allowed to identify 
shear localization significantly earlier than e.g. based on single grain rotations which were 
always a reliable indicator of shear localization. They developed from the deformation 
process beginning. They solely emerged in main shear zones. They had a tendency to move 
along shear zones. Their number varied and was larger on average at the residual state. The 
right-handed vortices were dominant in the curved shear zone and left-handed ones were 
dominant in the radial shear zone. In the curved shear zone, the predominant period of right-
handed vortices was 4% of u/h during the entire wall movement. In the radial shear zone, the 
predominant period of left-handed vortices was also 4% of u/h. In the residual state, local 
regions of dilatacy and contractancy alternately happened along globally dilatant shear zones 
with a dominance of local dilatancy. 

2 THREE-DIMENSIONAL DEM MODEL 
In order to simulate the behaviour of real sand, the 3D explicit spherical discrete element 

model YADE, developed at University of Grenoble [12]-[13]. DEM includes the simple 
mathematical treatment of engineering problems (complex global constitutive relationships 
are replaced by simple local contact laws) and has the natural predisposition to account for 
material heterogeneity. The outstanding advantages of DEM include its ability to explicitly 
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handle the discrete/heterogeneous nature of the material by modelling particle-scale properties 
including size and shape which play an important role in shear localization. The 
disadvantages is an enormous computational cost and an extensive calibration based on 
experimentally measured macro-scale properties. The algorithm used in the present DEM 
which is based on a description of particle interactions in terms of force laws involves in 
general main steps [14]. First, based on constitutive laws, interaction forces between discrete 
elements are computed. Second, the Newton’s second law is applied to determine for each 
element the resulting acceleration, which is then time integrated to find the new position. This 
process is repeated until the simulation is finished. The method takes advantage of the so-
called soft-particle approach, i.e. the model allows for particle deformation which is modelled 
as an overlap of particles. During the simulations, particles may overlap that can be 
interpreted as a local contact deformation. A linear elastic normal contact model was used 
only. In compression, the normal force was not restricted and could increase indefinitely. The 
interaction forces acting on each element in the form of normal and tangential forces were 
linked to the displacements through the normal stiffness Kn and tangential stiffness Ks 

 

NUK=F nn


, (1) 

 

sss FF=F


              with             sss XK=F


 , (2) 

 

where U is the penetration depth between discrete elements, N


 denotes the unit normal 

vector at the contact point and sX  is the incremental tangential displacement vector. The 
unloading was assumed to be purely elastic. The stiffness parameters were calculated in terms 
of the modulus of elasticity of the grain contact Ec and two contacting grain radii RA and RB 
(to determine the normal stiffness Kn) and in terms of the modulus of elasticity Ec and 
Poisson’s ratio c of the grain contact, and grain radii RA and RB (to determine the tangential 
stiffness Ks) of two contacting spheres, respectively [12] 

 

                             
     
     

                      and                             
     
     

.                      , (3) 

 

If the grain radius RA=RB=R, the stiffness parameters are equal to: Kn=Ec R and Ks=c Ec 
R (thus Ks/Kn=c), respectively. The frictional sliding starts at the contact point when the 

contact forces sF


 and nF


 satisfy the limit Coulomb condition 

0tan  ns FF


 (4) 

 

with μ as the inter-particle friction angle (tension was not allowed). No forces are 
transmitted when grains are separated. The elastic contact constants were specified from the 
experimental data of a triaxial compression sand test and could be related to the modulus of 
elasticity of grain material E and its Poisson ratio   [15], [16]. 

In order to increase the rolling resistance of pure spheres, clusters of spheres or contact 
moments were introduced. The normal force was assumed to contribute to the rolling 
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resistance. The contact moment increments were calculated by means of the rolling stiffness 

Kr multiplied by  the angular rotational increment vectors 


  
 




 rK=M . (5) 

 

The rolling stiffness Kr [kNm] in Eq.5 was related to the tangential stiffness Ks [kN/m] in 
Eq.2 by the following formula 

 

BAssr RRKRK=K   2 , (6) 

 

where β is the dimensionless rolling stiffness coefficient and R is the equivalent grain radius 
(at small displacements dXrdXs). The dimensionless rolling coefficient η specifies the limit 
friction moment of the rolling motion [12] 
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2
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 . (7) 

 

Because the proposed DEM is a fully dynamic formulation, a local non-viscous damping 
scheme was applied [14] in order to dissipate excessive kinetic energy in a discrete system 
and facilitate convergence towards quasi-static equilibrium. The damping parameter α was 
introduced to reduce contact forces and moments acting on elements 

 

||)sgn( kkkk
damped FvFF


       and     ||)sgn( kkkk

damped MMM


  , (8) 

 

where kF


and kM


are the kth components of the residual force and moment vector and 
kv



 and k


 are the kth components of the translational and rotational velocity. A positive 
damping coefficient  is smaller than 1 (sgn(•) returns the sign of the kth component of 
velocity). The equations are separately applied to each k-th component of a 3D vector x, y and 
z. The effect of damping is insignificant in quasi-static calculations [15], [16]. 

The five main local material parameters are necessary in our DEM simulations: Ec 
(modulus of elasticity of the grain contact),  c (Poisson’s ratio of the grain contact), μ (inter-
particle friction angle), β (rolling stiffness coefficient) and η (limit rolling coefficient). In 
addition, a particle radius R, particle mass density  and numerical damping parameter α are 
required. The DEM material parameters: Ec, c, μ, β, η and α were calibrated using the 
corresponding homogeneous axisymmetric triaxial laboratory test results on Karlsruhe sand 
with the different initial void ratio and lateral pressure by Wu [17]. The procedure for 
determining the material parameters in DEM was described in detail by Kozicki et al. [15], 
[16]. The index properties of Karlsruhe sand are: mean grain diameter d50=0.50 mm, grain 
size between 0.08 mm and 1.8 mm, uniformity coefficient Uc=2, maximum specific weight 
d

max=17.4 kN/m3, minimum void ratio emin=0.53, minimum specific weight d
min=14.6 kN/m3 
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and maximum void ratio emax=0.84. The sand grains are classified as sub-rounded/sub-
angular. The following material constants were found in DEM by fitting numerical outcomes 
with experimental ones during homogeneous triaxial compression: Ec=0.3 GPa,  c=0.3, 
=18o, =0.7, =0.4 =2.55 g/cm3 and a=0.08. 

3 DEM RESULTS OF PLANE STRAIN COMPRESSION 
Our numerical outcomes with respect to 3D vortex-structures were related quasi-static 

plane strain compression. The results of 3D DEM calculations were described in detail in [8]. 
The granular specimen used in DEM had the same size as in the experiments by Vardoulakis 
[18], namely: the width b=4 cm, height h=14 cm and depth l=8 cm (out-of-plane direction) 
(Fig.2). The linear grain distribution curve was assumed; the grain diameter range was 
between 1.25 mm and 3.75 mm with d50=2.5 mm. About 56’000 spheres were used with the 
same material constants. The initial void ratio was eo=0.53. The flexible vertical walls were 
assumed to model the membrane surrounding the specimen in experiments (Figs.2a and 2b). 
Both the front and rear specimen sides 4×14 cm2 were blocked in a perpendicular direction to 
the specimen to enforce plane strain conditions. The bottom surface 4×8 cm2 was fixed in a 
vertical direction and the top surface 4×8 cm2 was subjected to the constant vertical 
displacement u1. Along the top, bottom and membrane granular surfaces, the inter-particle 
friction angle was μ=0. During the loading process, the constant confining pressure of 
σc=200 kPa was applied through the flexible membrane.  

Figure 2 demonstrates the typical evolution of the mobilized internal friction angle 
(calculated with principal stresses from the Mohr’s equation) versus the vertical normal strain 
1=u1/h and volumetric strain v versus 1 for two specimens. Figure 3 shows the distribution 
of sphere rotations  and void ratio e in the vertical mid-section slice with the area of 4×14 
cm2 and thickness of 5×d50 (1.25 cm, d50=2.5 mm) cut out from the granular specimen 
4×14×8 cm3. The both quantities were calculated from the volumetric cell Vc=5d50×5d50×5d50 
moved by d50 in two directions within the slice to create a 2D grid of the averaged values 
from the cell. The cell size, which was smaller than the shear zone thickness ts, was chosen 
with preliminary calculations. The averaging cell larger than Vc caused the results too 
diffusive and with the smaller cell volume Vc, the results started too strongly fluctuate. 

Similarly as in real experiments [18], the initially dense specimen showed an asymptotic 
behaviour; it exhibited initially small elasticity, hardening (connected first to contractancy and 
then dilatancy), reached a peak of max=46o at about of 1=5%, gradually softened and dilated 
reaching a residual state of max=30o at the large vertical strain of 25-30% (Fig.3). The 
coordination number was initially about 5 and decreased down next to 3.8 during shearing 
due to dilatancy. During deformation a distinct internal inclined shear zone occurred inside 
the sand specimen which was marked by shear strain, larger grain rotation and volume 
increase (Fig.3). The thickness of the inclined interior shear zone ts was on average in the 
residual state for 1=30% about ts=25 mm (10×d50) based on strain deformation in the 
specimen. The calculated shear zone inclination to the bottom was 60o at ε1=10% and 67o at 
ε1=30%.. In the calculated shear zone, the mean void ratio and grain rotation were: e>0.65 and 
>25o. The specimen globally dilated in the shear zone. At the critical state, the maximum 
average void ratio was 0.70-0.80 in the shear zone and 0.53-0.60 outside. The maximum 
resultant rotation in the shear zone at the peak (ε1=5%) was about 5o and at the residual 
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state for ε1=30% between 50o-55o. Based on both the cumulative rotation and void ratio 
(Fig.3), the internal inclined shear zone may be noticed for ε15%.  
 

a) 

b) 

Figure 2: DEM results for plane strain compression with initially dense sand (eo=0.53, c=200 kPa, d50=2.5 mm, 
Ec=0.3 GPa,  c=0.3, =18o, =0.7, =0.4) for two simulations: a) mobilized internal friction angle versus 

normalized vertical displacement of specimen top 1=u1/h and b) volumetric strain v versus 1 (h - initial specimen 
height) [8] 

4 HELMHOLTZ-HODGE DECOMPOSITION (HHD) 
4.1 Calculation’s method 

The Helmholtz-Hodge decomposition (HHD) of vector fields is one of the fundamental 
theorems in fluid dynamics [10], [11], [19]. It describes a vector displacement increment field 
in terms of its curl-free and divergence-free components based on potential functions. The 
unique Helmholz-Hodge decomposition of the smooth 3D vector field     provides the 
following formula 
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                          , (10) 

 

where     
   

 
   

 
   

 
 is the gradient,      

    
 
    

 
    denotes the divergence operator, 

   is the curl operator, u denotes the scalar potential field,    is the vector potential field and 
    denotes the harmonic vector field. The gradient of the scalar potential function       is called 
the curl-free component and is related to expansion/contraction (because is irrotational) while 
the curl of the vector potential function         is called the divergence-free component and is 
related to vorticity and pure shear (because is incompressible). The harmonic component 
which contains the non-integrable component of the field, is related to pure translation. 
 

      
                                                        a)                                                                 b) 
 

Figure 3: DEM results for plane strain compression test with initially dense sand (eo=0.53, c=200 kPa, d50=2.5 
mm): average cumulative grain rotation distribution and average cumulative void ratio distribution in degrees in 

granular specimen for vertical normal strain 1=20% [8] 

A variational calculus approach was used [20] which allowed for finding the vector fields       
and         by examining the difference between the unknown vector field and provided field    . 
By requesting that this difference is minimum (the minimum was found by assuming that the 
derivatives of the functionals were equal to zero, the vector fields       and         were explicitly 
determined. The explicit calculation for       and         was given in [9]. 

The accurate discrete multiscale Helmholz-Hodge decomposition of vector fields on 
arbitrary tetrahedral grids was proposed in [19]. In order to create a grid, the centre of each 
sphere was a node in the Delaunay triangulation and the i-th node had the coordinate      . Then 
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the discrete piecewise-constant vector field    (                       was created by assigning the 
constant vector value         to each k-th tetrahedron ( k is the piecewise-constant basis function 
equal to 1 inside the k-th tetrahedron and 0 otherwise). This value was calculated as the 
average of sphere displacement increments         which constituted each tetrahedron         
              

    in the 3D case or each triangle                       
    in the 2D case. Since u and    

are the piecewise linear functions described using a piecewise-linear basis shape function 
     , their derivatives   will be piecewise-constant, hence the solution for the piecewise-
constant    (    discrete vector field is exact [19]. 

4.2 Boundary conditions 
In order to obtain a unique solution, appropriate boundary conditions have to be assumed 

[11], [21]. The system of linear equations in HHD was solved using the following general 
boundary conditions:         (divergence-free component - incompressible component) was 
tangential to the domain boundary      =0 and       (curl-free component - irrotational 
component) was orthogonal to the boundary domain     =0. The proof of uniqueness and 
orthogonality for these boundary conditions, called N-P (normal-parallel) boundary 
conditions, which should be always maintained for flow problems can be found in [22]. Note 
that a change of these boundary conditions suggested in [23] may create an invalid or ill-
posed problem [24]. The so-called Hodge-Morrey-Friedrichs boundary conditions may be 
also used [11]. The boundary conditions obviously influence vector fields close to specimen 
boundaries. In particular when the spheres’ number is low; vortex-structures may be solely 
detected in the specimen centre since the vector field        is forced by boundary conditions 
to be parallel to boundaries. In our previous calculations [9] the number of spheres along the 
height and length of the granular specimen was high enough (200-400) and the effect of 
boundaries proved to be insignificant on the distribution of vortices based on preliminary 
calculations. Due to a rather small number of particles along the specimen width during plane 
strain compression (16=b/d50=40/2.5), the effect of boundary conditions during calculations 
of vortex-structures was weakened by introducing virtual particles outside boundaries [22]. 
Artificial nodes were added in the Delaunay’s triangular mesh at the distance of up to 50 mm 
around the specimen (with the grid inter-node distance of 1 mm).The vector     in these 
artificial nodes was calculated using the Gaussian averaging for true specimen nodes with the 
averaging radius of 80 mm (2×b). 

5 NUMERICAL RESULTS 
Figures 4 and 5 show the calculated 3D vortex-structures in the granular specimens. The 

spatial view on the net of vortex-structures is shown in Fig.4 (the vortex-structures are shown 
in the form of cylinders which linked all local maxima). Figure 5 presents the vortex-
structures at 3 different vertical cross-sections (specimen front side, specimen mid-depth and 
specimen rear side) for 5 different vertical normal strains 1: 1=1.5%, 1=3%, 1=5%, 
1=10% and 1=20%. The circles denote the spots where the vertical cross-sections intersected 
the 3D vortex lines of Fig.4.  
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The vortex-structures appeared from the begin of the specimen deformation. They were 
immediately concentrated in the region of the shear zone occurrence. Thus the ultimate shear 
zone turned out to be encoded in the grain kinematics from the deformation onset. This 
outcome is in accordance with our earlier calculation results for plane strain compression 
based on displacement fluctuations [8] and calculation results based on bottlenecks in force 
transmission through the contact network [24]. The right-handed vortices (green circles) were 
created during progressive deformation. The distribution of vortex-structures was not uniform 
in the specimen and their number was different in vertical cross-sections up to the residual 
state. The number of vortex-structure was smaller in 3D simulations than in 2D ones. 

6 CONCLUSIONS 
- The vortex-structures were the precursor of shear localization since they clearly 

concentrated in the area where a shear zone ultimately later formed. Thus the ultimate 
shear zone was detected in early loading stages. The vortex-structures allowed to 
identify shear localization significantly earlier than e.g. based on single grain rotations 
or an increase of void ratio which were always a reliable indicator of shear 
localization. They developed from the deformation process beginning.  

- An early prediction possibility of shear localization through vortex-structures may 
open new perspectives for a detection of impending failure in granular bodies 
(inherently connected with shear localization) within continuum mechanics.  
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Figure 4: 3D vortex-structures in 3 for different vertical normal strain 1=1.5%-30% (green lines link local 
minima (right-handed vortices) 
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a) b) c) 

  

 

d) e)  

Figure 5: 3D vector field curl         (divergence-free component related to vorticity) in granular specimen area 
x×y in vertical cross-section at specimen mid-depth for different vertical normal strain 1: a) 1=1.5%, b) 1=3%, 
c) 1=5%, d) 1=10% and e) 1=20%, (scale denotes component of vector potential    perpendicular to specimen 

in [mm2/iteration]), green circles describe local minima (right-handed vortices)) 
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The normal text should be written single-spaced, justified, using 12pt (Times New) Roman 

in one column. The first line of each paragraph must be indented 0.5cm. There is not inter-
paragraph spacing. 

7 PAGE NUMBERS 
In order to organize the Full Paper, it is better to number the pages. Page numbers are not 

included in the printing box. 

8 FIGURES 
All figures should be numbered consecutively and captioned. The caption title should be 

written centered, in 10pt Roman, with upper and lower case letters. 
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First A. Author, Second B. Author, and Third C. Coauthor.

1 INTRODUCTION
The proceedings will be edited in a CD-ROM, including the texts and figures, using

Portable Document Format (PDF). The editors will be in charge of translating the paper from
TEX, Latex or MS-Word to PDF.

For this purpose, a 3.5'' DOS formatted diskette must be sent, containing either:
a) the TEX or Latex files, the DVI file, the TEX macros used and the figures in

Encapsulated Postscript format, or
b) the MS-Word file with all figures and non-standard fonts embedded.

In both cases, please send us a Hard Copy printout.
All this information may seem redundant, but given the time constraint this is probably the

best way to avoid possible errors.
It is good practice to send a second diskette containing exactly the same information. The

diskettes should be clearly labeled with the title, the corresponding author of the paper and the
type of processor used. Also include a plain text (ASCII) README.TXT file with a
description of all the files in the diskette.

All the paper files must be contained in one diskette. If needed, the following file
compressors may be used: pkzip (DOS), compress or gzip (UNIX).

Please send all this information by airmail to the Spanish Congress Secretariat , do not
use e-mail or other electronic communication for this purpose.

2 GENERAL SPECIFICATIONS
The paper must be written in English within a printing box of 16cm x 21cm, centered in

the page. The paper including figures, tables and references must have a minimum length of 4
pages and must not exceed 20 pages.

3 TITLE, AUTHORS, AFFILIATION, KEY WORDS
The first page must contain the Title, Author(s), Affiliation(s), Key words and the

Abstract. The second page must begin with the Introduction. The first line of the title is
located 3cm from the top of the printing box.

3.1 Title
The title should be written centered, in 14pt, boldface Roman, all capital letters. It should

be single spaced if the title is more than one line long.

3.2 Author
The author's name should include first name, middle initial and surname. It should be

written centered, in 12pt boldface Roman, 12pt below the title.

2

COMPUTATIONAL MECHANICS
New Trends and Applications

E. Oñate and S. R. Idelsohn (Eds.)
©CIMNE, Barcelona, Spain 1998

INSTRUCTIONS FOR PREPARING A PAPER FOR THE EUROPEAN
CONGRESS ON COMPUTATIONAL METHODS IN APPLIED

SCIENCES AND ENGINEERING

First A. Author*, Second B. Author†, and Third C. Coauthor†

* International Center for Numerical Methods in Engineering (CIMNE)
Universidad Politécnica de Cataluña

Campus Norte UPC, 08034 Barcelona, Spain
e-mail: cimne@etseccpb.upc.es, web page: http://cimne.upc.es/

† Spanish Association for Numerical Methods in Engineering (SEMNI)
Edificio C1, Campus Norte UPC

Gran Capitán s/n, 08034 Barcelona, Spain
Email: semni@eteseccpb.upc.es, Web page: http://www.cimne.upc.es/semni

Key words: Instructions, ECCOMAS 2000, Barcelona 2000, Computational Methods in
Applied Sciences and Engineering, proceedings, ECCOMAS.

Abstract. This document provides information and instructions for preparing a paper to be
included in the Proceedings of the EECCOMAS Confeence. The paper can be written in TEX,
Latex or Word. The first page is reserved for the title of the paper, the authors, affiliation, key
words and the Abstract. The Introduction must begin at the top of the second page. All the
instructions as well as the source for the example files for TEX or Word can be found in the
web pages of the Congress.
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Figure 1: Page layout 

A 6pt space should separate the figure from the caption, and a 12pt space should separate 
the upper part of the figure and the bottom of the caption from the surrounding text. 

Figures may be included in the text or added at the bottom of the Full Paper.  

9 EQUATIONS 
A displayed equation is numbered, using Arabic numbers in parentheses. It should be 

centered, leaving a 6pt space above and below to separate it from the surrounding text. 
The following example is a single line equation: 

Ax = b (1) 

The next example is a multi-line equation: 
Ax = b (2) 

10 TABLES 
All tables should be numbered consecutively and captioned, the caption should be 10pt 

Roman, upper and lower case letters. 
 

Table 1: Example of the construction of one table 

C11 C12 C13 
C21 C22 C23 
C31 C32 C33 
C41 C42 C43 
C51 C52 C53 

 
A 6pt space should separate the table from the caption, and a 12pt space should separate 
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the table from the surrounding text. 

11 FORMAT OF REFERENCES 
References should be quoted in the text by superscript numbers [1,2] and grouped together 

at the end of the Full Paper in numerical order as shown in these instructions. 

12 CONCLUSIONS 
- Full Papers in format for publication should be submitted electronically via the web 

page of the Conference, before May 26, 2017. The file must be converted to Portable 
Document Format (PDF) before submission. The maximum size of the file is 4 Mb. 

- The speaker (corresponding author) is expected to pay his registration fee during the 
advance period (before May 26, 2017) for the presentation to be included in the final 
program of the Conference.  

 

REFERENCES 
[1] Zienkiewicz, O.C. and Taylor, R.L. The finite element method. McGraw Hill, Vol. I., 

(1989), Vol. II, (1991). 
[2] Idelsohn, S.R. and Oñate, E. Finite element and finite volumes. Two good friends. Int. J. 

Num. Meth. Engng (1994) 37:3323-3341. 

529




